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Abstract: We present a fast algorithm for probabilistically extracting significant locations from raw GPS data based
on data point density. Extracting significant locations from raw GPS data is the first essential step of algorithms de-
signed for location-aware applications. Most current algorithms compare spatial/temporal variables with given fixed
thresholds to extract significant locations. However, the appropriate threshold values are not clearly known in priori,
and algorithms with fixed thresholds are inherently error-prone, especially under high noise levels. Moreover, they do
not often scale in response to increase in system size since direct distance computation is required. We developed a
fast algorithm for selective data point sampling around significant locations based on density information by construct-
ing random histograms using locality-sensitive hashing. Theoretical analysis and evaluations show that significant
locations are accurately detected with a loose parameter setting even under high noise levels.
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1. Introduction

The widespread use of GPS-enabled mobile devices, such as
smart phones, enables easy collection of location data and ac-
celerates development of a variety of location-aware applica-
tions [1]. In addition to simply visualizing a geographical tra-
jectory of user activities, the essential first step in processing raw
GPS data is to extract points of interest (POIs) that represent sig-
nificant locations on the trajectory such as shopping centers and
sightseeing spots. A set of POIs provides a summary of activities,
and many algorithms designed for understanding user behavior
automatically extract significant locations.

Since a location is assumed to be significant if one stays there
for a long time, most algorithms distinguish between “staying”
and “moving” segments by comparing spatial/temporal variables,
such as stay duration and roaming distance, with fixed threshold
values. Although this naive method is intuitive and easily imple-
mented, finding an appropriate threshold value is often difficult in
practice since an appropriate threshold value, which is unknown
in priori, often depends strongly on input GPS data. For exam-
ple, we often have to tune parameters such as roaming distance
for each case and set a large margin to be on the safe side when the
spatial noise level is high. However, excessively large threshold
values may even degrade detection quality, e.g., due to crosstalk
between neighboring significant locations.

Another method for detecting significant locations is analyz-
ing the spatial distribution of data points and determining high-
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density locations as significant. Histogram-based methods are
perhaps the most straightforward for analyzing density informa-
tion, but one may encounter a similar parameter setting problem
as in threshold-based methods since the result is strongly affected
by the binning process that determines the appropriate size and
boundary value for each bin. There are many powerful spatial
statistics techniques that analyze distribution features of input
data points for detecting high-density locations. Generally, they
are often powerful for general purpose applications, and finding
good parameter values is not as critical as finding them in the
methods described above. However, one should pay attention to
computation time in processing a massive amount of data points.
In short, those spatial statistics techniques are general but often
too detailed for detecting significant locations since they provide
too much information, which increases computation time.

Since what is really needed is often only the representative ge-
olocation and importance of each significant location, we rather
take the approach of quickly making a sketch of precise peak lo-
cations in density distribution with a loose parameter setting. To
achieve scalability, an algorithm should be also designed in such
a way that direct distance computation over a massive number of
data points is carefully avoided in analyzing density information.

The core idea for achieving these requirements is to make the
histogram-based methods discussed above less independent of
the setting of parameters by introducing randomization. To this
end, we have developed a randomized algorithm that selectively
samples data points from high-density regions using random his-

tograms [2]. Since the obtained subset of the original GPS data
is a set of sampled data points where high-density regions are
spatially well separated, it is easy to extract a set of waypoints,
each of which is a reference point that designates each significant
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location and contains information regarding both geographical lo-
cation and importance.

The remainder of this paper is as follows. Section 2 discusses
existing work on detecting significant locations from GPS data
and related algorithms. Section 3 describes our algorithm design
and theoretical analysis. Section 4 presents the evaluation of the
proposed algorithm, and Section 5 concludes the paper.

2. Related Work

Many location-aware services, such as the GeoLife project [1],
use algorithms that automatically extract significant locations for
understanding user activity patterns. For example, Ashbrook and
Starner [3] designed a fixed-threshold-based algorithm for detect-
ing significant locations from GPS data and using a set of those
locations for behavior prediction. Hariharan and Toyama [4],
Liao et al. [5], [6], and Zheng et al. [7], [8], [9] also developed
similar fixed-threshold-based algorithms for detecting segments
of GPS data and identifying the most representative point in each
segment. Although there are many variations, all these algorithms
have the basic principle of using spatial/temporal thresholds for
detecting locations where one stays at least for a certain time in
a limited region. However, fixed-threshold-based algorithms do
not generally work well under high noise levels, and it is diffi-
cult to set the optimal parameters. Agamennoni et al. [10] de-
veloped an algorithm for extracting significant locations by intro-
ducing a score associated with each location using velocity infor-
mation and linking the top-scored locations to create clusters that
designate significant locations. Although this algorithm exhibits
good noise tolerance, it still uses a velocity threshold to compute
the score. Fixed-threshold-based algorithms are inherently error-
prone where one cannot make a good guess about the optimal
quantity in the control variable.

