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Abstract: The problem of finding a lattice vector approximating a shortest nonzero lattice vector (approximate SVP)
is a serious problem that concerns lattices. Finding a lattice vector of the secret key of some lattice-based cryptosys-
tems is equivalent to solving some hard approximate SVP. We call such vectors very short vectors (VSVs). Lattice
basis reduction is the main tool for finding VSVs. However, the main lattice basis reduction algorithms cannot find
VSVs in lattices in dimensions ∼200 or above. Exhaustive search can be considered to be a key technique toward
eliminating the limitations with current lattice basis reduction algorithms. However, known methods of carrying out
exhaustive searches can only work in relatively low-dimensional lattices. We defined the extended search space (ESS)
and experimentally confirmed that exhaustive searches in ESS make it possible to find VSVs in lattices in dimensions
∼200 or above with the parameters computed from known VSVs. This paper presents an extension of our earlier work.
We demonstrate the practical effectiveness of our technique by presenting a method of choosing the parameters without
known VSVs. We also demonstrate the effectiveness of distributed searches.
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1. Introduction

An integer lattice, L, is the set of all linear combinations
with integer coefficients of a set of linearly independent vectors
b1, . . . , bn ∈ Zm. The problem of finding a nonzero lattice vec-
tor with the shortest length for a given lattice basis has been one
of the most widely studied problems concerning lattices. Note
that such vectors are not necessarily unique. This problem is
called the shortest vector problem (SVP). No polynomial time
algorithm for SVP is known for lattices with arbitrary dimen-
sions, and Ajtai proved SVP to be NP-hard under randomized
reduction [2]. It is already difficult to determine if a given short
lattice vector is a shortest nonzero lattice vector or not. One can
at most expect that a given short lattice vector will likely be a
shortest nonzero lattice vector with a heuristic threshold for ran-
dom lattices. Micciancio [14] stated that the lack of efficient al-
gorithms for SVP led compute r scientists to consider approxima-
tion versions of it. The approximation problem for SVP is to find
a nonzero lattice vector with at most γ-times the minimal possi-
ble length for constant γ. This approximation problem is called
approximate SVP, and a solution to it is called an approximate
shortest vector. When γ is small, approximate SVP is still hard.
In fact, Micciancio proved approximate SVP to be NP-hard for
γ <

√
2 [15]. In this and our earlier research, we constructed an

exhaustive search to solve approximate SVP.
Many lattice basis reduction algorithms for approximate SVP

have been proposed in the literature, e.g., the Lenstra, Lenstra,

1 Dokkyo University, Souka, Saitama 340–0042, Japan
2 The University of Tokyo, Meguro, Tokyo 153–8902, Japan
a) fukase@dokkyo.ac.jp
b) yamaguch@graco.c.u-tokyo.ac.jp

and Lovász (LLL) [12], the block Korkine-Zolotarev (BKZ) [17],
and the random sampling reduction (RSR) [18] algorithms. They
are key tools for attacking lattice-based cryptosystems [1], [8],
[10], [14]. The secret key in most lattice-based cryptosystems is
a short vector or short vectors in a particular class of lattices. A
lattice vector of the secret key is not only short but it also approx-
imates a shortest nonzero lattice vector within a small factor, γ.
Consequently, finding a lattice vector of the secret key is a diffi-
cult task because this is equivalent to solving some hard approxi-
mate SVP. However, lattice basis reduction algorithms occasion-
ally recover the secret key of lattice-based cryptosystems for a
given public key in lattices in dimensions above 100. For exam-
ple, Sc hnorr recovered the secret key by using RSR given the cor-
responding public key of GGH cryptosystem in lattices in dimen-
sion 180 [18], and Gama and Nguyen broke NTRU cryptosystems
in lattices in dimension 214 by using BKZ and some improved re-
duction [6]. These examples also reveal the limitations with cur-
rent lattice basis reduction algorithms. Exhaustive searches can
be considered to be a key technique to eliminating these limita-
tions. However, Schnorr-Euchner’s enumeration [17], which was
the most efficient known method for exhaustive searches before
Schnorr [18] and Gama et al. [7], could only work in lattices in di-
mensions below 100. Fukase et al. [5] improved the shape of the
search space used by Schnorr [18] so that it included a shortest
nonzero lattice vector with higher probability.

We must determine if a found lattice vector is a shortest
nonzero lattice vector or not to evaluate how well our technique
performs. Although this is generally difficult, a shortest nonzero
lattice vector is heuristically known in some cryptographic ap-
plications. For example, a lattice vector of the secret key in the
GGH cryptosystem has been treated as a shortest nonzero lattice
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vector [18]. Hoffstein et al. [10] showed that the secret key of
the NTRU cryptosystem was heuristically a shortest nonzero lat-
tice vector, and Gama et al. [6] stated that the secret key of the
NTRU cryptosystem was related to linearly independent shortest
vectors. We followed these examples and treated a lattice vector
of the secret key in some lattice-based cryptosystems as a shortest
nonzero lattice vector. However, to retain rigor in the definition of
a shortest nonzero lattice vector, we made a distinction between a
lattice vector of the secret key and a sho rtest nonzero lattice vec-
tor. Ludwig [13] used the term “a very short vector” to represent
a lattice vector of the secret key of an NTRU cryptosystem. A
very short vector (VSV) means a lattice vector of the secret key
of some lattice-based cryptosystems in the rest of this paper.

This work is a continuation of that by Fukase et al. [4], [5]. We
defined the extended search space (ESS) and experimentally con-
firmed that the exhaustive search in ESS made it possible to find
a VSV in lattices in dimensions ∼200 or above with the parame-
ters computed from known VSVs [5]. This research extends our
earlier work so that appropriate parameters for ESS can be deter-
mined without known VSVs in practical situations where VSVs
are not known. We mean parameters that maximize the inclu-
sion probability of a VSV through appropriate parameters. We
utilize the probabilistic distribution of the probabilistic variable
related to the Gram-Schmidt coefficients of VSVs to compute the
inclusion probability of a VSV, which can be obtained in some
cryptographic situations.

We also report experimental results obtained from a distributed
search in ESS. It has been pointed out that the search of a lattice
vector using a sampling algorithm [18] or its variants can easily
be distributed [13]. This is also the case for the search in ESS.
We experimentally demonstrated the distributed search in ESS
was effective, which is discussed in this paper.

This paper makes two main contributions.
( 1 ) We constructed a method of computing the inclusion proba-

bility of a VSV in ESS and outputting the refined parameters
for ESS to maximize the inclusion probability. We intro-
duced the distribution of a deviation from the estimated val-
ues of coefficients of VSVs to compute the inclusion prob-
ability. We found that the parameters computed with the
method were sufficient to achieve high inclusion ratios for
VSVs.

( 2 ) We experimentally confirmed the distributed search in ESS
was effective. Significant speedups were achieved on eight
CPUs in some small-scale experiments.

