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Abstract: Heterogeneous architectures, where a multicore processor, which is optimized for fast single-thread per-
formance, is accompanied with a large number of simpler, but more power-efficient cores optimized for parallel work-
loads, are receiving a lot attention recently. Currently, these co-processors, such as Intel’s Many Integrated Core
(MIC) software development platform, come with a limited on-board RAM, which requires partitioning computational
problems manually into pieces that can fit into the device’s memory, and at the same time, efficiently overlapping com-
putation and communication. In this paper we explore the design considerations for operating system (OS) assisted
hierarchical memory management, relying on the capabilities of the Intel MIC’s memory management unit (MMU).
We are aiming at transparent data movement between the device and the host memory, as well as tight integration with

other OS services, such as file and network I/O.
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1. Introduction

Although Moore’s Law continues to drive the number of tran-
sistors per square mm, reducing voltage in proportion to transis-
tor size, so that the energy per operation would be dropping fast
enough to compensate for the increased density, is no longer fea-
sible. As a result of such transition, heterogeneous architectures
are becoming widespread. In a heterogeneous configuration, mul-
ticore processors, which implement a handful of complex cores
that are optimized for fast single-thread performance, are accom-
panied with a large number of simpler, and slower, but much more
power-efficient cores that are optimized for throughput-oriented
parallel workloads [1].

The Intel Many Integrated Core (Intel MIC) architecture is In-
tel’s latest design targeted for processing highly parallel work-
loads. The current prototype Intel MIC cards, codenamed
Knights Ferry (KNF), provides in a single chip up to 32 x86
cores, with each processor supporting a multithreading depth of
four. The chip also includes coherent L1 and L2 caches and the
inter-processor network is a bidirectional ring [2]. Currently, the
Intel MIC architecture is implemented on a PCI card, and has its
own on-board memory, connected to the host memory through
PCI DMA operations. This architecture is shown in Figure 1.

The on-board memory is faster than the one in the host, but it
is significantly smaller. A few Gigabytes on the card, as opposed
to the 24 GBs residing in the host machine in our setup. This lim-
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Fig. 1 Architectural overview of a multi-core host computer equipped
with a many-core co-processor, connected through PCI Express.

ited on-board memory requires partitioning computational prob-
lems into pieces that can fit into device’s RAM. At this time, it is
the programmer’s responsibility to partition larger computational
problems into smaller pieces that can run on a co-processor and
achieve high performance by efficiently overlapping computation
and communication.

However, the Intel MIC architecture features a standard mem-
ory management unit (MMU), which can be utilized to provide
the illusion of having much larger amount of memory than that is
physically available. Just like on the multicore host, the operat-
ing system is supposed to keep track of the physical memory and
to manage the mapping from virtual to physical addresses. Thus,
the OS running on the many-core unit can transparently move
data between the card and the host, similarly how swapping is
performed to disk in traditional operating systems.

Nevertheless, the case of many-core co-processor is different
than regular disk based swapping. First of all, the host memory is
substantially faster than a disk. Second, operations (such as disk
or network I/O) on data residing in host memory can be directly
performed on the host CPU without the need of moving the data
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back to the memory attached to the co-processor. Essentially,
the co-processor’s memory behaves as another level in the mem-
ory hierarchy. Third, there is a large number of cores available
on the co-processor board, from which some may be utilized for
monitoring execution, helping to make more intelligent decisions
regarding data movement. How to address these issues at the OS
level is the main focus of this study.

The rest of this paper is organized as follows, Section 3 outlines
our envisioned execution model, Section 4 describes the memory
layout of an application utilizing the hierarchical memory system,
Section 5 discusses integration with I/O, and Section 6 describes
our page replacement policy. Section 7 surveys related work and
finally, Section 8 concludes the paper.

2. Background

RIKEN Advanced Institute of Computational Science and
the Information Technology Center at the University of Tokyo
have been designing and developing a new scalable system soft-
ware stack for a new heterogeneous supercomputer consisting of
server-grade host machines equipped with many-core coproces-
Sors.
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Fig. 2 Main components of Accelerator Abstraction Layer (AAL) and
the many-core kernel.

Figure 2 shows the main components of the proposed software
stack. The Accelerator Abstraction Layer (AAL) is designed
to hide hardware-specific functions and provide kernel program-
ming interfaces to operating system developers. The AAL resides
in both the host and many-core units. AAL on the host is currently
implemented as a Linux device driver. The inter-kernel commu-
nication (IKC) layer performs data transfer and signal notification
between the host and the many-core CPUs.

