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Data-Intensive Text Processing Workflows with a Parallel
Database System

Ting Chen1,a) Kenjiro Taura1,b)

Abstract: This paper studies three real-world text processing workflows and tries to accomplish them using a parallel
database system called ParaLite as the backend storage instead of files. Database system could be helpful to simplify
the description of workflows and reduce a large number of intermediate files. To better support workflows which are
typical built out of various independently developed executable and scripts, ParaLite provides an extended syntax of
SQL to embed arbitrary external programs (user-defined executable) into a single SQL query and implements a concept
of collective queries. A collective queries is an SQL query whose results are distributed to multiple clients collectively
and then processed by them in parallel, using user-defined executable. With ParaLite, these three workflows are easy to
be performed and experimental results show that ParaLite has achieved good scalability in terms of the parallelization
of UDXes with the increase of computing clients.
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1. Introduction
Workflow [1] has become one of the most important and nec-

essary tool for data-intensive applications since it facilities the
composition of individual executable or binary scripts, making it
easier for domain experts to focus on their research rather than
computation management. Workflow is widely used to process a
large number of text, especially in the discipline of Nature Lan-
guage Processing (NLP). Common tasks in NLP are to extract the
features of data (aspects of the representations of the data) some
of which may be superficial, such as the words and sequences of
words themselves while others are more complex, such as both
the grammatical and semantic relationship between words. To ac-
complish these tasks with workflows, easy description and paral-
lel processing of tasks readily accessible to NLP scientists. Many
system are proposed to execute workflows, including GXP Make
[2], Swift [3], Pegasus [4] and Taverna [5].

A workflow is generally a DAG with a set of jobs and their de-
pendencies. Each job is a typical existing binary or executable.
For example, NLP workflows typically consist of data scrapers,
sentence splitters, part-of-speech taggers, named entity recogniz-
ers, parsers, data indexers, and so on. Many of them (e.g., parsers
[6], [7]) are third-party components that received a considerable
amount of development efforts in the community. Others are ad-
hoc scripts. Either way, they almost always work on text data
which is usually stored in and transferred through files. Each job
in the workflow is fed with input files and produces at least one
output file which becomes the input of a follow-up job. A file-
based workflow is always very complex with many jobs due to
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its low-level description. Besides, to process file in parallel, a big
file is splitted into small files, thus, leading to a large number of
intermediate files. Users always complain that it is troublesome
for them to manage thousands of files, and also inconvenient to
extract useful information from so many files. In addition, Using
files to store data may lead to poor performance for the execution
of a workflow. Since creating index for data stored in files is usu-
ally impossible, it is very tedious and inefficient to select a subset
of data which requires a full scan to files.

Recently, MapReduce [8] has attracted wide interests from
both industry and academia due to its simple programming model
and good scalability across hundreds of nodes. After the emer-
gence of MapReduce and its open-source incarnation Hadoop [9]
in particular, lots of scientific researchers start to focus on con-
structing map-reduce enabled workflow systems in which a heavy
task can be expressed as Map and Reduce jobs [10] or a whole
workflow composition is created as MaprRduce style [11]. How-
ever, MapReduce in general requires users to develop two func-
tions map and reduce; Hadoop requires them to be written in Java
conforming the class library framework, at least by default. Data
is stored in the parallel file system HDFS which makes indexing
data impossible too. Moreover, a workflow typically consists of
many third-party binaries and ad-hoc scripts written in a variety
of language, but integrating them in Hadoop is not straightfor-
ward. Hadoop Streaming API supports external programs but
only to a limited extent; it generally does not bring to them as
much flexibility as to the native Hadoop programs.