On the other hand, there is a different method that takes advan-
tage of spatial statistics techniques for detecting high-density lo-
cations as significant locations because they imply that one stays
for a long time at such locations. Perhaps the simplest method for
detecting high-density locations is to construct histograms by par-
titioning a space into small bins (cells). However, the detection
accuracy using an ordinary histogram is strongly affected by the
binning process that determines the appropriate size and bound-
ary value for each bin. A more sophisticated method of partition-
ing a space is tree-based space indexing, e.g., Octree [11]. Tree-
based space indexing is a powerful and efficient spatial data man-
agement method that recursively partitions a space into smaller
subspaces in response to the distribution of data points. How-
ever, as long as the partitioning process is deterministic, a similar
problem as in the threshold-based methods described above arises
in configuring bins or analyzing data points indexed by the bins
for measuring density information. Another effective method is
clustering. In particular, hierarchical clustering, such as Ward’s

method [12], is useful when one does not know the exact number
of stay locations or the noise distribution. The major drawback
is long computation time, typically requiring O(N3) computation
time, and it is not suitable for processing a massive amount of
data points. Also, one can also use spatial statistics techniques to
detect regions around significant locations by assuming that the

distribution of data points in staying segments will differ from
those in moving segments. One example of spatial statistics tech-
niques is Byers and Raftary [13], which detects features in spa-
tial point processes. They find the distribution of the distance
from a randomly chosen point to its k-th nearest neighbor and
extract a certain pattern by removing clutter in a given set of spa-
tial data points. However, all methods for intensively analyzing
distribution features are very powerful but are often too detailed
for our purpose since they provide too much information, which
increases computation time.

Unlike the work described above, our design principle is to
develop a probabilistic technique that requires only loosely set-
ting parameters for making a rough sketch of significant loca-
tions with minimal computation cost. The core idea is to random-
ize the binning process of histogram-based methods and mitigate
the difficulty in setting the parameters while benefiting from the
simplicity of these methods. To this end, we have investigated a
probabilistic algorithm [2] that detects significant locations using
random histograms originally developed for representing feature
sets of multimedia objects and analyzing their similarity [14]. We
are particularly motivated to apply the space partitioning proper-
ties of random histograms to our newly proposed algorithm. The
benefit is the randomization of the space partitioning process for
simplifying parameter setting even under high noise levels and
loose optimization even when we do not precisely know the op-
timal threshold value in the control variables. Furthermore, the
proposed algorithm is expected to provide excellent scalability in
response to the increase in the number of data points because it
does not require direct distance computation over a massive num-
ber of data points.

3. Algorithm Design

The goal with our algorithm described in this section is to re-
turn a set of waypoints as output in response to input GPS data X.
Note that we simplify X as a sequence of periodically recorded
location vectors, X =

{
x ∈ RD

}
. The dimension is at most D = 3

for GPS data but most of the argument described here can be ap-
plied to identifying the reference points to meta-stable segments
in a set of general D-dimensional data points including a variety
of sensor data.

3.1 Design Overview
Figure 1 illustrates the operations of the proposed algorithm.

It performs density-dependent random sampling, which returns a
subset of input data points sampled selectively from high-density
regions, followed by waypoint extraction from a returned subset
of the input dataset.
Density-dependent random sampling samples data points se-

lectively from high density-regions in given GPS data by
random space partitioning (indexing) using a hash function
that gives data points an index number (discussed later in
Section 3.2.1) and returns a set of well-separated clusters
of data points strongly distributed around peak locations in
density distribution. The core idea is to count frequency of
data points in each partitioned region (bin) of the space for
constructing multiple random histograms and sample high-
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Fig. 1 Operation diagram. Input data points are indexed by performing random space partitioning using
LSH for constructing subset that contains data points sampled from high-frequency bins (rectan-
gles). Waypoints are extracted from subset of input data points as the most representative location.

(a) B = 1 and C = 2, 3, 5 (b) B = 1, 3, 5 and C = 2

Fig. 2 Collision probability of two vectors with distance d.

frequency bins. The rectangles in Fig. 1 indicate the bins
with the two highest frequencies, and the figure illustrates
that data points in those bins are returned for each random
space partitioning operation as a set of clusters each of which
contains data points located in the region where each actual
stay location is likely to be located inside (the example in
Fig. 1 has two different random space partitioning).

Waypoint extraction reconstructs a set of clusters in such a
way that each cluster satisfies a given clustering policy,
e.g., how far pairs of distinguishable clusters are from each
other. Then the algorithm extracts a set of waypoints from
those clusters, each of which contains the most representa-
tive point in each cluster and a scoring metric reflecting den-
sity information at the location for the purpose of ranking.

3.2 Density-dependent Random Sampling
3.2.1 LSH Sketch to Base C

Locality-sensitive hashing (LSH) is a probabilistic method of
hashing objects such that two similar objects are likely to col-
lide into the same bucket in response to the degree of similarity.
Let F be an LSH family for L2 distance. Note that we selected
the LSH family for L2 distance in this paper because we consider
that L2 distance most naturally represents similarity (geographi-
cal distance) between a pair of GPS data points and hence allows
us to capture density information. Please refer to Chariker [15]
for details of the LSH family definition for various distance mea-
sures. A hashing function, f ∈ F , is implemented by taking
advantage of the property of p-stable distribution [14], and LSH
sketch [16], [17] takes only the least significant bit of the hash
value represented in the binary numeral system. We extend the

base of this LSH sketch to the general value C, which is a posi-
tive integer greater than or equal to 2:

f (x) =
⌊a · x + u

W

⌋
mod C , (1)

where u is a real number drawn from a uniform distribution
U[0,W), a is a D-dimensional vector with entries independently
drawn from a standard normal distribution, and W is a parameter
called window size. Note that when C = 2, Eq. (1) reduces to a
binary LSH sketch [16]. Observing that a · x follows a normal
distribution N

