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Improvement of Network coding-based System for
Ensuring Data Integrity in Cloud Computing
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Abstract: Since the amount of information is increasing quickly, the database owners have tendency to outsource their
data to external service provider called Cloud Storage. In Cloud Storage, because the service provider may be not fully
trustworthy, there are many challenges in securing the data stored on Cloud. We focus mainly on two challenges: data
integrity and data availability. To ensure integrity and availability of such outsourced data, researchers proposed POR
(Proof of Retrievability) scheme that enables servers on Cloud to demonstrate whether the client’s data is retrievable
or not. Although some schemes have been proposed based on POR, most of them neither minimize computation cost
in repairing the corrupted data nor prevent against small data corruption attack. In this paper, we propose an efficient
and secure POR scheme based on network coding approach that can reduce computation cost in repair phase when
corruption is detected and Error-correcting code (ECC) approach that can protect against small data corruption.

Keywords: cloud storage, data integrity, data availability, proofs of retrievability.

1. Introduction
Nowadays, many individuals and organizations outsource their

data to remote cloud service providers. Such outsourcing of data
enables clients to store more data on the cloud storage than on pri-
vate computer systems. Also, it permits clients to manage their
data easily due to the ability of sharing and access from every-
where.

In Cloud Computing, the researchers have considered many
scenarios. In our scheme, we consider the scenario that there are
two kinds of entity:
• Client: This entity is the data owner who publishes his data

to Cloud and is fully trusted.
• Server: There are multiple servers used to store the data in

Cloud. Unlike the client, those servers are untrusted.
As described in Figure 1, the client communicates with the

servers through a web server which helps to deliver the data that
can be accessed through the Internet.

In our scheme, the data stored in the servers is treated as static
data. That means the client only archives and backups the data
without updating operations, i.e., insertion, deletion, modifica-
tion, appending... like the case of dynamic data. In this work, we
focus on static data, then we will improve our scheme to dynamic
data in future work.

Although outsourcing data reduces storage burden for the
client, it has a problem that the servers are untrusted. Thus, this
model introduces numerous interesting research challenges: data
privacy, data availability and data integrity.
• Data privacy: The data needs to be prevented from the dis-
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Fig. 1 Our scenario

closure of the outsourced data to the server.
• Data availability: Since system aims to remain available

at all times, the data needs to be prevented service dis-
corruptions.

• Data integrity: The data cannot be modified by the server.
In this work, we concentrate to ensure data availability and data

integrity.
Related work There are two approaches of checking data avail-
ability and data integrity. In naive approach, the entire data is
only stored in single server. The client can periodically check
data possession at the server and can thus detect data corruption
[3][4][5]. However, when corruption is detected, the single server
does not allow data recovery. Therefore, the data has tendency to
be stored redundantly at multiple servers [1][2][6][7]. By this
way, once data corruption is detected at any of those servers, the
client can use the remaining healthy servers to restore the cor-
rupted data.

R. Curtmola et al. [6] proposed replication technique in which
the client stores one file replica on each server. When corruption
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is detected, the client uses one of healthy replicas to recover the
corrupted data. However, replication method has a drawback that
it has high storage cost due to multiple replicas.

Since replication technique is not efficient in storage cost, the
data is applied erasure coding technique [7][2]. Erasure coding
can reduce storage cost because it stores file block instead of file
replica like replication. However, the drawback of erasure cod-
ing is that it has high computation cost because the client has to
reconstruct the entire file to create a new coded block.

To overcome the weak point of erasure coding, Chen et al. then
proposed RDC-NC [1] that applied a technique called network
coding to distributed storage system. Unlike the erasure coding,
the client does not need to reconstruct the entire file in order to
generate new coded blocks for a new server. The drawback of
this method is that the new coded blocks are different from the
original coded blocks so that we need to preserve ability to check
the integrity of new coded blocks.

By using network coding approach, RDC-NC not only has low
cost in repair phase, but also can prevent replay attack and pol-
lution attack. However, RDC-NC cannot prevent a kind of attack
called small data corruption.

