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仮想マシン移送における移送ホストの負荷軽減手法

古藤明音1,a) 山田浩史1,b) 大村圭2,c) 河野健二1,d)

概要：クラウド環境でロードバランシングや物理マシンのメンテナンスを行う技術の１つに，仮想マシン
(VM)のライブマイグレーションがある．しかし，既存のライブマイグレーション手法は動作の度に VM
の移送元と移送先の計算リソースを著しく消費する．その結果，同一ネットワーク内のシステムのスルー
プットを低下させる要因 (マイグレーションノイズ)となっている．こうしたマイグレーションノイズによ
り，サーバが急激な負荷に追従した負荷分散を行えなくなったり，同一ネットワークを利用している他
の VMのネットワークを介した処理のパフォーマンスが低下してしまう．そこで本研究ではライブマイグ
レーションを高速化するだけでなくマイグレーションノイズにも注目し，移送する VMのサイズを小さく
することで移送にかかる時間を短縮するライブマイグレーション手法を提案する．具体的には移送する
VMの転送ページ数を減らすことで，マイグレーション中のネットワーク使用量や CPU時間などを削減す
る．本提案手法を Xen 4.1.0と Linux 2.6.38上に実装した．実験により，既存のライブマイグレーション手
法に比べて，移送にかかる時間を 68.8%，ネットワーク使用量を 89.3%削減することができた．

Abstract: Live migration of virtual machines (VMs) is a powerful tool for the management of cloud computing plat-
forms such as load balancing and physical machine maintenance. However, live migration execution significantly
consumes computational resources on the source and destination hosts, thus causing a migration noise that degrades
the performance of the VMs collocated on these hosts. This paper presents SonicMigration, an approach to shortening
total migration time by pruning the VM memory to be transferred. It avoids transferring pages that are unnecessary
for the system to work correctly after the live migration, such as file cache pages and free pages, in order to lower
consumption of the shared resources such as CPU time and network traffic. We implemented a prototype of SonicMi-
gration on Xen 4.1.0 and Linux 2.6.38, and conducted a preliminary experiment. The experimental results show that
the migration time of our prototype is up to 68.3% shorter than the Xen-based live migration and successfully reduces
the network traffics by up to 89.3%.

1. Introduction

Cloud computing platforms allow users to host their appli-

cations on a huge number of globally shared resources. Cloud

service providers manage computational resources at data cen-

ters and offer users resources in a pay-as-you-go manner. To

manage the resources efficiently, cloud service providers com-

monly employ system virtualization technology where several

virtual machines (VMs) coexist on the same physical host. Us-

ing the virtualization, they easily adjust resource allocations by

changing the number of running VMs and balance the loads by

migrating VMs across physical machines. For example, Ama-

zon EC2 [1] manages more than ten virtualized data centers

and rents various types of VM instances.
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The live migration of VMs is a promising technique for man-

aging cloud computing platforms. Live migration moves a run-

ning VM between different physical machines without losing

any states such as network connections. The use of live migra-

tion makes it more effective to manage resources. For example,

the availability of services can be improved by migrating less

loaded VMs to another host to assign resources to more loaded

VMs or by migrating VMs from a host to be maintained. VM

replacement policies using live migration, including load bal-

ancing [5], [12] and power saving [4], [11], have been widely

studied in research communities.

However, live migration causes migration noise, which in-

terferes with the performance of VMs running on the source

and destination when a VM is migrated live. Since live mi-

gration transfers the whole memory pages of a VM from the

source to the destination to maintain its running states, the exe-

cution of live migration consumes CPU time on the source and

network bandwidth, both of which are shared among the col-
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located VMs. In addition, live migration consumes CPU time

on the destination since the virtual machine monitor (VMM)

running on it receives the transferred pages and sets up the VM

to run it. As a result, migration noise happens due to resource

contention between live migration and the collocated VMs. For

example, when a VM becomes heavily loaded, the live migra-

tion of another collocated VM to assign more resources to the

heavily loaded VM degrades its performance. Although we can

mitigate migration noise by using a function that throttles page

transfers [3], this increases migration time, thus failing to read-

ily allocate the resources of the migrating VM to the heavily

loaded VM.