(
0, |x|2

)
, we obtain an analytical form of collision

probability p(d) = Pr
[
f (p) = f (q)

]
for two vectors p, q ∈ RD

with distance d = |p − q|:

p(d) =
∫ W

0
dt

2
d

∑
k∈Z

φ

(
kCW + t

d

) (
1 − t

W

)
, (2)

where Z is a set of integers and φ(t) denotes the probability den-
sity function of the standard normal distribution (see A.1 for de-
riving Eq. (2)). We call f (x) an atomic label of vector x, and
concatenation of independent atomic labels constructs a label

of vector x as 〈 f1(x), · · · , fB(x)〉. Figure 2 (a) plots the collision
probability p(d) of two vectors with distance d for B = 1 and
C = 2, 3, 5. The collision probability of two vectors with the
same label is given by [p(d)]B, which is illustrated in Fig. 2 (b)
for B = 1, 3, 5 and C = 2. We can see that the collision probabil-
ity almost linearly decreases in response to an increase in d until it
quickly converges to Pres ∼ C−B, the probability with which any
pair of vectors with distance in this range collide, after d reaches
a certain value. One benefit of introducing parameter C is to limit
the range of the hash value and simplify implementation. Another
benefit is to provide powerful controllability over the shape of the
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probability by controlling (B,C,W) and adjusting the character-
istic distance up to which collision is distance-sensitive. As dis-
cussed later in Section 3.2.3, geometrical interpretation of Eq. (1)
is that it performs a random space partitioning using parallel lines
whose spatial interval is W/|a|, so all data points located in a re-
gion (cell) surrounded by the lines take the same value (fall into
the same bin). Therefore, W should be adjusted in such a way that
the cell should span the region around peak location in density
distribution. And B determines the number of directions in which
those space partitioning lines are oriented. Generally speaking, B

that is slightly larger than space dimension D will work well for
most cases. If C takes a large value, the collision probability de-
cays slowly as distance becomes long (Pres goes to zero), and we
can suppress the probability with which a data point located very
far from some stay location happens to take the same hash value
that data points around the stay location take. However, the im-
pact of such an undesirable event on performance is fairly small
in practice, and it would be rather beneficial to upper-bound the
hash value and simplify implementation by using C that is not so
large.
3.2.2 Formal Definition of Random Histograms

Let h(x) = 〈 f1(x), · · · , fB(x)〉 be a labeling function that maps
X to a label space L. If we interpret L as a set of bin labels,
computation of h(x) for x ∈ X determines to which bin x is reg-
istered. Let H = {h = 〈 f1, · · · , fB〉| fi ∈ F } be a set of labeling

functions and Λh∈H ,l(X) = {x ∈ X|l = h(x)} be a bin with label l,
a set of data points mapped to l by h chosen randomly from H .
From a table (a set of bins) of X, Λh(X) =

{
Λh,l(X)

}
l∈L, we can

define a random histogram (frequency distribution) of X over L

by setting a frequency λl = |Λh,l| for a bin labeled by l. This ran-

dom histogram allows us to sample data points selectively from
high-density regions of the distribution of X. For the positive in-
teger Q, a density-dependent random sampling operation of X,
SQ,h[X], returns a set of bins with frequency being among the
Q-highest in Λh(X), i.e., SQ,h[X] =

{
Λh,li (X)|i = 1, · · · ,Q}

where
L =

{
l1, · · · , l|L|} is permuted in descending order of λl. Since

histogram construction is a probabilistic operation, we need to
repeat the same operation SQ,hi [X] independently N times with
hi chosen randomly from H and maintain a set of sampled bins,
ΞH ,Q,N(X) =

{
SQ,h1 [X], · · · ,SQ,hN [X]

}
. Note that although a

large enough value of Q and N ensures good accuracy, choosing
these optimal values, N in particular, requires careful considera-
tion because values that are too large directly affect computation
time.
3.2.3 Randomization Effect

Each set of data points Λh,li (X) in ΞH ,Q,N(X) has data points
distributed in a strongly localized region around one of the stay
locations in X, and the average location over the data points may
be a good estimate of the stay location.

Geometrical interpretation of Eq. (1) is that it performs ran-
dom space partitioning using linear lines. The partitioning lines
are randomized from the following three perspectives: (1) zero-

position of the lines randomized by the random number u, (2) di-

rection of the lines randomized by the random direction vector â

(â denotes a normalized vector of a), and (3) partitioning width

W/|a| (spatial interval) between the lines randomized by |a|. The

first two randomizations, (1) and (2), help to make detection ac-
curacy less dependent on the geolocational configuration of stay
locations by attenuating the negative impact, for example detec-
tion quality degradation, that results from stay locations happen-
ing to be located on partitioning lines or in the same single bin.
The last randomization (3) works for making detection accuracy
less dependent on noise distribution features. Preferably, par-

titioning width should be just a little bit larger than the stretch
in spatial noise distribution, but one often knows little about the
shape of noise distribution (at best a rough estimate of the typical
stretch in noise distribution). Furthermore, the partitioning width
optimal for one stay location does not necessarily work well for
another stay location since noise distribution is generally differ-
ent from one stay location to another even in the same GPS data.
Therefore, randomizing the partitioning width is a good strategy
for tackling the uncertainty of noise distribution.