With consideration of making workflows simple and efficient,
a nature idea is to build workflows on top of the parallel database
system[12]. On the one hand, with expressive SQL, database sys-
tems can simplify the description of workflows. For instance,
SQL with a proper support of user-defined functions and reduc-
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tions can express many data processing tasks much more ele-
gantly and easily than MapReduce [13] [14]. Good expressive
ability of SQL also leads to many proposals on hybrids of re-
lational databases and MapReduce [15] [16] [17]. On the other
hand, database are efficient for processing relational data in ways
expressible in SQL due to data indexing and sophisticated query
optimization [13] [14]. However, to support workflows better,
database systems generally have a limited support for integrating
external executable into data processing pipeline. As mentioned
above, such integration is very important in workflows. Another
general limitation of parallel database systems is that they do not
optimize data transfers between data nodes and parallel clients
that process large query results. A significant work exists on min-
imizing IO costs and data transfers inside the execution of an SQL
query [12], but query results are all returned to a single client who
issued the query. When big results are returned to a single client
and then distributed to external programs for parallel execution,
the single client can easily become a bottleneck. Moreover, it
prohibits us to take advantage of co-allocating computing clients
with data.

Therefore, we proposed a lightweight parallel database sys-
tem called ”ParaLite” [18]. It provides an extension to database
system to support the integration of external programs ” User-
Defined Executable (UDX)” into a single SQL query. It imple-
mented a concept of collective queries that facilitate description
of workflows by making data parallel execution of UDX on big
data easy and streamlined and also provide the workflow develop-
ers with a familiar and powerful language SQL, for flexible data
filtering and stereotypical data processing tasks. In this paper, we
demonstrate several real-world text-processing workflows using
ParaLite. Section 2 firstly gives a brief review of ParaLite and
then section 3 introduces three workflows and the development
with ParaLite. Some experimental results are shown in section 4.
Finally, conclusion and future works are introduced in section 5.

2. Review of ParaLite
ParaLite is a shared-nothing parallel database system based on

a popular single-node database SQLite [19].

2.1 Syntax of User-Defined Executable
The syntax of UDX is shown in Fig 1.

select  a1,  F(a2)  as  b2,  a3  from  t  where  ...

with  F =  "cmd_line"

collective  by id1

Fig. 1 The syntax of a collective query

ParaLite extends SQL to support the definition of User-Defined
Executable (UDX). A ParaLite UDX is an executable file which
can be written in any language. This is very flexible because a
user does not need to develop a program respecting to rigid for-
matting rules such as <key, value> input/ output format or write
code according to pre-defined procedural methods. An UDX can
work on and produce arbitrary columns while UDF in traditional
database system can only support one column input and output.

Moreover, to avoid registration to system before the query is ex-
ecuted, ParaLite allows users to define the UDX within the query
using WITH clause. It starts from a command line followed by data
format options, such as, input, input row delimiter, output
and out row delimiter. These options not only provide more
flexible input and outputs of UDXes than traditional UDFs, but
also allow data to be processed in bulk. However, a single invo-
cation of traditional UDF by a single row produces a single result
record, which leads to a significant performance degradation if
the UDF has much start-up overhead which commonly happens
in the NLP applications.

2.2 Examples of UDX
I will take some examples to illustrate the usage of UDXes.

The schema of table data is :
data : | text |
• Grep Task

Grep task is considered as a typical MapReduce task which
scans through a large set of records looking for a three-
character pattern. This task can be expressed by a simple
SQL query:

select * from data where text like ’%XYZ%’

It is also easily performed by a query with shell scrip ”grep”
as a UDX:

select F(text) from data with F="grep XYZ"

All data of column text retrieved from table data is pro-
cessed by the UDX grep XYZ and the filtered data is re-
turned.

• Word Count Task
Word count, another canonical example of MapReduce, is to
calculate the occurrences of words in a big text document.
While this task could be easily expressed by MapReduce re-
searcher with a Map and a Reduce job, there is no easy way
to perform it in database community unless the big text could
be splitted into words. With UDX, it is straightforward to
integrate text splitter into general group by SQL task to cal-
culate the count for each word.

select word, count(*) from

select F(text) from data

with F= "awk ’for(i=1;i<=NF;i++) print $i’"

group by word

The nested query is to split the text into words using awk script
and output words in the format of one word in one line. The
occurrences for each word is simply counted by grouping words
from the output of the nested query.