The remainder of this paper is organized as follows. Section 2
explains some basic concepts of lattices. We recall the definition
of ESS and explain the performance of the search in ESS with the
parameters computed from known VSVs in Section 3. In Sec-
tion 4, we present a scheme to compute the refined parameters
for the ESS of a given basis. In Section 5, we report experimental
results on the distributed search in ESS. Section 6 concludes the
paper.
Related Work

Extreme pruning [7] has recently been proposed for lattice enu-
meration. Its analysis is based on the distribution of a short-
est nonzero lattice vector, like that with our method. It has

achieved exponential speedups for Schnorr-Euchner’s enumera-
tion. There are some similarities between our method [4], [5] and
Gama et al. [7], but the bounding functions and types of lattices
that are targeted are very different. Also, the strategy for search is
very different. Gama et al. [7] search space size was drastically re-
duced by pruning the search tree and the searches were conducted
many times to compensate for the loss in the success probability
caused by pruning the search tree. Our strategy for search, on
the other hand, was to reduce the size of the search space suffi-
ciently to enable an efficient search, to simultaneously make the
success probability as high as possible, and to basically conduct
the search once. Therefore , it seems that each method has dif-
ferent advantages and should be evaluated from slightly different
aspects. After Gama et al. [7], the effectiveness of parallelizing
enumeration with multi-core CPUs, GPUs, or cloud-computing
was reported [3], [9], [11]. This paper reports parallelization was
effective with our search method of only using multi-core CPUs.
We also intend to parallelize our search method with GPUs or
cloud-computing in future work.

2. Preliminaries

2.1 Lattice
Given a set of n linearly independent vectors B = [b1, . . . , bn] ∈

Z
m×n, the integer lattice L ⊂ Zm spanned by B is defined as the

set, L(B) = {Bx | x ∈ Zn}, of all integral combinations of bi’s.
The integer, n, is called the dimension of L. When n = m, we
say that L is full-dimensional. The ordered set of vectors B =

[b1, . . . , bn] ∈ Zm×n is called a basis of L. We concentrate on full-
dimensional integer lattices in this paper. A lattice has infinitely
many bases that generate a lattice when n ≥ 2. For lattice basis
B = [b1, . . . , bn], the corresponding Gram-Schmidt orthogonal-

ized vectors, b∗1, . . . , b
∗
n ∈ Rn, are defined by b∗i = bi −∑i−1

j=1 μi, jb∗j
with μi, j = 〈bi,b∗j〉/〈b∗j ,b∗j〉 where 〈x, y〉 = ∑n

i=1 xiyi is the inner
product in Rn. For every i, b∗i is the component of bi that is or-
thogonal to b1, . . . , bi−1. Consequently, vectors b∗i and b∗j ( j � i)
are orthogonal.

Let v = Bx with x ∈ Zn be a vector in the lattice generated
by the basis, B. From the definition of Gram-Schmidt orthogo-
nalized vectors, we can represent v with b∗1, . . . , b

∗
n and the μi, j

of B, i.e., v =
∑n

j=1 ν jb∗j with ν ∈ Rn such that ν j =
∑n

i=1 xiμi, j.
Because b∗j are pairwise orthogonal, ‖v‖2 = ∑n

j=1 ν
2
j‖b∗j‖2. This

equation means that for lattice vector v =
∑n

j=1 ν jb∗j to be short
|ν j| for j = 1, . . . , n needs to be small. In the following, we call ν j

the Gram-Schmidt coefficients of v.
We denote the length of the shortest nonzero lattice vector in

lattice L by λ1(L) or λ1 when L is considered to be obvious.

2.2 Lattice Basis Reduction Algorithms
Lattice basis reduction algorithms are key tools for approxi-

mate SVP. Several different lattice basis reduction algorithms
have been proposed in the literature. The BKZ algorithm [17]
computes a (δ, β)-BKZ reduced basis for δ ∈ (1/4, 1] and an inte-
ger β such that 2 ≤ β < n. There is no proven polynomial time
bound for the BKZ algorithm, but it behaves well for reasonable
β. Although the quality of a (δ, β)-BKZ reduced basis is better for
larger δ and β, the computational cost increases for larger δ and
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β.
Schnorr proposed random sampling reduction (RSR) [18],

which is applied to lattice bases whose Gram-Schmidt orthog-
onalized basis satisfies the geometric series assumption (GSA).
GSA states that for lattice basis B = [b1, . . . , bn], there is q ∈
[0, 1] such that ‖b∗j‖2 = q j−1‖b1‖2 for j = 1, . . . , n. We call q

the common ratio of B. Quotients ‖b∗j‖2/‖b1‖2 of basis B just
approximate q j−1 in practice. It is well known that the initial vec-
tors, b∗1, . . . ,b

∗
k, for some 1 ≤ k < n are longer than subsequent

vectors b∗j for j > k if B is reduced by BKZ. Consequently,
Gram-Schmidt coefficients ν1, . . . , νk have a larger impact on the
overall length of v than ν j for j > k. Recall that for lattice vec-
tor v =

∑n
j=1 ν jb∗j to be short, |ν j| needs to be small. Then, it is

reasonable to assume that vector v =
∑n

j=1 ν jb∗j such that

|ν j| ≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2 for j < n − u

1 for n − u ≤ j < n
, νn = 1 (1)

for some 1 ≤ u ≤ n is likely to be short. There are 2u distinct
lattice vectors with this form. The sampling algorithm (SA) gen-
erates a single vector, v, satisfying Eq. (1). Let S u,B be the set of
lattice vectors in L(B) satisfying Eq. (1) for the specified u. We
call S u,B, the SA search space.

Sampling Algorithm (SA)
Input:
lattice basis B = [b1, . . . ,bn] with μi, j and an integer, u, such

that 1 ≤ u < n.
Output:
v satisfying Eq. (1).
Procedure:

v := bn

for j = 1, . . . , n − 1 μ j := μn, j

for i = n − 1, . . . , 1
select y ∈ Z randomly such that |μi − y| ≤⎧⎪⎪⎨⎪⎪⎩

1/2 if i < n − u

1 if i ≥ n − u
v := v − ybi

for j = 1, . . . , n − 1 μ j := μ j − yμi, j

Given lattice basis B = [b1, . . . , bn], RSR samples by call-
ing SA up to 2u distinct lattice vectors v =

∑n
j=1 ν jb∗j satisfying

Eq. (1) until a vector, v, such that ‖v‖2 < 0.99‖b1‖2 is found. RSR
subsequently inserts the vector found by SA into the basis, and
BKZ is used to reduce the new basis, v, b1, . . . ,bn. This random
sampling by SA and the BKZ process are iterated several times.