This paper introduces SonicMigration, which is an approach

to shortening the total execution of live migration by pruning

the VM memory to be transferred. The key insight behind Son-

icMigration is to avoid transferring soft pages that are unnec-

essary for the system to work correctly after live migration,

such as file cache pages and free pages. SonicMigration exam-

ines memory pages when live migration is triggered, and marks

soft pages to avoid transferring them. Reducing the number of

transferred pages leads to shortening the total migration time,

which means SonicMigration consumes less CPU time on the

source and destination. Moreover, the reduction decreases the

network usage of live migration.

We implemented a prototype of SonicMigration on Xen

4.1.0 and Linux 2.6.38, and conducted a preliminary experi-

ment. The experimental results demonstrate that our prototype

shortens the total migration time by up to 68.3 %, compared

with Xen-based live migration. The results also reveal that

SonicMigration successfully reduces network traffic by up to

83.9 %.

2. Migration Noise

Since live migration transfers a large number of memory

pages, its execution causes migration noise that degrades the

performance of the VMs collocated on the source and destina-

tion. Live migration transfers at least all pages of the VM in

the iterative copy phase. As mentioned in Sec. 1, transferring

pages consumes significant network bandwidth and CPU time

on the source and destination. This consumption is more severe

when the VM has more memory. When live migration causes

resource contention with the collocated VMs, migration noise

occurs. For example, when a VM becomes heavily loaded and

we carry out live migration of another VM to allocate more re-

sources to the heavily-loaded VM, its performance is degraded

during live migration. Moreover, resource contention increases

the total migration. Long migration time prevents the VMM

from readily releasing the resources of the migrating VM and

from allocating them to other VMs just after they need more

resources.

2.1 Effect of Migration Noise
2.1.1 Experimental Setup

We conducted an experiment to examine how migration

noise interferes with collocated VMs. We set up three Dell ma-

chines each of which had a Xeon 2.8 GHz processor with 29

GB of memory. They were connected to one another through

a Gigabit Ethernet. We ran Xen 4.1.0 and Linux 2.6.38 as do-

main 0 on two of the machines. We also ran Linux 2.6.35 on

the third machine that was used as an NFS server in which do-

main disk images were stored. The directory containing the

disk images was mounted by the other machines.

In this experiment, we ran two domain Us on the one ma-

chine running the Xen, each of which executed para-virtualized

Linux 2.6.38. They were assigned 2 GB of memory and a 20

GB virtual disk. On the domain Us, we ran a postmark bench-

mark that was modeled after an e-mail server. We measured

the throughput of the postmark. To build a situation where a

domain gets heavily-loaded unpredictably, we changed a pa-

rameter of the postmark benchmark on a domain U (domU1)

after the postmark benchmarks had run for about 10 seconds.

After changing the parameter, we executed the Xen-based pre-

copy live migration of the other domain (domU2). To clearly

understand the effect of migration noise, we tuned the param-

eter for the postmark to perform CPU intensive tasks. DomU1

first handled 5,000 transactions per second and then 11,000

transactions per second after the parameter was changed, while

domU2 constantly handled 7,000 transactions per second. For

comparison, we measured the throughput of the postmark un-

der two conditions where domU1 was run solely, and where

the domain Us were run together without live migration.

2.1.2 Results
The results are plotted in Fig. 1. The x-axis is the elapsed

time and the y-axis is the throughput for the postmark.

These figures indicate that live migration severely degrades

the throughput of the collocated domain. When we execute

domU1 solely, it successfully handles the requested workload

even after the parameter is changed (Fig. 1)(a). This is because

the Xen hypervisor assigns domU1 enough CPU time that it

can handle the workloads. When we run domU1 with domU2,

domU1 only performs 7,500 transactions per second after the

parameter is changed (Fig. 1(b)). This results from the CPU

contention between domU1 and domU2, as will be described

later. From Fig. 1(c), the domain Us’ throughputs are signifi-

cantly lowered during live migration. The throughputs are sim-

ilar to those in Fig. 1(b) until live migration starts. During live
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図 1 Throughputs of postmark in each situation.

migration, the domain Us’ throughput is 30% lower due to mi-

gration noise. After live migration is complete, domU1 has

similar throughput to when it is run solely.