• Sentence Split Task
Splitting documents into sentences is the first step for almost all
text-processing applications. It involves an third-party binary de-
veloped by domain researchers.

create table sentence as

select F(text) as (SID, sentence) from data

with F="geniass" output col delimiter ’\t’

The sentence splitter geniass takes text, outputs sentences
with their identification separated by ’\t’. So in the definition
of geniass, an user should specify the output col delimiter
to let database system know how to convert data into the right
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schema. For this query, the output of geniass is stored into a
table ”sentence” with two columns "| SID | sentence |".

Worker Node2

DB DB DB

Client1 Client2 Client3 Client4

select * from..

Worker Node1 Worker Node2 Worker Node3

DB DB DB

Client1 Client2 Client3 Client4

select * from.. select * from.. select * from.. select * from..

Worker Node3Worker Node1

Fig. 2 The support of parallelization of UDX in a collective query

2.3 Collective Query
The main goal of collective query is to parallelize the execution

of UDX. Multiple computing clients issue the same query with
the same collective ID specified by the collective by clause,
get data collectively directly from data nodes and perform UDXes
on data in parallel. This feature makes it differ a lot from tradi-
tional database system which only allows a single client to issue a
query whose results are all returned to the client. When the com-
putation is too complex to use an UDF with a SQL query, then
client has to distributes all result data to external programs for
parallel execution as shown in the top of Fig 2. In this case, the
single query issuer can easily become a bottleneck. Moreover, it
prohibits us to take advantage of co-allocating computing clients
with data. It is a big waste of time and bandwidth if comput-
ing clients and data are located on the same node. On the other
hand, a collective query transparently parallelizes UDXes across
multiple clients. Data transfer between database processes and
client processes executing UDX is optimized taking data locality
and load balance among all computing clients into account (see
the bottom of Fig 2). In the best case, a computing client is run-
ning on each database node and data are already balanced among
them, no data are transferred between nodes. In addition, collec-
tive queries allow the separation of data nodes and client nodes
on which UDXes-related software is installed. The degree of par-
allelization is controlled by the number of clients and new clients
can join in the group to get a part of data during the execution but
before all data is distributed to clients.

A simple and straightforward flow to process a group of collec-
tive query is as follows: First of all, data are partitioned and stored
in database managed by SQLite on each data node. A master
node parses received collective queries and translates them into
a execution plan. A execution plan is a job graph composed of

relational operators such as join and group by, sub-query ex-
ecuted by SQLite and UDX. Once the execution plan is created,
jobs of operators and sub-queries are scheduled into data nodes
to be executed while UDXes are executed by computing clients.
The query is completed successfully after all jobs are finished.

3. Text-Processing Applications
With the increase of text data, it becomes more and more nec-

essary but difficult to extract useful information in text-processing
applications. In this section, we will introduce three typical text-
processing applications either in web analysis or Natural Lan-
guage Processing. They are developed by workflow system called
GXP Make [2] which use make to describe the workflow thanks
to its nature feature in describing dependencies between targets
and prerequisites. GXP Make supports all the features of GNU
make but extends its platforms from single node systems to clus-
ters, clouds, supercomputers, and distributed systems. In the past,
files are used to store and transfer data and the backend storage
system is NFS. To solve the problems with file (mentioned in the
first section), we will use ParaLite, the workflow targeted parallel
database system, as the backend storage system in GXP Make.
A significant feature of ParaLite in a workflow is that a single
SQL query can do everything including file split, data reduce and
parallelization of programs.

a, First, data is naturally partitioned on many data nodes elim-
inating explicit big file split.

b, Then, SQL query with proper reduction can automatically
spawns processes to handle data globally based on efficient exe-
cution plan.

c, Finally, with support of UDX and collective query, Par-
aLite provides transparently parallelization of UDX across mul-
tiple computing clients with optimized data transfer from data
sources to clients.