2.3 Lattice Based Cryptosystems
We applied our method to three types of lattices that were re-

lated to lattice-based cryptosystems in this study.
2.3.1 GGH Cryptosystem

The idea of public key construction in the GGH cryptosystem
is that it is hard to find a basis consisting of considerably short
vectors from a basis consisting of very long vectors in a lattice.
Based on this idea, the private key of the GGH cryptosystem is
set to the former and the public key is set to the latter. The private
basis, R, is defined as R = kI + R′ with k ∈ Z. R′ is a pertur-
bation matrix with entries chosen independently and uniformly

at random from {−l, . . . ,+l}, and I is the identity matrix. R is
transformed into a public basis, B, by applying elementary col-
umn operations 2n times. We add a random integer combination
of the other columns to a column at every step. The coefficients
in the integer combination are chosen at random from {−1, 0,+1}.
We call the lattices generated by private bases or public bases in
GGH cryptosystems GGH lattices.
2.3.2 Micciancio’s GGH Cryptosystem

Micciancio [14] improved the GGH cryptosystem with the
HNF technique, where the key and ciphertext sizes were reduced
by a factor, n, without decreasing security. Consider a lattice
basis, K, whose matrix is uniformly chosen in {−n, . . . , n}n×n.
Micciancio proposed a private basis, R, to be an LLL reduced
basis of K. The corresponding public basis is the Hermite normal
form of R. A lattice basis, H = (hi, j) ∈ Zn×n, is said to be in
the Hermite normal form if and only if H is upper triangular and
0 ≤ hi, j < hi,i for all 1 ≤ i < j ≤ n. Every lattice has exactly one
basis H in the Hermite normal form. We call the lattices gener-
ated by private bases or public bases in Micciancio’s GGH cryp-
tosystems Micciancio’s GGH lattices. While the private basis is
cube-like in the GGH cryptosystem, the private basis is an LLL-
reduced basis of a basis whose vectors are chosen at random in an
n-dimensional c ube in Micciancio’s GGH cryptosystem. Thus,
compared with GGH lattices, Micciancio’s GGH lattices do not
have any particular structure. Therefore, Micciancio’s GGH lat-
tices are very suitable for estimating the generality of our results.
2.3.3 NTRU Cryptosystem

NTRU lattices underlie the NTRU cryptosystem [10]. The key
generation process and the suggested parameters of NTRU have
been revised several times. For simplicity, we followed the origi-
nal description of NTRU in Hoffstein et al. [10]. The private key,
( f , g), and the public key, h, in NTRU are polynomials in polyno-
mial rings, and h is constructed from ( f , g). The encryption func-
tion and the decryption function are also based on arithmetic in
polynomial rings. However, it was shown that breaking NTRU is
related to finding short vectors in a particular class of lattices. In
particular, private key ( f , g) was shown to be heuristically equiv-
alent to the shortest nonzero lattice vector in the class of lattices.

Private key ( f , g) can be represented as a 2N-dimensional vec-
tor, ( f , g) = [ f0, . . . , fN−1, g0, . . . , gN−1], where N is the security
parameter of NTRU. Public key h can be represented as an N-
dimensional vector, h = [h0, . . . , hN−1] ∈ Zn. Consider the fol-
lowing matrix, Mh with h:

Mh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 h1 · · · hN−1

hN−1 h0 · · · hN−2

...
...
. . .

...

h1 h2 · · · h0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ ZN×N . (2)

Next, consider matrix B below with N, an integer, q, which is a
power of 2, and Mh:

B =

⎡⎢⎢⎢⎢⎣
I 0

Mh qI

⎤⎥⎥⎥⎥⎦ ∈ Z2N×2N , (3)

where I is the N-dimensional identity matrix. We call the lattices
generated by bases represented by matrix B NTRU lattices. Ma-
trix B above is the simplest form of bases for NTRU lattices. The
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dimension of NTRU lattices is 2N. Private key ( f , g) is a lattice
vector in the NTRU lattice generated by the corresponding public
key, h.

Hoffstein et al. [10] presented three standard sets of parame-
ters. We will concentrate on the first of (N, q) = (107, 64) in this
paper. The level of security yielded by this parameter set is low-
est of the three, but no NTRU lattices of N = 107 had ever been
broken only by lattice reduction before Gama et al. [6]. Although
three NTRU lattices of N = 107 were broken by using BKZ and
some improved reduction by Gama et al. [6], the NTRU lattices
of N = 107 can be considered to still be hard for BKZ alone.

2.4 Very Short Vector (VSV)
We define a very short vector (VSV) as a lattice vector of the

secret key of some lattice-based cryptosystems in this paper. We
call ‖v‖/λ1(L) for lattice vector v an approximation factor fol-
lowing Gama et al. [6], and denote it as ap f a for short. Finding a
VSV is equivalent to solving approximate SVP for small γ, which
means a VSV is an approximate shortest vector with ap f a ≤ γ.
We support this standpoint by referring to Gama et al. [6] where
they explained that finding a lattice vector of the secret key of
NTRU cryptosystems was equivalent to solving approximate SVP
for a suitable γ. It is difficult to determine how small γ is because
λ1(L) for a lattice, L, is generally not exactly known.

3. ESS

This section explains the definition of ESS and discusses the
performance of search in ESS with the parameters computed from
known VSVs.

3.1 Definition
We analyzed the distribution of coefficients of VSVs and

demonstrated that it is related to some increasing geometric se-
quence [5]. Here, we recall the results. Let R = [r1, . . . , rn]
be a GGH private basis and let B = [b1, . . . , bn] be a (0.99, β)-
BKZ reduced GGH public basis. We represent each vector ri of
R with the Gram-Schmidt orthogonalized vectors b∗1, . . . , b

∗
n as

ri =
∑n

j=1 νi, jb
∗
j . νi, j is computed as νi, j =

∑n
i=1 uiμi, j with the

unimodular matrix, U = [u1, . . . , un], such that R = BU. μi, j are
the coefficients defined as μi, j = 〈bi, b∗j〉/〈b∗j , b∗j〉 in Section 2.1.

Now, we will investigate the distribution of the Gram-Schmidt
coefficients, νi, j.

Figure 1 plots the distribution of |νi, j| for the (0.99, 10)-BKZ
reduced GGH basis in dimension 200. It can be seen that |νi, j| are
related to some increasing geometric sequence. Figure 2 shows
the distribution of |νi, j| for the (0.99, 20)-BKZ reduced GGH ba-
sis in dimension 200. By comparing Fig. 1 with Fig. 2, we can
see that |νi, j| for the (0.99, 20)-BKZ reduced basis is smaller than
those for the (0.99, 10)-BKZ reduced basis. We tested this on
many bases, and we witnessed the same tendency: |νi, j| is smaller
for the better reduced basis.

From the above observation, we defined ESS Wk,a, j0 ,B as fol-
lows [5]. Here, we employ a geometric sequence, kan− j, to bound
a search space.

Definition 1 Let B be a lattice basis, and let k, a ∈ R+,
j0 ∈ Z+n . Then, ESS Wk,a, j0 ,B is the set of all lattice vectors

Fig. 1 |νi, j | for ri =
∑n

j=1 νi, jb
∗
j . |νi, j | are averaged over i (1 ≤ i ≤ n). Each

error bar represents the standard deviation of the average. b∗1, . . . ,b
∗
n

are the Gram-Schmidt vectors of a (0.99, 10)-BKZ reduced GGH
basis in dimension 200. These results were presented in Fukase
et al. [5].