Fig. 2 shows CPU usage on the source and destination. The

figures reveal that live migration causes CPU contention with

domU1 and domU2. When we carried out live migration at 28

second, domain 0 starts consuming CPU time to transfer mem-

ory pages and processor states. Each domain U’s CPU usage is

naturally lowered during this phase since the CPU is contended

by the three domains. As a result, each domain Us’ throughput

is severely degraded. Surprisingly, the CPU usage on the des-

tination is high during live migration. This is because the Xen

on the destination receives transferred pages and set up data

structures for the VM. We can say that migration noise even

affects domain Us running on the destination.

3. SonicMigration

We believe that it is important to mitigate migration noise

on cloud computing platforms where resources are shared with

different VMs. This paper introduces SonicMigration, which is

an approach to mitigating migration noises. The goal of Son-

icMigration is twofold, i.e., (1) shortening the total execution

of live migration to reduce CPU usage, and (2) cutting network

traffic caused by live migration.

3.1 Overview
The key insight behind SonicMigration is to avoid transfer-

ring pages that are unnecessary for the system to work correctly

after live migration is completed. We refer to these pages as

soft pages. Conventional live migration transfers all the mem-

ory pages of a VM even if the pages are not used for the kernel

or user processes. If a VM is assigned 1024 MB of memory, the

VMM transfers all the memory to the destination. In contrast,

SonicMigration does not copy soft pages such as free pages or

file cache pages. For example, if a VM is assigned 1024 MB

of memory and the guest kernel uses 928 MB as a file cache,

SonicMigration transfers 72 MB since the file cache is soft-

state and can be reproduced from the disk.

We found that soft pages include a free page and a page con-

taining soft-state kernel objects. Even if a VMM discards the

content of free pages, the guest works correctly because free

pages are initialized when the kernel uses them. Soft-state ker-

nel objects include caches for disk blocks and caches for kernel

resource managers. A file cache is a typical example of soft-

state kernel objects. Since a file cache contains data on a disk,

the guest can reproduce it by reading the data from the disk.

Likewise, caches for resource managers such as a slab cache

can be reproduced from the original data objects. We regard

as hard-state kernel objects file caches that are in use. Such

caches include caches that are marked as dirty, and caches that

are locked since the process is changing its state.

To prevent soft pages from being transferred, we insert an

extension into the guest kernel to explicitly notify the VMM

about which pages are unnecessary. When live migration is

carried out, the guest kernel examines its memory objects and

sends the VMM the guest physical addresses of the soft pages.

The VMM does not send them to the destination, based on the

given addresses. When the transfer of the pages and processor

states is complete, the VMM compensates for the lost pages by

allocating new pages to the guest. After that, the VM on the

destination is resumed.

3.2 Design
There are two main issues in designing SonicMigration. The

first is how the guest kernel sends the addresses of soft pages to

the VMM. Since the kernel changes its memory objects over

time, objects on soft pages can become hard-state. If the guest

kernel does not update the information on soft pages in the

VMM appropriately, the VMM could fail to transfer pages in

which the hard-state objects are stored. Although the guest ker-

nel can issue a hypercall to update the information when the

kernel objects on soft pages are modified, this incurs high CPU

overhead, which interferes with the VMs on the source. To ad-

dress this issue, we create a shared memory area between the
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guest and VMM. The kernel stores and periodically updates

the guest physical addresses of the soft pages in the area.

The second issue is how to keep the kernel state consistent

with the lost soft-state kernel objects when the VM is resumed.

Since SonicMigration does not transfer soft pages, the guest

kernel resumed on the destination does not have soft-state ker-

nel objects. If kernel data for managing kernel objects, such

as a page cache list, are not updated appropriately and remain

inconsistent with the current objects, the guest kernel causes

access to the soft-state kernel objects that have not been trans-

ferred. The kernel in this case could fetch incorrect objects,

resulting in an inconsistent state in the kernel. At worst, the

kernel will crash. To address this issue, we update the kernel

data for managing soft-state kernel objects in the phase where

the VM is suspended and processor states are transferred.