In contrast, HAIL [2] can prevent small data corruption but
has high computation cost in repair phase because it uses erasure
coding instead of network coding like RDC-NC
Contribution Based on these above knowledges, we proposed an
efficient and secure scheme that satisfies the following:
• Our scheme can resist replay attack, pollution attack, large

data corruption and small data corruption. Our scheme is
more secure than RDC-NC [1] which cannot prevent small
data corruption.

• Compared with HAIL [2], our computation cost is more ef-
ficient than HAIL since we use network coding approach in-
stead of erasure coding.

Organization In Section 2, we give an overview of background
of Proof of Retrievability (POR) scheme, network coding and ad-
versarial model. We review previous works in Section 3. Our
proposed scheme is described in Section 4, and its security analy-
sis in Section 6. Then, we give conclusion in Section 7 and future
works in Section 8. The appendices are in the last of the paper.

2. Preliminary
2.1 Proofs of Retrievability (PORs)

To address data integrity and data availability, researchers have
proposed a tools called Proof of Retrievability (POR) [3]. POR is
a challenge-response protocol that enables the server to demon-
strate whether the file is retrievable or not.

Figure 2 is a holistic POR scheme. Before explaining each
phase of POR, we give notations used in that Figure: λ is the
security parameter, K is the secret key of the client, F is the orig-
inal file, F′ is the encoded file, c is the challenge generated by the
client and r is the response from the server.

A POR scheme has 4 phases as follows:
Keygen The client generates the secret key to use in encoding
phase.
Encode The client transforms the raw file to an encoded file, then
sends this encoded file to the server.

Fig. 2 The holistic POR scheme

Challenge-response The client generates a challenge and sends
it to the server. After receiving the challenge, the server computes
the corresponding response and send it to the client. The client
then checks whether file F is intact or not.
Repair This algorithm is invoked by the client when failure is
detected in challenge-response phase.

2.2 Network coding
Network coding [8] is a method that allows intermediate nodes

to transform the data in transit. The sender breaks the mes-
sage into m vectors v̂1, ..., v̂m in an n-dimensional linear space Fn

q .
When these message vectors are transmitted to its sibling nodes in
the network, the nodes randomly combine the vectors with each
other. Recipients can recover the original message from any set
of m random linear combinations.

Each vector v̂ must carry the coefficients α1, ..., αm ∈ Fq that
produce v̂ as a linear combination of the original message vec-
tors. Before transmitting, the source node augments each vector
v̂i with m additional components. The resulting vectors v1, ..., vm
called augmented vectors as follows:

vi = (−v̂i−,
m︷              ︸︸              ︷

0, ..., 0, 1︸    ︷︷    ︸
i

, 0, ..., 0) ∈ Fn+m
q

Each original vector v̂i is appended with the vector of length m
containing a single 1 in the ith position. These augmented vec-
tors are then sent by the source as packets in the network. Ob-
serve that if y ∈ Fn+m

q is a linear combination of v1, ..., vm ∈ Fn+m
q

then the linear combination coefficients are contained in the last
m coordinates of y.

Since network coding is an efficient approach in transmit-
ting data in network, researchers applied network coding to dis-
tributed storage system. The principle of this method is de-
scribed as follows: Given an original file F which has m blocks
b1, . . . , bm, the client chooses coding coefficient vector randomly:
(x1, . . . , xm), then, linearly combines coded blocks using the for-
mula c̄ =

∑m
i=0 xi.bi and stores those coded blocks on servers.

Once corruption is detected, the client retrieves coded blocks
from the healthy servers and linearly combines them to regen-
erate new coded block as Figure 3.
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Fig. 3 Example of network coding. The file F has three blocks b1, b2, b3.
Two coded blocks are stored on each of three servers. When S 3 is
corrupted, the client uses two remaining servers to create two new
blocks by retrieving one block from each healthy server and mixing
them (linear combinations) to obtain two new coded blocks

2.3 Adversarial model
2.3.1 Small data corruption and large data corruption

We consider two common attacks in POR scheme: small data
corruption and large data corruption.