Fig. 2 |νi, j | for ri =
∑n

j=1 νi, jb
∗
j . |νi, j | are averaged over i (1 ≤ i ≤ n). Each er-

ror bar indicates the standard deviation of the average. b∗1, . . . ,b
∗
n are

the Gram-Schmidt vectors of a (0.99, 20)-BKZ reduced GGH basis
in dimension 200. These results were presented in Fukase et al. [5].

v =
∑n

j=1 ν jb∗j with ν = (ν1, . . . , νn) ∈ Rn such that

ν j ∈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(−�2kan− j�/2, �2kan− j�/2] for 1 ≤ j < j0,

{1, . . . , �kan− j�} for j = j0,

{0} for j0 < j ≤ n,

(4)

where �x� rounds x to the closest integer as defined by �x� =
�x − 0.5�.

Because S u,B = Wk,a, j0 ,B with k = 1.0, a = (0.5)
1

u+1 , and j0 = n,
the SA search space is a special case of ESS.

We explain the search in ESS in the following. From Defini-
tion 1, it can be seen that the forms for the upper bounds of |ν j|
of a vector in ESS are z/2 with some z ∈ N. This enables us to
efficiently enumerate ESS with GenSample [13], and in particular
|Wk,a, j0 ,B| =

∏ j0
j=1 c j with c = (c1, . . . , cn) ∈ Nn such that

c j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�2kan− j� if 1 ≤ j < j0,

�kan− j� if j = j0,

0 if j0 < j ≤ n,

(5)
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for j = 1, . . . , n. GenSample can be used for the search in
Wk,a, j0 ,B. GenSample takes B with μi, j, some c′ = (c′1, . . . , c

′
n) ∈

N
n and some x ∈ N as input and outputs a lattice vector in the set

specified by c′. Here, μi, j = 〈bi, b∗j〉/〈b∗j ,b∗j〉.
Searching Wk,a, j0 ,B with GenSample

( 1 ) Compute c that satisfies Eq. (5). for j = 1, . . . , n.
( 2 ) Compute N such that N = |Wk,a, j0 ,B| =

∏ j0
j=1 c j.

( 3 ) Call GenSample (B with μi, j, c, x) for x = 0, . . . ,N − 1.
Significantly, all lattice vectors in the set specified by some
c′ = (c′1, . . . , c

′
n) ∈ Nn and {0, . . . ,N′ − 1} have a one-to-one cor-

respondence via GenSample. Here, N′ =
∏ j′0

j=1 c′j for j′0 such that
j′0 is the last index of nonzero c′j. We referred to Ludwig [13] for
the proof.

3.2 Parameters Computed from Known VSVs
We experimentally confirmed that given the parameters com-

puted from known VSVs for ESS, the inclusion ratio of a VSV
in ESS is considerably higher than that of the SA search space
in our earlier work. VSVs are not known in practical situations.
We studied a method of choosing the refined parameters for ESS
in situations where there are no known VSVs for a given basis in
Section 4.
Experimental Results

The purpose of the search is to find at least one VSV. There-
fore, we need to calculate the ratio of the number of bases B

such that Wk,a, j0 ,B includes at least one VSV to that of all the
bases tested. We tested 100 BKZ-reduced bases on three differ-
ent types of lattices, i.e., a GGH lattice, Micciancio’s GGH lat-
tice, and an NTRU lattice. We used the same set of 100 bases
for all parameter sets of (k, a, j0). We calculated the rate for
j0 ∈ {n − 4, n − 3, n − 2, n − 1, n}, k ∈ {1.0, 1.1, 1.2, . . . , 2.0},
and a ∈ {0.8800, 0.8805, 0.8810, · · · , 0.9985, 0.9990}. The two
lists in Table 1 summarize the maximum ratio for finding a VSV
for a given space size of Wk,a, j0 ,B in GGH lattices in dimension
180. The maximum ratios were computed for all (k, a, j0) tested.
We also conducted the same calculation for the SA search space
as listed in the lower table. By comparing the upper parts of each
table with their corresponding lower parts, we can see that ES
S is more effective than the SA search space in finding a VSV.
In most cases, the inclusion ratio for the same space size level
is much higher for ESS than for the SA search space. Here, we
mean any space size 10r by using space size level 10z for z = �r�.

Table 2 summarizes the maximum ratio of finding a VSV for
a given space size of Wk,a, j0 ,B in Miccinacio’s GGH lattices in di-
mension 160. We have also presented the same calculation for
the SA search space listed in the lower part of the table.

Table 3 summarizes the maximum ratio of finding a VSV for
a given space size of Wk,a, j0 ,B in NTRU lattices in dimension 214.
We also presented the same calculation for the SA search space
listed in the lower part of the table.

3.3 Exhaustive Search with Single CPU
We will present the results obtained from an exhaustive search

in ESS for an individual basis in the best case on the three types
of lattices to confirm ESS can be exhausted by a single CPU.

Table 1 Maximum ratios at several levels of space size with their parameter
sets in dimension 180. One hundred (0.99, 20)-BKZ reduced GGH
public bases were used.

ESS

Space size level 1010 1011 1012 1013 1014 1015

k 1.2 1.2 1.6 1.6 1.9 1.6

a 0.97 0.973 0.963 0.966 0.961 0.9695

j0 179 180 180 180 180 180

Ratio 12% 26% 51% 78% 97% 100%

SA search space

u 32 35 38 42 45 47

Ratio 8% 10% 19% 29% 44% 53%

Table 2 Maximum ratios at several levels of space size with their param-
eter sets in dimension 160. One hundred (0.99, 20)-BKZ reduced
Micciancio’s GGH public bases were used. These results were pre-
sented in Fukase et al. [5].

ESS

Space size level 1014 1015 1016 1017 1018 1019

k 1.7 1.6 2.0 1.7 2.0 1.8

a 0.966 0.971 0.9645 0.972 0.9685 0.9735

j0 160 160 160 160 160 160

Ratio 14% 33% 64% 86% 99% 100%

SA search space

u 44 49 52 55 57 62

ratio 1% 7% 8% 8% 9% 9%

Table 3 Maximum ratios at several levels of space size with their param-
eter sets in dimension 214. One hundred (0.99, 20)-BKZ reduced
NTRU bases were used.

ESS

Space size level 1013 1014 1015 1016 1017 1018

k 1.6 1.9 1.8 1.9 1,8 1.9

a 0.966 0.961 0.9655 0.966 0.9695 0.9695

j0 214 214 214 214 214 214

Ratio 6% 18% 33% 54% 81% 96%

SA search space

u 42 45 47 52 55 57

ratio 1% 2% 3% 7% 7% 9%

3.3.1 Experimental Results
We reduced a basis in dimension 180 by (0.99, 20)-BKZ. We

called the process of reduction before the search preprocessing

within the context we used. We then calculated the optimal pa-
rameters for ESS from known VSVs in the lattice generated by
the basis. Here, the optimal parameters mean those with which
Wk,a, j0 ,B includes a VSV and where the space size of Wk,a, j0 ,B is
the smallest. We conducted an exhaustive search with the optimal
parameters to investigate the potential of the search in ESS.