3.2.1 Shared Memory for Address Notification
To efficiently notify a VMM about which pages are soft

pages, the guest kernel creates a shared memory area with the

VMM. SonicMigration uses this information as a hint to se-

lect which pages are necessary to transfer. When booting up,

a guest kernel sends the VMM a request to create the shared

memory area. It periodically stores the guest physical ad-

dresses of the soft pages into the shared memory area. The

VMM refers to this area at the beginning of the page copy

phase such as an iterative copy phase and marks pages that are

not to be transferred. If the notified soft pages are updated and

dirtied, the VMM copies the dirty pages to the destination in

the current or next page copy phase.

Note that this design releases us from strictly notifying the

VMM of the addresses of soft pages. SonicMigration trans-

fers dirty pages even if the pages are soft pages. By doing so,

SonicMigration guarantees that pages containing the hard-state

kernel objects are copied to the destination. The guest kernel

can be resumed with the consistent state by combining this no-

tification and the update of the kernel state, which is described

in the next section.

3.2.2 Update Kernel Data
To keep the kernel state consistent with the lost soft-state

kernel objects, the kernel data for managing soft-state kernel

objects are updated in the VM-suspend phase where the VMM

suspends the VM and transfers processor states. By updating

in this phase, we guarantee that the guest kernel can run at

the destination with a consistent state. For example, the kernel

in the pre-copy approach updates the data in the stop & copy

phase. Since the kernel starts at the destination with the kernel

data that indicate there are no soft-state kernel objects, it con-

sistently restarts on the destination. Since this design incurs

some overhead in the VM-suspend phase, we are now analyz-

ing this overhead and exploring a way of minimizing it.

The guest kernel updates the kernel data cooperatively with

the VMM. When live migration enters the VM-suspend phase,

the VMM sends a virtual interrupt to the VM before suspend-

ing it. The guest kernel receiving the interrupt updates the ker-

nel data for managing the page cache and free pages. Then,

the guest issues a hypercall for the VMM to start performing

subsequent instructions including VM suspension and transfer

of processor states.

3.3 Discussion
Our approach is to mitigate migration noise at the expense

of losing soft-state kernel objects on the destination. Since the

guest kernel cannot access page caches stored on the source,

the performance of resumed VM can be degraded. We are ex-

ploring ways of adjusting how many soft pages SonicMigration

discards. For example, we transfers some soft pages which are

significantly referred to. Considering not only the collocated

VMs’ performance but also that of the migrating VM is a con-

siderable challenge to confront.

If the guest kernel is hijacked, SonicMigration can fail to

achieve live migration. For example, when the hijacked kernel

marks all the pages as soft pages in the shared memory, Son-

icMigration does not transfers pages that are not dirtied during
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the page copy phase such as the iterative copy phase. In this

case, the VM could crash on the destination since hard-state

kernel objects are not transferred. Although the hijacked VM

is compromised by our modules being attacked, SonicMigra-

tion guarantees isolation between VMs. This means that the

other VMs are not compromised even if a VM is hijacked and

our modules are attacked. We intend to explore ways of pro-

tecting against these types of attacks in future work.

4. Preliminary Experiments

We implemented a prototype by modifying para-virtualized

Linux 2.6.38 and Xen 4.1.0. Our prototype consists of three

modules; kernel, migration, and VMM modules. The ker-

nel module running on Linux creates a shared memory area

with domain 0 which carries out live migration. And, the ker-

nel module writes the information on soft pages in the shared

memory area. It also updates the kernel states when receiving

an event from the Xen hypervisor. After the update, the ker-

nel module issues a hypercall to transfer control to domain 0.

The migration module running on domain 0 obtains the guest

physical addresses of soft pages from the shared memory area

to prevent soft pages from being transferred. When the migra-

tion process enters the stop & copy phase, the migration mod-

ule issues a hypercall to send an event to migrating domain U.

The VMM module running on the Xen hypervisor appropri-

ately handles hypercalls from domain 0 and domain U.

4.1 Experimental Setup
We conducted preliminary experiments to examine the basic

performance of our prototype. In these experiments, we used

the same machine configuration as described in Sec. 2. Our

prototype ran on two machines running Xen 4.1.0.

To confirm the basic characteristics of SonicMigration, we

measured (1) the total migration time and (2) network traf-

fic of SonicMigration and Xen-based live migration (simply

called default migration). We ran domain U which had 2 GB

of memory and a 20 GB disk. We first read 2 GB files to fill

the buffer cache and then varied memory usage at the user-land

(i.g., hard-state kernel objects) from 256 to 2000 MB. After

these preparations, we conducted live migration of the domain

U with SonicMigration and default migration.