3.1 Japanese Word Count
Japanese Word Count is to calculate the occurrence of

Japanese words from crawled Japanese web pages. Word count
task is widely used to extract key words or phrases from web data
which is very useful in the web analysis of various fields, such as,
revealing hot topic in Twitter, popular products in on-line stores
and attracting customs in different counties.

convert xml file to text file

loading data into database

text file --> standard format

standard format --> raw string

 tokenize Japanese words

calculate the occurences 

Fig. 3 The workflow of Japanese Word Count

This task reads raw data crawled from main Japanese websites,
extracts Japanese words and calculates their occurrences. The
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main steps of the workflow is shown in Fig 3. With ParaLite, each
task in the workflow is expressed by either a collective query with
a third-party executable or a SQL query for general purpose and
all intermediate data is stored in ParaLite system. The detail of
the description in the Makefile is shown as follows:

a l l : $ (WORD COUNT)

$ ( HTML FILE ) : $ ( INPUT FILES )
. / r e a d c r a w l . py $< > $@

$ (HTML TABLE) : $ ( HTML FILE )
p a r a l i t e DB ” c r e a t e t a b l e h tml ( rowid , r a r , u r l , r b t

, r e s , t im , req , s t a , hdr , con ) on DATA NODE”
p a r a l i t e DB ” . i m p o r t $< html − c o l u m n s e p a r a t o r

: : : : : − r o w s e p a r a t o r =====”
$ (STANDARD FORMAT) : $ (HTML TABLE)

p a r a l i t e DB ” c r e a t e t a b l e s t a n d a r d f o r m a t a s
s e l e c t S ( con ) as s f from html wi th S = ”
h t m l 2 s f . py ” i n p u t r o w d e l i m i t e r ’=====’
o u t p u t r o w d e l i m i t e r ’=====’ on DATA NODE
c o l l e c t i v e by 1 ”

$ (RAW STRING) : $ (STANDARD FORMAT)
p a r a l i t e DB ” c r e a t e t a b l e r a w s t r i n g as s e l e c t R(

s f ) a s r s from s t a n d a r d f o r m a t wi th R =”
s f 2 r s . py ” i n p u t r o w d e l i m i t e r ’=====’
o u t p u t r o w d e l i m i t e r ’=====’ on DATA NODE
c o l l e c t i v e by 2 ”

$ (TOKENS) : $ (RAW STRING)
p a r a l i t e DB ” c r e a t e t a b l e t o k e n s as s e l e c t T ( r s )

a s word from r a w s t r i n g wi th T = ” juman ” on
DATA NODE p a r t i t i o n by word c o l l e c t i v e by 3 ”

$ (WORD COUNT) : $ (TOKENS)
p a r a l i t e DB ” c r e a t e t a b l e word coun t a s s e l e c t

word , c o u n t ( ∗ ) a s f r e q u e n c y from t o k e n s
group by word on DATA NODE”

Note that, while all tasks are easy to be performed using SQL
query, they are general difficult or inefficient to be completed with
files especially for the final word count task as shown in Fig 4. A
big file should be splitted into a several small files each of which
is executed by different programs, leading to three problems:

split

html2sf

sf2rs

juman

wc

wc

html2sf html2sf html2sf html2sf html2sf

sf2rs sf2rs sf2rs sf2rs sf2rs

juman juman juman juman juman

wc wc wc wc wc

Fig. 4 Japanese Word Count with Files

(1) every program has to parse each record to get desired
columns.

(2) programs may not be scheduled to the nodes who have tar-
get data by workflow systems. For example, the performance
should be degraded when sf2rs programs are scheduled on
nodes [4-6] while all output of html2sf are stored in nodes [1-3].

(3) when word count is performed, all data are required to be
reduced into one node and be counted globally. Of course, users
could use some sophisticated reduce methods such as MapRe-
duce, but they are obviously much complex than only a SQL
query.

3.2 Sentence-Chunking Problem
The first step of extracting concepts and relations within state-

ments across a large text is to chunking sentences into its con-
stituent phrases which represent N-gram in a sentence. Signifi-
cant chunks would typically correspond to semantic units such as
named entities (proteins, genes, diseases) or relations [20] [21].