Small data corruption happens when the adversary corrupts
the data with small data unit. For example, a small block of
whole data is damaged, or even one bit in whole data is flipped.
To prevent small corruption, researchers proposed ECC (Error-
correcting code) technique which expresses the original data and
parity information so that any errors can be detected and corrected
within certain limitation. An ECC has two parameters n and k
where k is the number of original blocks, n is the total number of
blocks after adding n− k redundant blocks. An (n,k)-ECC is able
to correct n−k

2 corruptions. This bound value is ECC’s resilience
capability.

In contrast, large data corruption happens when the adversary
corrupts the data with large data unit, e.g, a large block of entire
file is corrupted. To detect large data corruption, there is spot-
checking technique. In this technique, the client firstly partitions
the original file into multiple blocks to store on the server. When
the client verifies whether the file is intact or not, the client sam-
ples a subset of file blocks stored in the server. Then, the server
returns a computation over these blocks to the client. The re-
sults are checked using some additional information embedded
into the file at encoding phase such as MAC (Message Authenti-
cation Code), sentinels.
2.3.2 Replay attack and pollution attack

We also consider another typical attacks in network coding:
replay attack and pollution attack.

Replay attack is that the adversary reuses the old coded block
to response the client so that the adversary can pass the verifica-
tion. By this way, the adversary can reduce the redundancy on the
servers. For example, there are three coded blocks CB1,CB2,CB3

which are stored on three servers S 1, S 2, S 3 (each coded block per
server). In challenge-response phase, after the client challenges
three servers, S 1, S 2 will return CB1,CB2, respectively. How-
ever, the adversary lets S 3 return CB2 instead of CB3. Thus, the
adversary can reduce redundancy on the servers.

In the case of pollution attack, the adversary uses the correct
data to avoid detection in challenge-response phase, but cheats
the verifier by using the corrupted data in repair phase. For ex-
ample, there are three servers S 1, S 2, S 3 in which S 1 is corrupted.
The client has to recover S 1 by contacting with remaining healthy

servers to request their coded blocks. Assume that adversary cor-
rupts S 2 and uses the correct data to avoid detection in challenge-
response phase. Thus, the client still thinks that S 2 is a healthy
server and requests S 2 its coded block in repair phase. After that,
S 2 just returns wrong coded block to the client without letting the
client know whether returned coded block is true or not.

3. Previous works
3.1 RDC-NC

B.Chen et at. [1] proposed RDC-NC in which the authors ap-
plied network coding to remote data checking, instead of erasure
coding. This work has three main achievements:
• RDC-NC has low computation cost in repair phase because

by using network coding, the client does not need to recon-
struct the entire file to recover the corrupted block when cor-
ruption is detected.

• RDC-NC can protect against replay attack by using chal-
lenge tags which act as a counter and is increase when the
blocks are recreated due to failure.

• RDC-NC can prevent pollution attack by using repair tags
which allow the client to check whether the server combines
the blocks correctly or not during the repair phase.

Fig. 4 RDC-NC approach

As described in Figure 4, RDC-NC has n servers. Each server
stores:
• {CBi j}i=[1,n], j=[1,α]: coded blocks where i is server index, j is

coded block index, α is the total number of coded blocks in
each server.

• {ti jk}i=[1,n], j=[1,α],k=[1,s]: challenge tags for each coded block
where i is server index, j is coded block index, k is chal-
lenge tag index, s is the total number of segments of a coded
block.

• coe f .: coefficients which are used to constructed coded
blocks.

• {Ti j}i=[1,n], j=[1,α]: repair tags for each coded block where i is
server index, j is repair tag index, α is the number of repair
tags.