First, we tested 10 bases in GGH lattices in dimension 180 for
the exhaustive search. We reduced each basis with BKZ until the
space size of Wk,a, j0 ,B for the basis became small enough for the
actual search. Although the space size of Wk,a, j0 ,B for some bases
is still large, we could conduct an actual exhaustive search for
eight of the 10 bases. The optimal parameter sets and the search
time are listed in Table 4. The “search and preprocessing (sec.)”
column indicates the search time and the preprocessing time with
BKZ. We used GenSample for the search in Wk,a, j0 ,B.

For comparison, we have also presented the results when only
BKZ was used on the eight bases that we conducted the exhaus-
tive search on. We reduced each basis by using BKZ with in-
creasing β. When (0.99, 24)-BKZ reduction terminated, a VSV
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Table 4 Results for exhaustive search in Wk,a, j0 ,B for 10 GGH public bases in dimension 180. Optimal k,
a, and j0 were chosen for each basis. These results were presented in Fukase et al. [5].

k a j0 Space size Search and pre- BKZ only (sec.) (min. β)
processing (sec.)

1.0 0.976 178 108.730 30,971 615,685 (25)

1.0 0.9775 179 109.332 60,541 231,105 (25)

1.0 0.9765 178 109.0309 22,077 666,739 (25)

1.0 0.976 180 108.730 26,273 80,503 (24)

1.9 0.923 180 107.077 5,865 724,648 (25)

1.0 0.9765 179 109.031 31,296 638,653 (25)

1.8 0.938 180 108.457 14,279 348,143 (24)

1.2 0.9645 179 107.62805 62,995 402,806 (25)

Table 5 Results for search in Wk,a, j0 ,B for 10 Micciancio’s GGH public bases in dimension 160. Optimal
k, a, and j0 were chosen for each basis. These results were presented in Fukase et al. [5].

k a j0 Space size Search and pre- BKZ only (sec.) (min. β)
processing (sec.)

2.0 0.9445 157 108.457 174,066 Not terminated in 10 days (26)

Table 6 Results for exhaustive search in Wk,a, j0 ,B for 10 NTRU bases in dimension 214. Optimal k, a,
and j0 are chosen for each basis. These results were presented in Fukase et al. [5].

k a j0 Space size Search and pre- BKZ only (sec.) (min. β)
processing (sec.)

1.4 0.9675 210 109.184 229,227 Not terminated in 10 days (25)

had been found in two cases. If a VSV was not found, we re-
duced each basis by using BKZ with β = 25. The total time
for BKZ reduction and β with which BKZ reduction had found
a VSV is also listed in Table 4. We can see from the table that
the runtime for the search in ESS was much smaller than that for
BKZ reduction in all cases. This indicates the potential of the
search in ESS.

Second, we tested 10 bases in Micciancio’s GGH lattices in
dimension 160 for the exhaustive search. The optimal param-
eter sets and the search time are summarized in Table 5. We
found that Micciancio’s GGH public bases in dimension 160 were
slightly more difficult to reduce by BKZ reduction than GGH
public bases in the same dimension 160. However, we could still
obtain a VSV from one of the 10 bases. BKZ, on the other hand,
could not find a VSV within 10 days for any bases.

Third, we tested 10 bases in NTRU lattices in dimension 214
for the exhaustive search. The optimal parameter sets and the
search time are listed in Table 6. We could also still find a VSV
from one of 10 bases. However, BKZ could not find a VSV within
10 days for any bases.

We confirmed from the results above that it was possible to
find a VSV by using an exhaustive search with a single CPU in
high-dimensional lattices if the parameters were optimal.

4. Parameter Refinement

We explain how to compute the refined parameters for ESS of
a given basis in this section. Here, the refined parameters mean
those that maximize the inclusion probability of a VSV under a
given space size. Thus, we must compute the inclusion probabil-
ity of a VSV to refine the parameters. We consider the deviation
of a VSV from its expected value on the Gram-Schmidt coeffi-
cients as a probabilistic variable to compute the inclusion prob-
ability. However, there are no known VSVs for a given basis,
and it is difficult to estimate the probabilistic distributions of the

variable on which the computation of the inclusion probability
is based from the basis alone. Therefore, we utilize other bases
where VSVs are known to obtain some probabilistic distributions.
This is possible because the key generation algorithms are known
in some cryptographic situations. Assuming such cryptographic
situations, we introduce a scheme PR that computes the inclu-
sion probability by utilizing many bases besides its input basis
and it outputs the parameters for ESS maximizing the inclusion
probability in Section 4.2. Some particular distributions are ex-
ploited in GGH lattices and NTRU lattices because these types of
lattices have some specific structures. We targeted GGH lattices
and NTRU lattices to demonstrate the performance of PR, which
is discussed in Sections 4.3 and 4.4. Compared with GGH lat-
tices and NTRU lattices, Micciancio’s GGH lattices do not have
any specific structure, and in fact the distributions are dependent
on bases. Consequently, the inclusion probability computed with
the average distribution is not reliable. For such situations, we
consider another approach to refining parameters instead of com-
puting the inclusion probability. Section 4.5 explains how weaker
refinement of parameters is possible by using some empirical ap-
proaches.

4.1 Inclusion Probability Analysis
We utilize the deviation of a VSV from its expected value on

the Gram-Schmidt coefficients and that of a basis from GSA to
compute the inclusion probability of a VSV. The following anal-
ysis is an extended version of that in Fukase and Yamaguchi [4].

We first consider the expected value of the Gram-Schmidt co-
efficients of VSVs to describe the deviation of a VSV. Let
v =
∑n

j=1 ν jb∗j be a VSV in the lattice generated by basis B, and
let b∗1, . . . ,b

∗
n be the Gram-Schmidt orthogonalized vectors of B.

Here, we assume that B has been reduced by LLL or BKZ. Be-
cause v is a VSV, each ν j is expected to be small so that ν2j cancels
the term, ‖b∗j‖2. We introduce the following heuristic assumption
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Fig. 3 Heuristic values and actual mean values of |ν j |2. Values of |ν j |2 are
averaged on 160 VSVs for actual mean values.

based on this idea.
Assumption 1 Let ν j for j = 1, . . . , n represent the Gram-

Schmidt coefficients of any VSVs in a lattice, L(B). Then,

E [ |ν j|2 ] = t2/‖b∗j‖2 for j = 1, . . . , n (6)

holds for some constant t ∈ R+.
Although Assumption 1 does not hold rigorously, it is sufficiently
close so that it makes sense to assume that it is true. For example,
see Fig. 3.

Figure 3 plots E [ |ν j|2 ] calculated based on Assumption 1
and the actual mean values of |ν j|2 for a basis in dimension
160. The values of |ν j| are averaged on 160 VSVs for the ac-
tual mean values. Here, t is determined as follows. Because a
VSV is expected to be as short as λ1, Assumption 1 states that
λ2

1 ≈ E [ ‖v‖2 ] = E [
∑n

j=1 ν
2
j‖b∗j‖2 ] =

∑n
j=1(t2/‖b∗j‖2)‖b∗j‖2 = nt2.