The problem for Sentence Chunking is to find the best way to
chunk a sentence with the most meaningful phrases. We use a
statistical model to solve it. This model assumes that every sen-
tence is generated by randomly sampling from a dictionary which
contains phrases (N-gram). Due to the finite number of methods
to chunked a sentence into phrases, this model assigns a likeli-
hood value to each phrase based on its frequency, and chooses
the chunking with the maximum likelihood. This model requires
multiple iterations to maximize the corpus likelihood.

The workflow of Sentence Chunking is shown in Fig 5.

extract abstract from medline input

generate N-grams(phrases) 

calculate frequencies for phrases : <phrase: frequency> 

filter phrases whose frequency = 1

construct BloomFilter for phrases load data into database

calculate # of phrases: <frequency, count>

produce the probability: <frequency, probability>

calculate the likelihood of whole corpus : C
if C > BEST   or   

iter_num > MAX_ITERATIONS 

Fig. 5 The workflow of Sentence Chunking

This workflow is as always expressed with several SQL queries
using ParaLite. Since expressing iteration is not easy in Makefile,
so we split the whole Makefile into two parts and integrate them
in a shell script. The first two features of ParaLite are especially
important in this workflow since data split and reduce occurs al-
ternately.

ALL: $ (FREQUENCY COUNT) $ (BLOOMFILTER) $ (SQDB)

$ ( ABST TXT ) : $ (PUBMED XML GZ)
z c a t $ ˆ | x m l 2 t e x t ’ # ## ’ > $@
p a r a l i t e DB ” c r e a t e t a b l e a b s t t x t ( a b s t r a c t ) on

DATA NODE”
p a r a l i t e DB ” . i m p o r t $@ a b s t t x t ”

$ ( ABST SS ) : $ ( ABST TXT )
p a r a l i t e DB ” c r e a t e t a b l e a b s t s s a s s e l e c t G( F (

a b s t r a c t ) ) a s s e n t e n c e from a b s t t x t w i th G=
” t o k e n i z e / dev / s t d i n ” F=” g e n i a s s INPUT
OUTPUT” i n p u t ’INPUT ’ o u t p u t ’OUTPUT) ’ on
DATA NODE c o l l e c t i v e by 1 ”

$ (N GRAM) : $ ( ABST SS )
p a r a l i t e DB ” c r e a t e t a b l e n gram as s e l e c t G(

s e n t e n c e ) a s p h r a s e from a b s t s s wi th G=”
n g r a m s p l i t t e r MAX LENGTH” on DATA NODE
p a r t i t i o n by p h r a s e c o l l e c t i v e by 1 ”

$ (PHRASE FREQUENCY) : $ (N GRAM)
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p a r a l i t e DB ” c r e a t e t a b l e p h r a s e f r e q u e n c y as
s e l e c t ph ra se , c o u n t ( ∗ ) a s f r e q u e n c y from
n gram group by p h r a s e on DATA NODE”

$ (SMALL PHRASE FREQUENCY) : $ (PHRASE FREQUENCY)
p a r a l i t e DB ” s e l e c t ph ra se , f r e q u e n c y from

p h r a s e f r e q u e n c y where f r e q u e n c y > ’1 ’ ”
$ (SQDB) : $ (SMALL PHRASE FREQUENCY)

s q l i t e 3 SQDB ” c r e a t e t a b l e p h r a s e f r e q u e n c y (
p h r a s e v a r c h a r ( 1 0 0 ) , f r e q u e n c y i n t ) ”

s q l i t e 3 SQDB ” . i m p o r t $ ˆ p h r a s e f r e q u e n c y ”
$ (BLOOMFILTER) : $ (SMALL PHRASE FREQUENCY)

. / b f p r o d u c e r SIZE NUN HASH $ ˆ \ | $@
$ (FREQUENCY COUNT) : $ (PHRASE FREQUENCY)

p a r a l i t e DB ” s e l e c t f r e q u e n c y , c o u n t ( ∗ ) from
p h r a s e f r e q u e n c y group by f r e q u e n c y ”