We now briefly describe RDC-NC through 4 phases of a POR
scheme.
Keygen This algorithm generates the secret key for the client to
use in encoding phase.
Encode For each server, the client performs:
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( 1 ) Step 1: Choose coefficients to compute coded blocks
( 2 ) Step 2: Compute coded blocks from original data
( 3 ) Step 3: Generate challenge tags and repair tags for each

coded block and then embed them to that coded block.
( 4 ) Step 4: Send to the server: coded blocks, encrypted coeffi-

cients, challenge tags and repair tags.
Challenge-response For each server, the client checks possession
of each coded block using spot-checking technique.
( 1 ) Step 1: The client generates a set of queries and send them

to all servers
( 2 ) Step 2: Each server computes a proof of possession. After

that, the server sends to the client: challenge tag, proof of
possession, encrypted coefficients.

( 3 ) Step 3: The client checks the validity of the proof of posses-
sion.

Repair This phase is invoked when a corrupted server is detected.
( 1 ) Step 1: The client contacts with remaining healthy servers to

ask them to generate a new coded block.
( 2 ) Step 2: The client combines these coded blocks to generate
α new coded blocks and metadata (embed challenge tags and
repair tag for the block).

( 3 ) Step 3: The client sends to the new server: new coded block,
encrypted coefficients, challenge tags and repair tags.

Although RDC-NC obtains important achievements as men-
tioned above, this scheme has a drawback that it cannot protect
against small data corruption because it uses spot-checking in
the challenge-response phase which is only efficient for detect-
ing large data corruption.

3.2 HAIL
The second scheme we consider is HAIL [2]. In HAIL, small

data corruption can be prevented by using Error-correcting code
(ECC). However, HAIL has high computation cost in repair phase
because the authors applied erasure coding approach instead of
network coding approach like RDC-NC. We can see that HAIL
has opposite achievement and drawback with RDC-NC.

Fig. 5 HAIL scheme

As defined in Figure 5, HAIL has two kinds of servers: primary
servers (S 1, ..., S n) and secondary servers (S n+1, ..., S n+h)
( 1 ) Primary server: Each primary server stores:

• The raw file blocks Fi j where i is server index, j is block in-
dex. Note that HAIL stores raw file blocks instead of coded
blocks like RDC-NC.

• Server code parity blocks over the raw file blocks. Server
code is an advanced ECC which can achieve higher error
resilience than a classic ECC [5].

( 2 ) Secondary server: Each secondary server stores:
• Dispersal code parity blocks over the raw file blocks. Dis-

persal code is combination of ECC and MAC (Message Au-
thentication Code).

• Dispersal code parity blocks over server code parity blocks.
If corruption is detected in challenge-response phase, HAIL

firstly uses ECC in dispersal code to correct corrupted data. As
we mentioned in Section 2.3.1, an (n, k)−ECC is only able to cor-
rect n−k

2 errors. If the number of detected corruptions is more than
n−k

2 , HAIL then uses server code to correct them. Thus, HAIL can
recover the corrupted data with high probability.

We now briefly describe HAIL in 4 phases of POR scheme:
Keygen The client generates the keys for dispersal code, server
code and challenging.
Encode The client performs:
( 1 ) Step 1: Partition the raw file into multiple file blocks.
( 2 ) Step 2: Add server code [5] for each column.
( 3 ) Step 3: Adding dispersal code: By applying the dispersal

code IP-ECC given in Appendix A.4 to the column 1, ..., n,
we can obtain the column n + 1, ..., n + h

( 4 ) Step 4: Compute MAC for whole file
Challenge-response
( 1 ) Step 1: The client sends a challenge to all servers.
( 2 ) Step 2: The servers compute responses to send to the client.
• Upon receiving the challenge, server S i derives a random

subset of row indices.
• Each server computes the response.

( 3 ) Step 3: The client verifies the responses from all servers
The client calls MVerECC algorithm of dispersal code as
described in Appendix A.4 on those responses and verifies
them.

Repair When corruptions are detected, the client downloads the
file shares of all servers, and decodes them. Once the client de-
codes the original file, he can reconstruct the shares of the cor-
rupted servers as in the original encoding algorithm.

3.3 Problem statements
Both RDC-NC and HAIL obtain important advantages, but

they still exist drawbacks. We summarize good points and weak
points of both schemes as Table 6:

We have comment that:
• The good point of RDC-NC is the weak point of HAIL:

RDC-NC has low computation code in repair phase while
HAIL has high computation cost in repair phase.