4.2 Results
Fig. 3 shows the results. The migration times are given in

Fig. 3(a). The x-axis is the memory size we allocated at the

user-land, and the y-axis is the migration time. Fig. 3 reveals

that SonicMigration’s migration time shortens as the usage of

soft state kernel objects increases. When we do not allocate

any memory at the user-land, SonicMigration’s migration time

is 68.3% shorter than that of the default. The migration time

of SonicMigration is almost the same as that of the default for

2000 MB.

Fig. 3(b) shows the network traffic of each migration. The

x-axis is the memory size we allocated at the user-land, and

the y-axis is the number of pages that was transferred during

the migration. From the figure, we can see that SonicMigra-

tion successfully reduces the network traffic. The reduction in

the number of memory pages depends on our allocation. When

our allocation is 0, SonicMigration reduces 83.9 % fewer pages

than default migration. This is because SonicMigration prunes

a large part of memory that is used as the buffer cache. Son-

icMigration’s network traffic is quite similar to that of the de-

fault for 2000 MB.

5. Related Work

Approaches to shortening downtime during live migration

have been extensively studied. The pre-copy approach [3]

transfers memory pages iteratively and subsequently copies the

processor states. As described in Sec. 2, the pre-copy approach

causes significant migration noise due to the transfer of a large

number of memory pages. The post-copy approach [6] reduces

the number of pages to be transferred by first transferring the

processor states and copying the memory pages when the VM

accesses them. However, the post-copy approach has to retain

the memory pages of the migrating VM on the source until the

transfer of all pages is complete, failing to readily allocate more

memory to the heavily loaded VM. The focus of our work is on

mitigating migration noise. In addition, our technique can be

applied to both techniques and can be complementary to their

use.

Some approaches aim at reducing the network traffic of

the live migration. MECOM [7] compresses pages using a

characteristic-based compression algorithm on the source and

decompresses them on the destination. Delta compression live

migration [10] caches some frequently accessed pages, cre-

ates the delta calculated from the cached pages, compresses

the delta using an XOR, and sends the compressed data to the

destination. The destination decompresses the sent data us-

ing the pages which have already been transferred. These ap-

proaches are complementary to SonicMigration to mitigate mi-

gration noise. CR/RT-Motion [9] transfers execution trace logs

to the destination and creates the same state VM by replay-

ing execution based on the trace logs. This approach causes

severe migration noise since logging and replaying the execu-

tion consume significant CPU time. SonicMigration focuses

on mitigating migration noise.
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There are researches that avoid the migration noise using

good models of migration execution. Breitgand et al. model

the costs of pre-copy live migration to define the amount of

bandwidth to be used for migration in each step of the pre-copy

approach [2]. Lim et al. model a migration process as a pair of

jobs that run on the source and destination [8]. These models

are effective for well-known workloads and thus make it diffi-

cult to handle unpredictable workloads such as sudden request

bursts and flash crowds. Our approach is to modify the mech-

anism of live migration itself to make live migration feasible

even under such workloads.

6. Conclusion

Live migration is an attractive technique for managing cloud

computing platforms. However, live migration is unobtru-

sive since its execution consumes significant computational re-

sources. As a result, it can cause migration noise that degrades

the performance of the collocated VMs due to resource con-

tention. This paper introduced SonicMigration, an approach to

shortening the total migration time by pruning the VM memory

to be transferred. It avoids the transfer of soft pages that are un-

necessary for the system to work correctly after live migration,

such as file cache pages and free pages. Our preliminary ex-

perimental results indicate that the total migration time of the

prototype is 68.3 % shorter than that of Xen-based live migra-

tion. Moreover, the network usage by SonicMigration is 83.9%

lower than that of Xen-based live migration. We are now con-

ducting experiments with various workloads to confirm how

effectively SonicMigration mitigates migration noise. In ad-

dition, we are analyzing SonicMigration behavior in greater

detail to know which module consumes more resources. Af-

ter these experiments, we intend to extend SonicMigration to

make live migration more unobtrusive.
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