$ (FREQUENCY PROBABILITY) : $ (FREQUENCY COUNT)
. / p r o b p r o d u c e r $ ˆ $@ \ |

$ (SENTENCE LIKELIHOOD) : $ (FREQUENCY PROBABILITY)
p a r a l i t e DB ” c r e a t e t a b l e s e n t e n c e l i k e l i h o o d as

s e l e c t F ( s e n t e n c e ) a s l i k e l i h o o d from
a b s t s s wi th F=\” l i k e l i h o o d p r o d BLOOMFILTER
SIZE NHASH CACHE SIZE SQDB $ ˆ | \” on

DATA NODE c o l l e c t i v e by 1 ”
$ (CORPUS LIKELIHOOD) : $ (SENTENCE LIKELIHOOD)

p a r a l i t e DB ” s e l e c t sum ( l i k e l i h o o d ) from
s e n t e n c e l i k e l i h o o d ”

3.3 Event-Recognition
Event-Recognition [22] [23] is to recognize complex bio-

molecular relations (bio-events) among biomedical entities (i.e.
proteins and genes) that appear in biomedical literature. Recog-
nition of such events including an expression of a certain gene, a
phosphorylation of a protein, and a regulation of certain reactions
are important to understand biomedical phenomena.

The workflow of Event-Recognition is shown in Fig 6.

extract abstract from medline input

split abstract into sentences

enju:  syntactic parser

add lexicon head convert data format ner: name-entity recoginize

edge detector 

event detector 

Fig. 6 The workflow of Event-Recognition Application

This workflow takes a collection of data from the MEDLINE
database of journal description [24] [25]. It first extracts the
abstract of bio-medical related abstract and title, then processes
each sentence by different programs to find bio-medical entities
and dependencies of or between words. Finally, event recognizer
tries to find complex event among entities using all the result for
each sentence. ParaLite accomplishes the workflow simply by
several collective queries with UDXes and a join SQL to get all
result for a single sentence. To perform this in a workflow with
files, a common method is to define file name in advance to know
the location of sentences. This is really troublesome and ineffi-
cient.

ALL: $ ( ENJU SO )

$ ( ABST TXT ) : $ (PUBMED XML GZ)

z c a t $ ˆ | x m l 2 t e x t ’ # ## ’ > $@
p a r a l i t e DB ” c r e a t e t a b l e a b s t t x t (PMID , a b s t r a c t

) on DATA NODE”
p a r a l i t e DB ” . i m p o r t $@ a b s t t x t ”

$ ( ABST SS ) : $ ( ABST TXT )
p a r a l i t e DB ” c r e a t e t a b l e a b s t s s a s s e l e c t F (

PMID , a b s t r a c t ) a s ( SID , s e n t e n c e ) from
a b s t t x t w i th F=” g e n i a s s ”
i n p u t c o l d e l i m i t e r ’### ’
o u t p u t c o l d e l i m i t e r ’### ’ on DATA NODE
p a r t i t i o n by SID c o l l e c t i v e by 1 ”

$ ( ENJU SO ) : $ ( ABST TXT )
p a r a l i t e DB ” c r e a t e t a b l e e n j u s o as s e l e c t SID ,

A( E ( s e n t e n c e ) ) a s e n j u from a b s t s s wi th E=”
e n j u ” A=” a d d l e x h e a d ” o u t p u t r o w d e l i m i t e r
’=#= ’ on DATA NODE p a r t i t i o n by SID
c o l l e c t i v e by 2 ”

$ (GDEP OUT) : $ ( ABST SS )
p a r a l i t e DB ” c r e a t e t a b l e k s d e p o u t a s s e l e c t SID

, F ( s e n t e n c e ) a s p r e k s d e p from a b s t s s wi th
F=” gdep ” o u t p u t r o w d e l i m i t e r EMPTY LINE on
DATA NODE p a r t i t i o n by SID c o l l e c t i v e by 3 ”