Therefore, it is reasonable to use λ1/n1/2 as t in Eq. (6).
In the following, we represent |ν j| with t and |b∗j | for all j =

1, . . . , n as

|ν j| = (t + t j)/‖b∗j‖ (7)

for a probabilistic variable, t j ∈ R. Now, we consider |ν j| = t/‖b∗j‖
as the expected value of |ν j| and t j as the deviation of |ν j| from the
value.

Next, we consider the deviation of a basis from GSA. For that,
we represent ‖b∗j‖ with another form. Recall that if basis B is
reduced by LLL or BKZ, the lengths of the Gram-Schmidt or-
thogonalized vectors of the basis resemble a geometric sequence,
‖b∗j‖2 ≈ q j−1‖b1‖2, for some common ratio q ∈ [0, 1]. In our ex-
periment, we compute q with the method of least mean squares so
that
∑n

j=1(‖b∗j‖2−q j−1‖b1‖2)2 is minimum. We explicitly describe
the deviation of the approximate equation, ‖b∗j‖2 ≈ q j−1‖b1‖2, as
in the equation

‖b∗j‖2 = eδ j q j−1‖b1‖2 for j = 1, . . . , n, (8)

with error terms δ j for j = 1, . . . , n whose absolute values are
supposed to be small.

Now, we represent |ν j| with the deviations, t j and δ j. From
Eqs. (7) and (8):

|ν j| = (t + t j)/(e
δ j q j−1‖b1‖2)1/2

= t/(q j−1‖b1‖2)1/2

+((1 − eδ j/2)t + t j)/(e
δ j q j−1‖b1‖2)1/2

= (t(q1/2)1−n/‖b1‖)(q1/2)n− j

+((1 − eδ j/2)t + t j)/(e
δ j q j−1‖b1‖2)1/2.

Let k̄ = t(q1/2)1−n/‖b1‖, ā = q1/2, and ε j = ((1 − eδ j/2)t + t j)/
(eδ j q j−1‖b1‖2)1/2. Then,

|ν j| = k̄ān− j + ε j. (9)

Here, let k = k̄, a = ā, and j0 be parameters for ESS
Wk,a, j0 ,B. From Definition 1, Eq. (9), and ε j = ((1 − eδ j/2)t + t j)/
(eδ j q j−1‖b1‖2)1/2, the condition below needs to be satisfied for
v =
∑n

j=1 ν jb∗j to be included in ESS:
Condition 1

t j ≤ (�2kan− j�/2 − kan− j)(eδ j q j−1‖b1‖2)1/2 − (1 − eδ j/2)t

for 1 ≤ j < j0, (10a)

t j ≤ (�kan− j� − kan− j)(eδ j q j−1‖b1‖2)1/2 − (1 − eδ j/2)t

for j = j0, (10b)

t j = −kan− j(eδ j q j−1‖b1‖2)1/2 − (1 − eδ j/2)t

for j0 < j ≤ n. (10c)

Let t̄ j = (�2kan− j�/2 − kan− j)(eδ j q j−1‖b1‖2)1/2 − (1 − eδ j/2)t and
t̄ j0 = (�kan− j�−kan− j)(eδ j q j−1‖b1‖2)1/2− (1−eδ j/2)t. Also, let p j0 , j

be the cumulative distribution function of t j. Then, the inclusion
probability, p, is:

p =

⎛⎜⎜⎜⎜⎜⎜⎝
j0−1∏

j=1

p j0 , j(t̄ j)

⎞⎟⎟⎟⎟⎟⎟⎠ p j0 , j0 (t̄ j0 ). (11)

4.2 Sample Bases Approach to Parameter Refinement
The following subsection presents a scheme to compute the re-

fined parameters for ESS, whereby the inclusion probabilities for
various sets of parameters for ESS are computed using the for-
mula to compute the inclusion probability in Section 4.1. As
stated in Section 4.1, we need the probabilistic distribution of
the probabilistic variable, t j, to compute the inclusion probability.
Therefore, we use the following information available from bases
where VSVs are known. We call such bases training bases.

The cumulative distribution function, p j0 , j, of t j is computed
on all v =

∑n
j=1 ν jb∗j such that j0 is the last index of nonzero

coefficient ν j. Note that p j0 , j(x) = 0 for x < −t because
|ν j| = (t + t j)/‖b∗j‖ ≥ 0, and p j0 , j(∞) = 1.

Let p j0 be the fraction of all v in training bases such that j0 is
the last index of nonzero coefficient ν j. Also, let λ′1 be the mean
value of ‖v‖ on training bases, and let j0 be the possible minimum
value of the last index, j0, of nonzero coefficient ν j.

These inputs are used to calculate the refined values of k, a,
and j0 in the following algorithm PR.

Parameter Refinement for ESS (PR)
Input:

B lattice basis B = [b1, . . . , bn]
λ′1 the mean value of ‖v‖ on training bases
j0 the minimum value of j0 on training bases
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p j0 , j cumulative distribution function of t j on all v specified by
j0

p j0 fraction of all v on training bases where v is specified by j0
α, d parameters to determine q′

s space size bound
Output:

P the probability with which at least one VSV exists in ESS.
(k, a, j0) the refined parameters for ESS.

Procedure:
compute ‖b∗1‖2, . . . , ‖b∗n‖2
compute q s.t. ‖b∗j‖2 ≈ q j−1‖bn‖2 with the method of least mean
squares
compute t := λ′1/n

1/2

P := 0
for z = −d, . . . , 0, . . . , d

q′ := q + αz

a′ := q′1/2

k′ := t(q′1/2)1−n/‖b1‖
for j = 1, . . . , n
δ′j := 2 log(‖b∗j‖) − 2 log(‖b1‖) − ( j − 1) log(q′)

for j′0 = j0, . . . , n

p := p j′0
for j = 1, . . . , j′0

if ( j < j′0)
p := p p j′0 , j(t̄ j)

else
p := p p j′0 , j(t̄ j0 )

P′ := 1 − (1 − p)n

if (P′ > P and |Wk′ ,a′ , j′0 ,B| ≤ s)
(k, a, j0) := (k′, a′, j′0)
P := P′

4.3 Sample Bases Approach to Parameter Refinement on
GGH Lattices

We present the performance of PR on GGH lattices here. GGH
lattices have specific structures, and therefore some particular dis-
tributions of t j are obtained.

First, we generated 100 (0.99, 20)-BKZ reduced GGH bases as
training bases and calculated λ′1, j0, p j0 ,t j , and p j from them. In
this experiment, λ′1 = 69.22 and j0 = 167.