We have already explored various aspects of a coprocessor
based system, such as scalable communication facility with di-
rect data transfer between the coprocessors [3], possible file I/O
mechanisms [4], and a new process model aiming at efficient
intra-node communication [5].

We are currently developing a microkernel based OS targeting
many-core CPUs over the AAL, and at the same time, design con-
siderations of a hybrid execution model over the co-processor and
the host multicore are also undertaken. The minimalistic kernel
is designed with taking the following properties into account:

- On board memory of the co-processor is relatively small,
thus, only very necessary services are provided by the ker-
nel.

- CPU caches are also smaller, therefore, heavy system calls
are shipped to and executed on the host.
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3. Execution Model

In spite of the current architecture of a manycore co-processor
based system, where the co-processor always comes with the
presence of the host machine (as shown in Figure 1), presum-
ably, in the future the focus will shift towards the co-processor
itself, possibly placing the host machine more and more into the
background. Thus, we are designing an execution model taking
such transition into account.

Figure 3 depicts the execution model under consideration. The
programmer can indicate her preference regarding where (on the
host or on the co-processor) a certain part of the code should
be executed. At present, we plan to provide such capability by
means of C #pragmas, specifying the preferred target.

app_data = malloc_global(size);

Proc
#pragma exec_strong_core

Serial Segment
Parallelized Loop

Proc0 | Proc1| Proc2| Proc3

#pragma exec_many_core

app_datali] = ... ;
Procn
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* free_global(app_data);
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Fig. 3 Execution model with shared global memory.

For instance, highly parallel sections of the code will be exe-
cuted on the co-processor, but parts of the code that require good
serial performance can be moved to the more complex cores of
the host. However, due to the architecture trend mentioned above,
the application is primarily executed on the co-processor.

Furthermore, certain memory areas (which we call global)
of the application are transparently available on both the host
and the co-processor. Such memory areas need to be allocated
and freed through special library functions, malloc_global() and
free_global(), respectively.

The runtime system provides these functions and ensures con-
sistency when execution migrates between the co-processor and
the host CPU. Mapping global memory areas to the same virtual
addresses on the host and on the MIC would likely make it easier
to implement the control of execution flow.

The usage of these functions is also demonstrated in Figure
3, where a global area is allocated in the beginning of the pro-
gram. It is then consequently accessed in both the parallel and
the serial sections of the code, while eventually it is freed by the
corresponding library call.
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4. Application Memory Layout

The application memory layout, with respect to the physi-
cal memory available on the host and the co-processor board is
shown in Figure 4.
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Fig. 4 Memory layout of an application running on the manycore co-
processor and the multicore host.

The left side of the figure illustrates the physical memory at-
tached to the host CPU, while the right side represents the phys-
ical memory on the manycore co-processor. The application vir-
tual address space is primarily maintained by the co-processors
and as seen partially mapped onto the physical memory of the
manycore board. However, the rest of the address space is stored
in the host memory. The operating system kernel running on the
co-processor is responsible to initiate data transfer between the
host memory and the co-processor’s RAM.

When the physical memory on the co-processor is almost fully
utilized the kernel can select victim pages and move the content
to the host’s memory. Also, when the execution flow migrates to
the host, contents of the pages that still reside on the co-processor
can be moved to the host. Data movement happens completely
transparently from the user’s point of view, essentially provid-
ing the illusion of much larger memory than the actual physical
amount attached to the co-processor.

There are multiple ways how such system may be realized.
One solution is that the host system’s physical memory is ac-
cessed as a swap partition (e.g., through a network block device)
in the kernel running on the co-processor using a standard com-
munication protocol (such as UPD over IP). The advantage of
this approach is ease of implementation. However, we believe
there is a substantial software overhead (coming from the block
device driver and the network protocol), which can be entirely
eliminated.

Another way would be to memory map the host system phys-
ical memory as a file in the kernel on the co-processor using a
lower level communication facility for accessing the host mem-
ory. We have opted to go with an approach similar to the one
mentioned later, however, we are planning to bypass even the file
abstraction layer.

In order to retain full control over the data transfer between
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the co-processor and the host, we will integrate data movement
directly into the virtual memory subsystem of our kernel and or-
chestrate data movement manually by the DMA engine residing
on the co-processor. While this requires lower level modifications
to the operating system organization, this way we are hoping we
can eliminate any unnecessary software overhead both in terms
of CPU consumption and additional memory footprint.