$ ( GDEP SO ) : $ (GDEP OUT)
p a r a l i t e DB ” c r e a t e t a b l e k s d e p s o as s e l e c t SID ,

F ( s e n t e n c e , p r e k s d e p ) a s ksdep from
a b s t s s , k s d e p o u t where a b s t s s . SID =

k s d e p o u t . SID wi th F=” dep2so −g ”
i n p u t r o w d e l i m i t e r EMPTY LINE
i n p u t c o l d e l i m i t e r ’### ’
o u t p u t r o w d e l i m i t e r EMPTY LINE on DATA NODE

p a r t i t i o n by SID c o l l e c t i v e by 4 ”
$ (GENE NE TEMP) : $ ( ABST SS )

p a r a l i t e DB ” c r e a t e t a b l e g e n e n e t e m p as s e l e c t
SID , G( T ( s e n t e n c e ) ) a s p r e g e n e from a b s t s s

wi th T=” g e n e n e r t o k e n i z e r ” G=”
g e n t n e r g t a g ” on DATA NODE p a r t i t i o n by SID

c o l l e c t i v e by 5 ”
$ ( GENE NE SO ) : $ (GENE NE TEMP)

p a r a l i t e DB ” c r e a t e t a b l e g e n e n e s o as s e l e c t
SID , F (N(M( s e n t e n c e , p r e g e n e ) ) ) a s gene from

a b s t s s , g e n e n e t e m p where a b s t s s . SID =

g e n e n e t e m p . SID wi th M=” p o s m a r k e r ” N=”
d i c t m a t c h e r ” F=” n e r ” on DATA NODE p a r t i t i o n

by SID c o l l e c t i v e by 6 ”
$ (EVENT SO) : $ ( GENE NE SO ) $ ( GDEP SO ) $ ( ENJU SO ) $ (

ABST SS )
p a r a l i t e DB ” c r e a t e t a b l e e v e n t s o as s e l e c t F (

SID , s e n t e n c e , en ju , ksdep , gene ) a s ( SID ,
e v e n t ) from a b s t s s , e n j u s o , ksdep so ,
g e n e n e s o where a b s t s s . SID = e n j u s o . SID
and a b s t s s . SID = k s d e p s o . SID and a b s t s s .
SID = g e n e n e s o . SID wi th F=” a l l d e t e c t o r s ”
on DATA NODE c o l l e c t i v e by 6 ”

4. Evaluations
All experiments are conducted on a 32 nodes cluster. Each

node has 2.40 GHz Intel Xeon processor with 8 cores and 24GB
RAM. SQLite 3.7.3 is installed on each node.

4.1 Japanese Word Count
The input for this workflow is 28GB and stored in 32 nodes.

Among all tasks, resources consuming tasks are listed below:
• html2sf: Conversion from crawled data to standard format

which is an XML-based format developed by Kurohashi’s
group at Kyoto University to represent a document in a man-
ner that can easily extract necessary pieces such as plain text.

• sf2rs: Extraction of plaintext part, marked with <rawstring>
tags in the data with standard format.

• juman: A morphological analyzer for Japanese.
These three tasks are all performed by a collective query. The

execution time for them is shown in Fig 7. The number of clients
in this experiment is 64 which means that each node has 2 clients.
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The program of html2sf is very cpu-intensive and cost about 94
minutes while the other three are lightweight programs, consum-
ing only several minutes.

Fig. 7 The execution time of tasks in Japanese Word Count

To verify the mechanism of the parallelization of UDX, we
tested the speedup for both cpu-intensive <html2sf> and light-
weight UDXes <sf2rs> with the increase of clients as shown in
8. The speedup for <html2sf> is a litter smaller than linear one
when the number of clients is up to 128. This is mainly because
with the reduction of total execution time, overheads for some op-
erations that cannot be parallelized, such as, data scheduling and
storing final result data into database, have become bigger part
in the total time than before. So the ideal speed up could not be
achieved. However, The speedup of <sf2rs> exceeds the linear
one a litter. One possibility is that the execution time of <sf2rs>
is not the linear function of the size of data. Then when the data
size is reduced to be half for each client, the execution time may
reduce more than half.