• The weak point of RDC-NC is the good point of HAIL:
RDC-NC cannot prevent small data corruption while HAIL
can do that by using ECC.

Based on that comment, we give our problem statements that how
to design an efficient and secure protocol which satisfies the fol-
lowing:
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Fig. 6 Summary of the good points and weak points of RDC-NC and HAIL

• The scheme can minimize the cost of repair phase by using
network coding.

• The scheme can solve small data corruption.
• The scheme can prevent replay attack and pollution attack.

4. Proposed scheme

Fig. 7 Our approach

4.1 The structure of our scheme
In our scheme, we employ n + h servers. The first n servers

(S 1, ..., S n) are quite similar to the structure RDC-NC excepting
that RDC-NC has the tags t while ours has not. The structure
of remaining h servers (S n+1, ..., S n+h) is the same with HAIL’s
dispersal code.
( 1 ) Each of servers {S i}i=[1,n] stores:
• {CBi j}i=[1,n], j=[1,α]: coded blocks where i is server index, j is

coded block index, α is the number of coded blocks stored
in each of servers.

• coe f .: coefficients which are used to constructed coded
blocks.

• {Ti j}i=[1,n], j=[1,α]: repair tags for each block where i is server
index, j is repair tag index, α is the number of repair tags
in each server.

( 2 ) Each of servers {S i}i=[n+1,n+h] stores:
• ECC parity block of each row.
• {ti j}i=[1,n], j=[1,α]: the MAC of each row.

4.2 Our improvements
There are three improvements in our scheme:

Improvement 1 Since RDC-NC has low cost in repair phase un-
like HAIL and since HAIL can prevent small data corruption by

using ECC unlike RDC-NC, thus we try to apply ECC to RDC-
NC so that we still keep the advantages of RDC-NC and can pre-
vent small data corruption by ECC.
Improvement 2 We integrate coded blocks, ECC and MAC
to one code called IP-ECC (Integrity-protected error-correcting
code) [2] as described in Appendix A.4. Although HAIL also
has IP-ECC, it only consider the raw file block instead of coded
block because HAIL does not use network coding that conduces
high cost in repair phase.

Although our scheme has more storage cost than RDC-NC, we
can prevent replay attack since the coded blocks is integrated into
a concrete IP-ECC code and the adversary cannot reuse the old
coded block.
Improvement 3 We challenge the servers based on row (code-
word IP-ECC) [see Figure 7] like HAIL. While in RDC-NC, the
client can only challenge one server per challenge, in our scheme
one challenge can consider n + h servers.

4.3 Tag construction
In this section, we describe the tag construction in our scheme

and also compare with tag construction in RDC-NC.
Consider each row in RDC-NC scheme and our scheme, one

coded block in RDC-NC has s tags t where s is the number of
segments of each coded block as described in Figure 8. Thus, the
total number of tags t in each row of RDC-NC is s × n.

Fig. 8 Row i in RDC-NC scheme

Meanwhile, each row in our scheme only has h tags which are
stored in the servers S n+1, ..., S n+h as described in Figure 9. So,
we can see that the total number of tags in our scheme is less than
in RDC-NC. This is because we use aggregated tag combined
with ECC.

Fig. 9 Row i in our scheme

Aggregated tag is a kind of MAC. To compute aggregated tag
combined with ECC, our technique is based on RS-UH given
in [2] and also described in Appendix A.2. In row i, on input n
coded blocks CB1i, ...,CBni, to encode these coded block with
aggregated tag combined with an ECC (use (n + h, n)-Reed
Solomon code), we apply this formula:

CB′i j = RS − UHFKi (CBi1, ...,CBin) + fK′i (r)
= (CBinKi

n−1 +CBi(n−1)Ki
n−2 + ... +CBi1) + fK′i (r)

where f is a pseudo-random function and r is a random value.
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4.4 Our approaches in details
We now describe our approach in detail through each phase of

POR scheme. Firstly, we introduce some conventions used in our
scheme:
• The original file F has m blocks: F = (b1, ..., bm)
• α is the number of coded blocks stored in each server
• GF(p) is Galois field of integers modulo p where p is a large

prime.
• f is a pseudo-random function (PRF): f : {0, 1}∗ × {0, 1}κ →

GF(p)
• RS − UHF is the universal hash function (UHF) based on

Reed-Solomon code (a kind of ECC) given in [2] and pre-
sented in Appendix A.2.