For quantitative evaluation of detection accuracy, we formally
define the quality measure as the expected value of the drift dis-
tance from a detected location to an actual stay location. For
simplicity, we basically conduct one-bit label partitioning using
Eq. (1) in the two-dimensional space (i.e., label length B = 1 and
dimension D = 2) and assume that data points around a stay lo-
cation ψ are distributed according to a two-dimensional Gaussian
noise distributionN(ψ,Σ), where Σ = diag{s2, s2} for some s > 0.
The detected location r is a centroid of all data points registered
in a partition with highest frequency, i.e., the partition that con-
tains ψ inside and the detection accuracy can be measured using
the expected Euclidean distance from the detected location r to
the stay location ψ. Let p (ξ|ω) be a probability density function
(pdf) of partitioning width ξ with average value of ω. Then, the
expected value of the drift distance Δω is given by a function of
ω as:

E [Δω] =
∫ ∞

0
dξp(ξ|ω)g(ξ|s)

g(ξ|s) =

√
2s√
πξs

∫ ξs

0
dt

e−(t−ξs)2 − e−(t+ξs)2

erf(t + ξs) + erf(t − ξs)
, (3)

where erf(·) is an error function and ξs =
ξ

2
√

2s
. If we use Eq. (1)

for a partitioning function, the partitioning width ξ is distributed
with a pdf:

p(ξ|ω) =
2ω2

πξ3
e
− ω2

πξ2 , (4)

with the average value being ω =
√
π
2 W. For a general D-

dimensional case, please see A.2.
Substituting Eq. (4) into Eq. (3), we obtain E [Δω] for the ran-

dom space partitioning using Eq. (1) (denoted by “random-width
partitioning” hereafter) in two-dimensional space. Note that if we
alternatively use p(ξ|ω) = δ(ξ −ω), where δ(·) is a delta function,
we obtain E [Δω] = g(ω|s) for “fixed-width partitioning” in which
direction and zero-position are randomized uniformly at random
but a partitioning width takes a fixed value, ω.

For a set of 10,000 artificially generated data points of two-
dimensional Gaussian noise with s = 1 (i.e., Σ = diag{1, 1}),
we measured the average drift from the extracted location to the
origin using fixed-width partitioning and random-width partition-
ing over 500 independent trials. Figure 3 (a) plots the theoretical

c© 2012 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.20 No.3

(a) 1-bit partitioning (b) 2-bit pratitioning

Fig. 3 Stay location detection accuracy of random-width partitioning (“Random”) using (a) 1-bit label-
ing function and (b) 2-bit labeling function compared to that of fixed-width partitioning (“Fixed”).
Accuracy is defined as average drift of detected location from actual stay location.

Fig. 4 Data points around actual stay location in actual GPS data (left). Enlargement is set of data points
with average location shifted to origin and unit is rescaled in meters. Stay location detection accu-
racy for this dataset is also shown (right).

curves and simulation results of E [Δω] for both fixed-width par-
titioning and random-width partitioning with various (average)
partitioning widths. One noticeable difference between these two
partitioning methods is that E [Δω] for random-width partition-
ing clearly exhibits better detection accuracy than for fixed-width
partitioning in a range of ω < 4. The partitioning width of
ω ∼ 4s corresponds to the width that covers the two-sigma range
of the distribution and would be a typical maximum value that
one likely sets as a rough estimate of a stretch in noise distribu-
tion. For B ≤ D, a theoretical curve for B-bit labeling function is
approximated by E [Δω]B ∼

√
B · E [Δω], which is also plotted in

Fig. 3 (b) along with simulation results. For B > D, we have not
derived a well matched theoretical curve, but we at least expect
that
√

B · E [Δω] will work as an estimate of the upper bound.
We also conducted the same experiments for an actual GPS

dataset that possesses a single stay location and compared the de-
tection accuracy of these two partitioning methods. Figure 4 vi-
sualizes how data points are distributed around a stay location.
The number of data points was 387 and the sample variance-
covariance matrix was computed as [{57.6, −3.0}, {−3.0, 77.7}].
Figure 4 plots the drift distance E [Δω] for these two partitioning
methods with a one-bit partitioning function. A similar tendency
was observed with the artificial data, and the detection accuracy
of random-width partitioning outperformed that of fixed-width
partitioning for ξ < 33(∼ 4 × √(57.6 + 77.7)/2). Note that the
deviation from the theoretical curves in small ξ comes from the
small number of sampled data points (if the partitioning width
is small, the total number of sampled data points also becomes
small).