We computed the refined parameters for the 100 (0.99, 20)-
BKZ reduced GGH bases in dimension 180 used in Table 1 with
PR. One hundred bases were generated independently of training
bases. In PR, q′ is searched around q, and the candidate set of q′s
is {q−αd, q−α(d−1), . . . , q, . . . , q+α(d−1), q+αd} with α and
d. Note that q differs according to the bases. For example, we
obtained q = 0.948 for a basis. With α = 0.0001 and d = 80, the
candidate set of q′s was {0.940, 0.9401, . . . , 0.9559, 0.956}. For
s, we used 1011, 1012, 1013, 1014, and 1015. Table 7 summarizes
the results obtained from the experiment. The “ratio” column in
Table 7 indicates the ratios with which at least one VSV was ac-
tually included in ESS for the refined parameters.

We used the same 100 bases to calculate Tables 1 and 7. The
ratios in Table 1 were calculated by knowing the VSVs. Those in
Table 7, on the other hand, were calculated using the refined pa-

Table 7 Inclusion ratios for refined parameters. One hundred (0.99, 20)-
BKZ reduced GGH public bases in dimension 180 were used.

s 1010 1011 1012 1013 1014 1015

Ratio 11% 25% 37% 60% 73% 100%
Ratio (PR)

Ratio (known VSVs) 0.92 0.96 0.73 0.78 0.75 1.00

rameters. In Table 7, ratio (PR)
ratio (known VSVs) is the goodness of the

refined parameters (PR) compared to the parameters computed
from known VSVs in Table 1. “Ratio (PR)” is the ratio of the
refined parameters. “Ratio (known VSVs)” represents the param-
eters computed from known VSVs. For example, the former is
11% in Table 7, and the latter is 12% in Table 1. Therefore,

ratio (PR)
ratio (known VSVs) = 0.92. In Table 7, ratio (PR)

ratio (known VSVs)
is high between 1010 and 1015 and especially at 1010, 1011, and
1015, it is close to 1.0. Thus, it can be said that the results in Ta-
ble 7 are close to those in Table 1. This means that PR performs
well.

We also tested some sets of training bases to investigate how
many bases were sufficient for training bases. We confirmed that
less than 100 bases or bases with weaker reductions were permis-
sible for training bases. However, the results for 10 bases were
unstable. Therefore, we considered 10 bases for training bases to
be insufficient.

4.4 Sample Bases Approach to Parameter Refinement on
NTRU Lattices

We introduce the performance of PR on NTRU lattices here.
NTRU lattices also have specific structures, and therefore some
particular distributions of t j are obtained.

However, we need slight modifications to apply PR to NTRU
lattices because ‖b∗j‖2 for j = 1, . . . , n do not approximate GSA
for NTRU bases reduced by BKZ with moderate β. The ini-
tial lengths, ‖b∗1‖2, . . . , ‖b∗h−1‖2, for some h deviate badly from
a geometric sequence. However, ‖b∗j‖2 for j ≥ h approximates
a geometric sequence. Moreover, |ν j| for j < h could not be
larger than 0.5 because the lengths, ‖b∗1‖2, . . . , ‖b∗h−1‖2, were rela-
tively long. Therefore, in such cases, we can safely ignore initial
‖b∗1‖2, . . . , ‖b∗h−1‖2 by replacing the vector index of b∗1 with that of
b∗h. The t must be determined to be t = (λ2

1−
∑h−1

j=1 ν
2
j‖b∗j‖2)1/2/(n−

(h− 1))1/2 based on the argument in Section 4.1. The value of the
term,

∑h−1
j=1 ν

2
j‖b∗j‖2, in the above form cannot easily be estimated.

However, we experimentally confirmed that the contribution of
the term,

∑h−1
j=1 ν

2
j‖b∗j‖2, and (h − 1) to the value of t was small.

Consequently, we replaced (λ2
1 −
∑h−1

j=1 ν
2
j‖b∗j‖2)1/2/(n− (h− 1))1/2

with λ1/n1/2 by just ignoring them. As a result, we have set t

to λ1/n1/2 here. We tested the bases where VSVs were known
to verify this approximation. In the experiment in dimension
214, we obtained λ = 59.0,

∑h−1
j=1 ν

2
j‖b∗j‖2 = 5.0 and h − 1 =

17, then (λ2
1 −
∑h−1

j=1 ν
2
j‖b∗j‖2)1/2/(n − (h − 1))1/2 = 0.526 and

λ1/n1/2 = 0.525 for example. Thus, λ1/n1/2 sufficiently approxi-
mates (λ2

1 −
∑h−1

j=1 ν
2
j‖b∗j‖2)1/2/(n − (h − 1))1/2.

Let q be the common ratio of a geometric sequence that
‖b∗j‖2 for j ≥ h approximates, and δ j such that ‖b∗j‖2 =
eδ j q j−h‖bh‖2 for j = h, . . . , n, k = t(q1/2)h−n/‖bh‖, and a = q1/2.
Let v =

∑n
j=1 ν jb∗j be a VSV in an NTRU lattice, and t j such that
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|ν j| = (t + t j)/‖b∗j‖. Then, in this case, Condition 1 is rewritten
into Condition 2 below:

Condition 2

t j ≤ (�2kan− j�/2 − kan− j)(eδ j q j−h‖bh‖2)1/2 − (1 − eδ j/2)t

for h ≤ j < j0, (12a)

t j ≤ (�kan− j� − kan− j)(eδ j q j−h‖bh‖2)1/2 − (1 − eδ j/2)t

for j = j0, (12b)

t j = −kan− j(eδ j q j−h‖bh‖2)1/2 − (1 − eδ j/2)t

for j0 < j ≤ n. (12c)

We applied modified PR to NTRU lattices in dimension 214.
As was discussed in Section 4.3, we experimentally investigated
how many bases were sufficient for training bases. We observed
that 100 bases were sufficient as training bases and very few
bases, e.g., 20 bases, occasionally were not sufficient where PR
was applied to NTRU lattices. Subsequently, we used 100 bases
as training bases.

Here, we explain our evaluation of the performance of PR
on NTRU lattices. First, we generated 100 (0.99, 20)-BKZ re-
duced NTRU bases as training bases and calculated λ′1, j0, p j0 ,t j ,
and p j from them. In this experiment, λ′1 = 7.68 and j0 =

203. We computed the refined parameters for 100 (0.99, 20)-
BKZ reduced NTRU bases in the dimension 214 used in Ta-
ble 3 with PR. One hundred bases were generated independently
of the training bases. We obtained q = 0.949 for some bases.
With α = 0.0001 and d = 120, the candidate set of q′s was
{0.937, 0.9371, . . . , 0.9609, 0.961}. For s, we used 1014, 1015,
1016, 1017, and 1018. Table 8 summarizes the results obtained
from this experiment. The “ratio” column in Table 8 indicates
ratios with which at least one VSV was actually included in ESS
for the refined parameters.

We used the same 100 bases as in Tables 3 and 8. In Table 8,
ratio (PR)

ratio (known VSVs) is the goodness of the refined parameters
(PR) compared with the parameters computed from known VSVs
in Table 3. “Ratio (PR)” is the ratio of the refined parameters.
“Ratio (known VSVs)” represents the parameters computed from
known VSVs. For example, the former is 3% in Table 8, and the

latter is 6% in Table 3. Therefore, ratio (PR)
ratio (known VSVs) = 0.50.