5. Integration with I/O

As mentioned earlier, one of the major differences between
disk based swapping and storing data on the host memory is the
availability of swapped out content on the host.

Phys. mem (24GB)

Phys. mem (2GB)
- write(fd, data, len)
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~
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Multi-core host Many-core co-processor

Fig. 5 Tight cooperation between the host and the co-processor for I/O
operations.

This can be exploited in certain situations. For instance, imag-
ine that the application running on the co-processor, which has
part of its virtual address space stored in the host memory, issues
a file I/O operation that refers to data residing in the host.

In a traditional swapping scenario this would cause the oper-
ating system to read the referred data into the main memory so
that the operation can be carried out. However, in the case of
multicore host equipped with manycore co-processor, tight co-
operation between the kernels are possible. Because the kernel
running on the co-processor has complete knowledge on which
part of the virtual address space is currently available in the co-
processor memory and which is located in host, it can request
the host to processor the operation on behalf of the co-processor
itself.

On the other hand, when the execution flow is located on the
host and an I/O operation is invoked, the host needs to be able
to update any data from the co-processor’s memory which have
been changed since the execution was last time on the host side.
Clearly, this assumes that in certain system calls, such as read(),
write(), or send(), extra care needs to be taken, regardless whether
it is executed on the host or the co-processor.

For this purpose, a facility for tracking which page resides
where is necessary both on the host and on the co-processor. Fur-
thermore, this information will have to be carefully synchronized
whenever data, or the execution flow is transferred.
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6. Page Replacement Policy

In any demand paging system, one of the key challenges is the
mechanism of page replacement. It is a widely accepted idea,
that pages frequently used over a short period in the recent past
are likely to be used in the (near) future. The least recently used
(LRU) approach is based on the converse assumption that pages
not used recently will not be needed frequently in the immediate
future. LRU refers to various algorithms that attempt to find least
used pages according to a similar scheme [6], [7].

While the fundamental LRU principle may be simple, it is diffi-
cult to implement it appropriately. The reason being traditionally,
is that organizing data structures so that the kernel can mark or
sort pages as simply as possible in order to estimate access fre-
quency is a rather CPU consuming procedure. Therefore, current
operating system kernels often opt for a coarse grained approxi-
mation of the LRU, attempting to alleviate the overhead.

However, in case of the manycore co-processor, where there
are plenty of cores available, dedicating a core for performing
statistical monitoring may be a feasible approach. In fact, re-
cent OS research targeting manycore architectures already shifted
from the temporal distribution of CPU cores towards a spatial ap-
proach, where certain cores are designated for taking care of spe-
cific system services [8], [9].
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Fig.6 Dedicated CPU core for fine-grained LRU approximation of page
usage statistics.

Figure 6 illustrates the idea of tracking page activities by a ded-
icated CPU core, providing finer grained approximation of the
LRU algorithm. A double-linked list of active pages is main-
tained, where each page structure holds pointers to the corre-
sponding page table entries (PTE). The dedicated core periodi-
cally scans the LRU list, examines and clears the referenced bit
of the PTE entry and updates the list accordingly.

When a page fault occurs and the physical memory is fully
occupied, the page fault handler consults the LRU list in order to
determine pages whose content can be moved to the host memory
and can be reused for the faulting address.

It is also worth pointing out that it is desired to overlap data
movement with computation on the manycore unit. The dedicated
core for gathering page statistics can also initiate data movement
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(i.e., swapping out to the host memory) attempting to ensure that
unused pages are always available whenever a page fault occurs.

A further optimization to this problem could be the involve-
ment of the programmer herself. We are currently considering
what an appropriate API could be for enabling the programmer
to inform the OS in advance when certain memory area will be
likely not used in the near future. This area could be then im-
mediately transferred to the host, providing higher a chance for
overlapping data movement with computation.

At the same time, the ability for prefetching data from the host
to the co-processor is also essential. Again, similarly to the hints
for swapping out content, we are planning to provide APIs so that
such information can be passed to the runtime system.

7. Related Work

Programming models for accelerators (i.e., co-processors)
have been the focus of research in recent years. In case of GPUs,
one can spread an algorithm across both CPU and GPU using
CUDA [10], OpenCL [11], or the OpenMP [12] accelerator di-
rectives. However, controlling data movement between the host
and the accelerator is the entirely the programmer’s responsibility
in these models.