3.3 Waypoint Extraction
Once we receive a set of sampled bins ΞH ,Q,N(X) ={

SQ,h1 [X], · · · ,SQ,hN [X]
}
, the final task is to extract a set of way-

points from it by reconstructing clusters (bins) in such a way that
each one contains data points coming from the same stay loca-
tion. For extracting waypoints, one must define a spatial scale
of interest as positional resolution of extracted waypoints. To
this end, we introduce the parameter resolution ζ, which des-
ignates the shortest permissible distance between the two clos-
est clusters. If the distance between the centroids of two adja-
cent clusters (waypoint estimates) is less than ζ, then we assume
that the centroids represent the same waypoint and these clusters
should be merged into a single cluster. Note that a typical spatial
stretch in locational distribution of data points in each sampled
bin is much shorter than ζ and the proposed algorithm uses ζ as
a policy parameter to check if extracted centroids are too close
to represent different waypoints, in contrast to existing threshold-
based algorithms that use such a parameter as a threshold value
(for example, roaming distance) to extract stay segments them-
selves from input data. There are many kinds of possible meth-
ods for merging clusters under the merging policy. For example,
hierarchical clustering methods such as Ward’s method [12] will
work for general ΞH ,Q,N(X). Although the total number of data
points in ΞH ,Q,N(X) is significantly reduced compared to |X|, it
may still take a long time. Observing that data points in each
cluster Λhi ,l j (X) ∈ SQ,hi [X] are already well clustered, we use
a simpler method that works well for most of X. It repeatedly
merges clusters, with a centroid distance less than ζ, into a single
cluster. Note that when merging two clusters, we allow each one
to have duplicated data points for a centroid of the cluster as a
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better estimate of the stay location. Given a set of reconstructed
clusters Ξ′(X) =

{
Λ j

}
and the positive integer K, a set of K way-

points Ω =
{
(ri, si) ∈ RD × R

}
1,···,K is extracted by computing the

most representative location ri = arg min
x∈Λi

∑
y∈Λi\{x} |x − y|2 and a

scoring metric si = |Λi| for each Λi and selecting K-most im-
portant clusters {Λi} from Ξ′(X) in descending order of a scoring
metric defined si.

4. Evaluation

4.1 Evaluation Using Artificially Generated Test Datasets
Using an artificially generated test dataset X in which the noise

level is under control, we evaluate the performance and noise tol-
erance in the parameter setting of the proposed algorithm (de-
noted by ADDRS ) by using density-dependent random sampling
and comparing it to a typical fixed-threshold-based algorithm (de-
noted by AFT ). The input GPS data denoted by X is a history
of periodically (every 15 seconds) recorded locations that con-
tain K “staying” periods alternating with K + 1 “moving” pe-
riods. In generating X, we used a simple random walk model
where one roams around a stay location during the “staying”
period. Note that two-dimensional Gaussian noise according
to N

(
0, diag{σ2, σ2}

)
, where σ is a parameter that controls the

noise level, is added to the stay location to emulate actual mea-
sured data points during each “staying” period. For details of the
algorithm for generating X, please see A.3.
4.1.1 Performance Measures

LetΩr = {ri}i=1,···,K be a set of extracted waypoint locations and
Ψ = {ψi}i=1,···,K be a set of actual stay locations. We can then de-
fine two quality measures for Ωr; distance δ(Ωr,Ψ) and detection

ratio �(Ωr,Ψ). δ(Ωr,Ψ) quantifies the distance between Ωr and
Ψ, i.e., a set distance. Since each waypoint should correspond to
each actual stay location, we should use a set distance for one-to-
one matching defined by,

δ(Ωr,Ψ) = min
1
Δ

∑
ri∈Ωr

∑
ψi∈Ψ

ari ,ψi |ri − ψi| (5)

s.t. ∀ψi ∈ Ψ,
∑
ri∈Ωr

ari ,ψi ≤ 1 ,

∀ri ∈ Ωr,
∑
ψi∈Ψ

ari ,ψi ≤ 1 ,

∀ri ∈ Ωr,∀ψi ∈ Ψ, ari ,ψi ∈ {0, 1} ,
Δ = min {|Ωr |, |Ψ|} =

∑
ri∈Ωr

∑
ψi∈Ψ

ari ,ψi .

The coefficient ari ,ψi = 1 means that ri is matched to ψi. Note that
the number of matches is Δ = min {|Ωr |, |Ψ|}, where each member
in Ωr and Ψ can be used at most once. The ratio of the num-
ber of matches to the number of actual stay locations denoted by
� = Δ/|Ψ| is another quality measure for indicating how many
actual stay locations are detected.
4.1.2 Noise Tolerance in Parameter Setting

For comparison, we also implemented a fixed-threshold-based
algorithm AFT , similar to the one described by Hariharan and
Toyama [4], which is simple and intuitive but shows considerably
good performance at least under low noise levels. It is a determin-
istic algorithm that has two threshold values; roaming distance lth

and stay duration tth, where lth represents the maximum distance
that determines the region where one can roam in a “stay seg-
ment,” and tth is the minimum duration one must stay in a segment
for it to be qualified as a “stay segment.” By examining the given
dataset X with these two threshold values, we can detect staying
segments with a longer duration than tth and a diameter of a stay-
ing region less than lth. The waypoint in each segment is extracted
in the same way. Obviously, lth strongly affects detection quality,
and these parameters are difficult to be correctly set, especially
when the spatial noise level is high and unknown. Therefore, tol-
erance in spatial parameter setting will decrease when noise level
is high, and careful parameter tuning is required for maximizing
detection quality. The parameter inADDRS corresponding to lth is
ρ = ζ/2 (ζ: resolution defined in Section 3.3), which determines
the maximum size of the two closest adjacent clusters.