From 8, ratio (PR)
ratio (known VSVs) is more than 1.00 in some cases.

This means that at some space size levels, PR achieved higher ra-
tios than those for the experiment listed in Table 3. This was pos-
sible because parameters were individually determined for each
input basis with PR while the parameters computed from known
VSVs were applied equally to all targeted bases. Thus, PR per-
formed well.

4.5 Empirical Approach to Parameter Refinement
Micciancio’s GGH lattices do not have any specific structure,

Table 8 Inclusion ratios for refined parameters. One hundred (0.99, 20)-
BKZ reduced NTRU bases in dimension 214 were used.

s 1013 1014 1015 1016 1017 1018

Ratio 3% 7% 31% 63% 86% 97%
Ratio (PR)

Ratio (known VSVs) 0.50 0.39 0.94 1.17 1.06 1.01

and the distributions are dependent on bases. Because the average
distribution on many bases concerning Micciancio’s GGH lattices
is useless for computing the inclusion probability, PR cannot be
applied to Micciancio’s GGH lattices. Even in such cases, it is
possible to refine parameters with some empirical approach be-
cause there are not that many candidates for a proper parameter
set in practice. As we saw in Section 4.4, the parameters refined
by PR are sometimes better than the parameters computed from
known VSVs. However, the parameters computed with parameter
refinement presented here can never be better than the parameters
computed from known VSVs. In that sense, the parameter refine-
ment presented here is weaker.

First, consider the choice of j0. See Fig. 4. Figure 4 plots the
inclusion ratios for the 100 bases at several levels of space size
for j0 = 158, j0 = 159, and j0 = 160. The k in the figure is fixed
at 2.0, and it can be seen that the inclusion ratios for j0 = n are
much higher than those for j0 smaller than n.

Second, consider the choice of k. Figure 5 plots the inclusion
ratios for the 100 Micciancio’s GGH bases used in Table 2 at sev-
eral levels of space size for k = 1.0, k = 1.5, and k = 2.0. The
j0 in the figure is fixed at 160. The inclusion ratios in Table 2,
which were achieved when VSVs were known, have been shown
for comparison. As seen in Fig. 5, k = 1.0 achieves much lower
inclusion ratios than other ks, while any k > 1.0 achieves simi-
larly high inclusion ratios. Hence, k = 1.0 should be avoided.

From the above observation, one can set j0 to n and k to 2.0.

Fig. 4 Inclusion ratios for 100 Micciancio’s GGH bases for j0 = 158,
j0 = 159, and j0 = 160. k was fixed at 2.0.

Fig. 5 Inclusion ratios for 100 Micciancio’s GGH bases for k = 1.0, k = 1.5,
and k = 2.0. j0 was fixed at 160. Inclusion ratios in Table 2 have
been shown.
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Then, a is determined by a given space size with j0 = n and
k = 2.0. In summary, the parameter refinement here, which we
call empirical refinement, is as follows:
Empirical Refinement
( 1 ) set j0 to n

( 2 ) set k to 2.0
( 3 ) compute a from given space size with j0 and k

We concluded that a proper parameter set, which is only a lit-
tle worse than the parameter set computed from known VSVs,
could be determined by using empirical refinement. We con-
firmed empirical refinement could also be applied to GGH lattices
and NTRU lattices when training bases were not available.

5. Exhaustive Search with Multiple CPUs

This section introduces a method of distributed search and
presents the results obtained from the distributed search in ESS
on eight CPUs.

Because sampling reduction does not manipulate the basis dur-
ing the sampling phase at all, it is subject to easy distribution.
Ludwig proposed a method of parallelizing sampling reduction
by running GenSample again and again on each CPU, and he es-
timated how effective the method was [13]. Here, we confirm
how effective the method in ESS is with an actual search.

We need to employ many CPUs to conduct a distributed search
in ESS. Suppose there are z CPUs available. As explained in Sec-
tion 3.1, all lattice vectors in Wk,a, j0 ,B and {0, . . . ,N − 1} with N =

|Wk,a, j0 ,B| have a one-to-one correspondence by using GenSample.
We partition the search space in disjunct parts Wk,a, j0 ,B = ∪z

j=1Wj

where all lattice vectors in Wj and {(�N/z�)( j−1), . . . , (�N/z�) j−1}
have a one-to-one correspondence via GenSample for 1 ≤ j ≤
z − 1 and all lattice vectors in Wj and {(�N/z�)( j − 1), . . . ,N − 1}
have a one-to-one correspondence via GenSample for j = z.
Then, we run GenSample for Wj on the j-th CPU for j = 1, . . . , z.
We can expect that the distributed search in ESS will reduce the
search time by at least z.

We conducted small scale experiments on a distributed search
in ESS. We used eight CPUs. We conducted the distributed
search in ESS on three types of lattices as described in Section 3.
We used the same bases and corresponding optimal parameters
as in Section 3. The results are summarized in Tables 9, 10, and
11, where the search time does not include the preprocessing time
with BKZ.

In most cases, the distributed search in ESS reduced the search
time by a factor that was much larger than z. This phenomenon
is strange because we expected that the search time would be re-
duced by factor z on average. A possible explanation for this
phenomenon is as follows. We partitioned the search space into
disjunct parts Wk,a, j0 ,B = ∪8

j=1Wj in the experiments. We con-
firmed that in many cases a VSV existed in Wj with a relatively
large j. This seemed to be caused by the parameters selected for
ESS. We chose parameters with which Wk,a, j0 ,B included a VSV
and the space size of Wk,a, j0 ,B was the smallest. A VSV for such
parameters possibly fell in near the end of Wk,a, j0 ,B. Furthermore,
we assumed that a VSV would accidentally fall in near the start
of some Wj in the experiments.

Table 9 Results from distributed search in Wk,a, j0 ,B for eight GGH public
bases in dimension 180. Eight CPUs were used.

Search time sec. (1 CPU) Distributed search time sec. (8 CPUs)

6,890 561

55,872 4,305

10,552 13

19,853 12

337 52

22,178 843

9,867 222

4,142 105

Table 10 Results from distributed search in Wk,a, j0 ,B for Micciancio’s GGH
public basis in dimension 160. Eight CPUs were used.

Search time sec. (1 CPU) Distributed search time sec. (8 CPUs)

7,544 91

Table 11 Results from distributed search in Wk,a, j0 ,B for NTRU basis in di-
mension 214. Eight CPUs were used.

Search time sec. (1 CPU) Distributed search time sec. (8 CPUs)

165,875 4,202

6. Conclusion

We enabled parameter refinement for ESS and confirmed the
distributed search in ESS was effective by achieving significant
speedups. The phenomenon we observed in Section 5 may be ex-
ploited to improve our method of search. We found that in some
cases the search time was reduced by a factor that was larger than
1,000 on only eight CPUs. Such significant speedups might be
caused on purpose by inventing some proper order for the search
rather than just forward or backward searches. This direction of
research may offer further suggestions to advance studies on ex-
haustive search.
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