Fig. 8 The speedup of two UDXes in Japanese Word Count

4.2 Sentence-Chunking Application
The experiments are performed with 7 GB data from MED-

LINE database. We extract the 1 GB journal abstract which pro-
duces about 50 GB phrases. Time consuming tasks in this work-
flow are shown below:
• phrase-generator: Generate N-grams (phrases) for each sen-

tence.
• phrase-frequency: Calculate the frequencies of phrases.
• db-load: store all phrases whose frequencies are larger than

1 into a SQLite database which is located in a shared file
system.

• bf-producer: construct BloomFilter (BF) [26] for phrases
whose frequencies are larger than 1. The BF is created to re-
duce the latency of a look up to the SQLite database. For ex-
ample, if we want to query the frequency for word A, firstly,
we check if A is in the BF. If not, it means the frequency
of this word is 1. Otherwise, another query to the SQLite

database is required to get the exactly frequency. Since the
latency to look up in a BF is much smaller than SQLite and
phrases whose frequencies equal to 1 take a great part in
the whole phrases, BF provides a significant improvement
of performance.

• frequency-count: Calculate the number of phrases group by
their frequencies.

• likelihood-prod: Calculate the likelihood of each sentence.
First of all, Fig 9 shows the execution time for each task with

32 data nodes and 64 clients. We can see that the calculation of
sentence likelihood is the most time-consuming task even with
the optimization of BloomFilter. For a sentence with n words,
there are 2n−1 methods to chunking the sentence and all of them
should be calculated.

Fig. 9 The execution time of tasks in Sentence-Chunking

To verify the scalability of this task, we performed another ex-
periment with 128 clients and the result is shown in Fig 10. When
the number of clients increase up to 128, the elapse time of this
task reduces only one fifth, that is, the speedup for this program
is 1.2. One possibility for the poor speedup is bad performance of
SQLite in support of concurrent read/write. The SQLite database
is stored in NFS and 128 clients read it very frequently. The lock
mechanism of SQLite may lead the read sequentially. However,
this is not verified and I will do it later.

Fig. 10 The execution time of sentence-likelihood with increase of clients

4.3 Event-Recognition
We use the same MEDLINE data set with Sentence-Chunking

application. Main tasks in this workflow are:
• enju: a HPSG parser which can effectively analyze syntac-

tic/semantic structures of English sentences and provide a
user with phrase structures and predicate-argument struc-
tures.

• ner: recognition for bio-medical entities such as gene and
protein.
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• gdep: a dependency parser for biomedical text.
Fig 11 gives the execution time for the three time-consuming

tasks above. While ner and gdep cost about one hour, enju is
much heaver than them and cost about 24 hours.

Fig. 11 The execution time of tasks in Event-Recognition

Due to the time limitation, we take gdep as an example to show
the scalability of ParaLite. From Fig 12, we can see that the exe-
cution time decreases with the increase of clients and the speedup
exceeds the linear one a little. The reason for this may be the same
with that for program sf2rs in the workflow of Japanese Word
Count.

Fig. 12 The execution time of gdep with increase of clients

5. Conclusion
We proposed a concept of collective query which embeds

arbitrary external programs (user-defined executable) into a sin-
gle SQL query and allows multiple clients to perform them in
parallel efficiently. This concept is implemented in ParaLite,
a lightweight shared-nothing parallel database system. The in-
tended applications are data intensive workflows, typically built
out of various independently developed executable and scripts.
We applied ParaLite into three real-world typical text-processing
workflows. ParaLite are very expressive to describe the work-
flows with a collective query for a task. Finally, experimental re-
sults showed that ParaLite has achieved good scalability in terms
of the parallelization of UDXes with the increase of the number
of clients. In future, we will compare ParaLite with several popu-
lar approaches performing workflows, such as, Hive and Hadoop.
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