To observe how well ADDRS detects waypoints and how much
ADDRS eases parameter setting, we compared it to AFT us-
ing datasets with noise levels σ = {100, 200, 300, 400, 500, 600}
and measured the tolerance in setting parameters ρ for ADDRS

and lth for AFT . Here, using δ(Ωr,Ψ) and �(Ωr,Ψ), tolerance
πp = [πp,l, πp,u] in a given parameter p(= lth, ρ) is defined by a
range in p that achieves δ(Ωr,Ψ) ≤ σ and � = 1, where σ is
the spatial noise level configured in X. This definition states that
as long as p ∈ πp, we can find any actual stay location with an
average distance being at most σ from each corresponding way-

point. Note that we only controlled ρ for simplicity and all other
parameters were configured at the loosely optimized point. Ta-
ble 1 summarizes the parameter values used for the evaluation.
Figure 5 (a) and (b) plot both the average values of δ(Ωr,alg.,Ψ)
and �(Ωr,alg.,Ψ) over ten sets of independently generated X for
σ = 200 and σ = 500, respectively. The notation Ψ indicates
a set of actual stay locations in X, and Ωr,alg. indicates the out-
put of each algorithm Aalg. for alg. = DDRS or FT . Note that
we also executed ten independent trials for evaluatingADDRS for
each dataset since it is a probabilistic algorithm and requires tak-
ing the average δ(Ωr,alg.,Ψ) and �(Ωr,alg.,Ψ) of the trials for fair
comparison. We also note that each set of X is generated in such a
way that it contains at least one pair of neighboring stay locations
in which distance is upper bounded by around 2σ ∼ 3σ to limit
the upper bound of tolerance πp for p = łth and ρ.

Although both lth and ρ depend on the stretch in spatial noise
distribution, finding good ρ inADDRS is not as difficult as finding
the appropriate lth in AFT . Basically, the optimal points ρ∗ and
l∗th, which are around the center of the tolerance πp for p = ρ and
lth, respectively, increase in response to the increase in σ, but the
upper/lower bound of the tolerance in both parameters shows a
different response. Since data points sampled using ADDRS are
strongly localized around each stay location, small ρ works even

Table 1 Parameters used for evaluation.

|X| = 2000 # of data points (total steps) for X
K = 10 # of stay locations for X
N = 10 # of random histograms
B = 5 bit length

C = 21 base number
W = ρ window size
Q = 10 # of bins for sampling

tth = 10 min stay duration forAFT (corresponding 40 data points)
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(a)ADDRS (left) andAFT (right) for σ = 200

(b)ADDRS (left) andAFT (right) for σ = 500

Fig. 5 Performance comparison of distance δ(Ωr,alg.,Ψ) and �(Ωr,alg.,Ψ) between alg. = ADDRS and
alg. = AFT for (a) σ = 200 and (b) σ = 500. Points designate average over ten different input
datasets, whereas error bars range from min to max values. Note that tolerance is defined as region
below dashed line, representing reference distance.

(a) Tolerance (b) Dynamic range

Fig. 6 Tolerance πp (a) and dynamic range DR (b) for p = ρ inADDRS and p = lth inAFT for various σ.

under high noise levels, and the crosstalk between data points
coming from two neighboring stay locations is also suppressed.
For all σ, small lth degrades both δ(Ωr,FT ,Ψ) and �(Ωr,FT ,Ψ), and
the lower bound πp,l for p = lth is relatively large. This is because
lth that is too small detects only few stay locations, as indicated by
�(Ωr,FT ,Ψ) ∼ 0.1, where δ(Ωr,FT ,Ψ) for such lth is too large to be
displayed in the plot. On the other hand,ADDRS shows good per-
formance even for small ρ since the partitioning width can take a
large value with a certain probability defined by Eq. (4), and it can
sample many data points. On the opposite side of the spectrum,
the upper bound of both parameters is basically determined by
the crosstalk between data points coming from the most adjacent
stay locations.

Figure 6 (a) and (b) illustrate profiles of the tolerance and dy-
namic range DR against σ ranging [100, 600] for parameter p = ρ

and p = lth, where DR is the ratio of tolerance width (πp,u − πp,l)
for p to the optimal point p∗: DR = (πp,u − πp,l)/p∗. DR indi-
cates how much ratio the actual parameter value can deviate from
the optimal value, and a wide dynamic range generally allows
the setting to work for a variety of input datasets having various
noise levels. Since it is, in practice, often difficult to accurately
estimate the noise level contained in actual GPS datasets, a wide
dynamic range is important in parameter setting. In fact, Fig. 6 (a)

shows that there is a parameter band
[
max{πρ,l(σ)},min{πρ.u(σ)}

]
,

in which ρ works for all σ, whereas there is no lth that is univer-
sally valid for all σ and hence fixed-threshold-based algorithms
require trial-and-error repetitions until an optimal parameter set-
ting for each dataset can be found. We can also observe from
Fig. 6 (b) that ADDRS accordingly shows a large DR value due to
a small lower bound πρ,l even for large σ.