Although in an accelerated system the peak performance in-
cludes the performance of not just the CPUs but also all avail-
able accelerators, the majority of programming models for het-
erogeneous computing focus on only one of these. Attempts for
overcoming this limitation, by creating a runtime system that can
intelligently divide computation (for instance in an accelerated
OpenMP) across all available resources automatically are emerg-
ing [13].

Intel provides several execution models for its MIC software
development platform [14]. One of them, the so called Mine-
Your-Ours (MYO), also referred to as Virtual Shared Memory,
provides similar features to our proposal, such as transparent
shared memory between the host and the co-processor. However,
at the time of writing this paper, the main limitation of MYO is
that the size of the shared memory area cannot exceed the amount
of the physical memory attached to the co-processor.

As for memory models, the Asymmetric Distributed Shared
Memory (ADSM) maintains a shared logical memory space for
CPUs to access objects in the accelerator physical memory but
not vice versa. The asymmetry allows light-weight implemen-
tations that avoid common pitfalls of symmetrical distributed
shared memory systems. ADSM allows programmers to assign
data objects to performance critical methods. When a method
is selected for accelerator execution, its associated data objects
are allocated within the shared logical memory space, which is
hosted in the accelerator physical memory and transparently ac-
cessible by the methods executed on CPUs [15]. While ADSM
uses GPU based systems providing transparent access to objects
allocated in the co-processor’s memory, we are aiming at a sym-
metrical approach over Intel’s MIC architecture.

Operating system organization for many-core systems has been
also actively researched during the last couple of years. In par-
ticular, issues related to scalability over multiple cores have been
widely considered.
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Corey [16], an OS designed for multi-core CPUs, argues that
applications must control sharing in order to achieve good scala-
bility. Corey proposes several operating system abstractions that
allow applications to control inter-core sharing and to take ad-
vantage of the likely abundance of cores by dedicating cores to
specific operating system functions. Similarly to Corey, we also
intend to dedicate certain functionality to a specific core so that
page usage can be tracked with better accuracy.

Barrelfish [17] argues that multiple types of diversity and het-
erogeneity in manycore computer systems need to be taken into
account. It represent detailed system information in an expres-
sive ’system knowledge base” accessible to applications and OS
subsystems and use this to control tasks such as scheduling and
resource allocation.

GenerOS [9] partitions CPU cores into application core, kernel
core and interrupt core, each of which is dedicated to a specified
function. Kernel cores run several kernel servers, which are se-
rial processes that provides a specific function for applications,
such as a specific type of system calls. A kernel server always
resides in kernel mode, therefore no kernel/user switch happens.
Again, the idea of having utilizing dedicated cores for system call
execution is similar to the utilization of idle cores in a manycore
system.

Memory management in traditional operating systems, such as
various algorithms for page replacement in a demand paging sys-
tem has been widely considered in the literature [6]. For exam-
ple, Linux implements a coarse grained LRU method [7], using
two page lists, active and inactive. To distribute the pages be-
tween the lists, the kernel performs a regular balancing operation
that determines whether pages are active or inactive, by means of
the accessed bit of the corresponding PTE. As opposed to Linux’
coarse grained approach we plan to utilize a spare CPU core so
that better approximation of the LRU algorithm can be achieved.

8. Conclusion and Future Work

In this paper we have proposed an execution model together
with a hierarchical memory management system for upcoming
co-processor equipped configurations, targeting in particular the
Intel Many Integrated Core (MIC) development platform.

The proposed execution model allows programmers to pro-
vides hints to the runtime system in order to express their pref-
erences where certain parts of an application should be executed
(i.e., on the host CPUs or the manycore co-processor).

We described a hierarchical memory management system that
transparently moves data between the host and the co-processor,
enabling programmers to focus on the computational part of the
problem instead of dealing with data movement issues. The foun-
dation of our approach is the memory management unit (MMU)
present on Intel MIC, which allows us to provide much larger
virtual memory than the memory physically attached to the co-
processor.

We have described our approach to realizing such system with
several possible optimizations, such as integration with I/O ser-
vices, or the utilization of spare CPU cores on the manycore unit
for achieving better page replacement performance.

In the future, once we finish the implementation, we are plan-
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ning to carry out rigorous performance evaluation of the proposed
system over various scientific applications.
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