Finally, we would like to briefly discuss computational com-
plexity. We believe that the proposed algorithm has two advan-
tages for reducing computational complexity: elimination of di-
rect distance computation for a massive number of data points
and high affinity for scalable distributed computation. Empiri-
cally, we observed that AFT requires a long computation time
as expected when lth was large, whereas ADDRS did not show
a noticeable difference in response to an increase in ρ. This
is because AFT must perform distance computation among data
points, which requires O(M2) time for the number of data points
denoted by M. Since many data points are involved with distance
computation when lth is large, ADDRS that requires no distance
computation among data points but computes hash values (labels)
individually for each data point has an advantage over AFT in
terms of computation time reduction. In comparison to existing
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Fig. 7 Trajectory and extracted waypoints for actual travel data on Miyako island (left). Enlargement is
an waypoint designating Higashi-Hennazaki. Comparison between normalized scoring metric of
each waypoint and normalized actually measured density (defined by number of data points in cir-
cle with radius of 40 meters around measured point) is also shown (right). All maps are displayed
using Google Maps [19].

deterministic histgram-based algorithms that do not require dis-
tance computation either, ADDRS requires an additional compu-
tation cost resulting from randomization for easy parameter set-
ting: merging sampled bins for extracting waypoints. The merg-
ing operation requires distance computation among centroids of
sampled bins. This is, however, often negligible because this cen-
troid distance computation depends on constant parameters N and
Q, which are the repetition number of random space partition-
ing trials (the number of tables) and the number of sampled bins
for each table, respectively. Another advantage is high affinity
for distributed computation. An input dataset needs to be di-
vided into several segments for distributed computation. Since
distance computation between data points in different segments
requires considerable computation cost, algorithms that require
distance computation among those data points may seriously ex-
perience long computation latency. Thus, this segmentation pro-
cess should be carefully conducted, for example, in such a way
that data points coming from a same stay location should not be
separated into different segments. In contrast, since ADDRS only
requires individual label computation for each data point and fre-
quency of data points having the same label, it is easily imple-
mented by taking advantage of many available software frame-
works for distributed computing, such as MapReduce [18], in a
very straightforward way without any concern for performance
degradation due to segmentation.

4.2 Case study: Extracting Waypoints from Actual Travel
Data

We applied the proposed algorithm to actual GPS data recorded
when a person traveled throughout Miyako island, in Okinawa
prefecture, Japan. The traveler basically traveled by car and
stopped at several locations, such as sightseeing spots, distributed
around the island. We examined how well the algorithm detected
the spots that the traveler actually visited. The GPS data con-
tained 1,617 data points, each of which was recorded at about
15-second intervals. Figure 7 shows the trajectory of the GPS
data and the fourteen top-ranked waypoints extracted with the al-
gorithm. The algorithm successfully returned waypoints that cor-
responded well to all major locations that the traveler actually vis-
ited; sightseeing spots, shops, a gas station, a hotel, an airport, etc.
The enlargement in Fig. 7 shows the region around one waypoint

that encompasses Higashi-Hennazaki, the most eastern cape on

Miyako island, which is famous for panoramic ocean views. We
can see from the trajectory remaining in a localized region that the
traveler stopped and spent some time enjoying the landscape and
the waypoint is located around the center of the region. For ex-
tracting the waypoints, the algorithm took a negligibly short time
and showed excellent responsiveness. Figure 7 also illustrates
a comparison between the (normalized) scoring metric (the first
metric s of each waypoint) and the (normalized) measured den-
sity at each location. By observing excellent matching between
s and the density at the corresponding location, we can confirm
that the proposed algorithm successfully samples data points such
that the scoring metric reflects the density information.

5. Conclusion

We proposed an algorithm that automatically extracts way-

points, points of reference designating significant locations, from
raw GPS data. In extracting waypoints, the proposed algorithm
probabilistically detects high-density regions using random his-

tograms constructed using LSH-based mapping for computing a
label of bins. Owing to the randomization effects on space parti-
tioning, it simplifies the parameter setting even under high noise
level conditions, whereas it also benefits from the simplicity of
histogram-based methods. Since no direct distance computation
is required with our algorithm, it also shows excellent respon-
siveness to an increase in the number of data points. Evaluations
with artificially generated datasets with various noise levels re-
vealed that our algorithm possesses competitive waypoint extrac-
tion ability as well as very wide tolerance in parameter setting
compared to typical fixed-threshold-based algorithms. This re-
sult implies that the proposed algorithm greatly reduces the dif-
ficulty in setting parameters, and we can use the same parameter
settings for input data with a variety of noise levels. The case
study performed for actual travel data also showed excellent con-
sistency between extracted waypoints and actually visited loca-
tions. Also, the location of each extracted waypoint agrees with
the center of high-density regions, and the scoring metric reflects
actual density. Moreover, the proposed algorithm should show
high scalability in response to the increase in the number of data
points beucase the computation process is easily distributed in
principle and hence programmed to run on many available soft-
ware frameworks for distributed computing. Furthermore, it is
also applicable to general D-dimensional data for finding meta-
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stable states in huge datasets. In the future, we will evaluate
the scalability of our algorithm for an extremely massive number
of actual higher dimensional data points including sensor data.
We believe that the proposed algorithm works well for not only
many location-aware applications but also applications that pro-
cess massive high-dimensional datasets.
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Appendix

A.1 Collision Probability of LSH to Base C

Given p, q ∈ RD with distance d = |p − d|, assume that
f (p) = f (q) = j, i.e., a · p + u = jW + ξ for some j ∈ Z

and 0 ≤ ξ < W. Since a · (p − q) follows a normal distribution
N(0, |p−q|2), we can denote a ·q = jW+u+ξ+η using a random
variable η ∼ N(0, d2). Because f (p) = f (q), η must be located in
the range

[−ξ + kCW : W − ξ + kCW
]

for k ∈ Z. Observing that
a pdf of a random variable a · p + u is given by a convolution of
a pdf of a · p and that of uniform distribution U [0,W), we obtain
Pr

[
a · p + u − f (p) = ξ

]
= 1/W independently of j, so ξ is dis-

tributed uniformly at random in the range [0,W). Therefore, p(d)
is given by:

p(d) =
∫ W

0
dξ

1
W

∑
k∈Z

∫ kCW−ξ+W

kCW−ξ
dη

1
d
φ(
η

d
)

=

∫ W

0
dt

2
d

∑
k∈Z

φ

(
kCW + t

d

) (
1 − t

W

)
, (A.1)

where φ(·) is a standard Gaussian function.

A.2 Expected Value of Drift for General D-
dimensional Case

The one-bit labeling function using Eq. (1) partitions the en-
tire space with parallel linear boundary lines with the partition-
ing width ξ = W/|a|. Let Λ be a partition defined by a set
Λ =

{
x ∈ RD| f (x) = f (r)

}
, where r is an actual stay location.

Without loss of generality, we can set r = 0 by shifting the stay
location to the origin. Then Λ is the partition where the origin is
located. For x ∈ Λ, let ymin and ymax be a minimum value and
maximum value of y = â · x, a projection of x to the direction
â, respectively. Note that a maximum value of ymax is given by
ymin + ξ. Let t be (ymax + ymin)/2. Since x is a random vari-
able drawn from a normal Gaussian distribution N(0,Σ), where
Σ = diag(s2, · · · , s2), a drift distance from an expected value of
x ∈ Λ to the origin is given by a function of ξ:

g(ξ|s) =
1
ξ

∫ ξ/2

−ξ/2
dt

∣∣∣∣∣∣∣∣
∫ t+ξ/2

t−ξ/2 dy y θ(y)∫ t+ξ/2

t−ξ/2 dy θ(y)

∣∣∣∣∣∣∣∣ , (A.2)

where θ(y) is a pdf of y, which is also a Gaussian function with

a standard deviation s. Substitution of θ(y) = 1√
2πs

e−
y2

2s2 into
Eq. (A.2) reduces g(ξ|s) to:

g(ξ|s) =

√
2s√
πξs

∫ ξs

0
dt

e−(t−ξs)2 − e−(t+ξs)2

erf(t + ξs) + erf(t − ξs)
, (A.3)

where erf(·) is an error function and ξs =
ξ

2
√

2s
. Note that |a| is

distributed according to a chi distribution with D degrees of free-
dom. A pdf of ξ is then given by:

pD(ξ) =
21− D

2

Γ
(

D
2

) WD

ξD+1
e
− W2

2ξ2 , (A.4)

where Γ(·) is a Gamma function. By substituting Eqs. (A.3) and
(A.4) into Eq. (3), we obtain the analytical form of E [Δω] for a
general D-dimensional case. Note that the expected value of ξ is
given by:

ω = E
[
ξ
]
=
Γ
(

D−1
2

)
√

2Γ
(

D
2

)W. (A.5)

Eq. (4) is derived by Eqs. (A.4) and (A.5) for D = 2.
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A.3 Artificial Test Dataset Generation

The artificially generated test dataset X is a history of peri-
odically recorded locations that contain K “staying” periods al-
ternating with K + 1 “moving” periods. In generating X, we first
prepare for K time slots {τi}with duration τi drawn from the Pois-
son distribution with average τs and randomly allocate these slots
without any overlap in X with the total number of time steps be-
ing T . Each time slot τi indicates the staying period in which
one stays at a single location and other parts of the dataset repre-
sent the moving period. In the moving period, the location vector
ψ(t) is updated by the randomly generated step vector δΔψm(t)
such that ψ(t + 1) = ψ(t) + δΔψm(t). The step width δ is drawn
from the Poisson distribution with average δ0, and Δψm(t) is a unit
vector with direction determined by random rotation whose an-
gle is drawn from the uniform distribution U[−θmax, θmax], where
θmax is the maximum possible angle between the previous and
next steps. When the moving period ends and the staying pe-
riod starts at time t0, ψ(t) keeps being updated by the formula
ψ(t) = ψ(t0)+σΔψs(t) until the time slot allocated for the staying
period is consumed and the next moving period starts. The sec-
ond term σΔψs(t), where σ represents the noise level and Δψs(t)
is drawn from the two-dimensional normal distribution, indicates
the spatial noise introduced to an actual stay location due to a
weak signal, e.g., one staying inside a building.
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