• RS−UHFK(message)+gK′ (random value) is a form of MAC
obtained from UHF. This form is used to compute dispersal
code parity blocks in encoding phase.

Keygen The client generates the secret keys to use in encod-
ing phase: {Krtag,K′rtag, {Ki,K′i }i=[n+1,n+h]} where each key is ran-
domly chosen in {0, 1}κ
Encode Like RDC-NC, each server in our scheme also stores α
coded blocks, coefficients, one repair tag for each coded block.
However, the difference from RDC-NC is that:
• We add ECC and MAC for each row as described in Figure

7
• We do not use challenge tag like RDC-NC for preventing

replay attack since our scheme can prevent this attack by
concrete IP-ECC code without needing challenge tags.

The following part is the detail of encoding algorithm:
( 1 ) Step 1: Transform the raw file to coded blocks
∀i = [1, n]:
• Generate u values λ1, ..., λu : λk = fKrtag (i||k) where k =

[1, u]
• ∀ j = [1, α]:

– ∀k = [1,m]: generate m coefficients zi jk
R← GF(p)

– Compute coded blocks: CBi j =
∑m

k=1 zi jkbk

Therefore, we have matrix {CBi j}i=[1,n], j=[1,α]

( 2 ) Step 2: Compute ECC and MAC of coded blocks to store in
server S n+1, ..., S n+h

∀ j = [1, α]:
∀i = [n + 1, n + h]:

CB′i j = RS − UHFKi (CBi1, ...,CBin) + fK′i (τi j)
= (CBinKi

n−1 +CBi(n−1)Ki
n−2 + ... +CBi1) + fK′i (τi j)

where τ is position index that depends on the file handle,
server index i, block index j, i.e, hash of file name, i and j.
The details of RS-UHF is presented in Appendix A.2.

( 3 ) Step 3: Add repair tags
∀i = [1, n]
• Generate u values λ1, ..., λu : λk = fKrtag (i||k) where k =

[1, u]
• ∀ j = [1, α]

– View CBi j as a column vector of u symbols CBi j =

(CBi j1, ...,CBi ju) with CBi jk ∈ GF(p) where k = [1, u]
– Compute a repair tag for CBi j:

Ti j = fK′rtag
(i|| j||zi j1||...||zi jm) +

∑u
k=1 λkCBi jk mod p

( 4 ) Step 4: Client sends following data to the server S i(i =
[1, n]):

• {CBi j} j=[1,α]

• {zi jk} j=[1,α],k=[1,m]

• {Ti j} j=[1,α]

Challenge-response Unlike RDC-NC which uses spot-checking
that is only efficient for detecting large corruption and cannot
detect and correct small corruption, our scheme uses ECC to
overcome the drawback of RDC-NC. Concretely, our approach is
based on HAIL: In each challenge, the client chooses the number
of row indices to challenge the servers. The servers then return
the corresponding codewords to the client. After receiving these
codewords, the client checks whether these codewords are valid
or not by using the MVerECC algorithm of IP-ECC as presented
in Appendix A.4.
( 1 ) Step 1: Client challenges the servers

The clients sends to each server a set of row indices D =
{ j1, ..., jv} and a key k ∈ I where I is a field with operation
(+,×), i.e, GF[2128]

( 2 ) Step 2: The servers respond the client
After receiving the challenge from the client, each server S i

responds: Ri = RS − UHFk(CBi j1 , ...,CBi jv )
( 3 ) Step 3: The client verifies the responses from the servers

The client calls MVerECC algorithm of IP-ECC [see Ap-
pendix A.4] to verify the responses from the servers:
MVerECC(R1, ...,Rn+1)
• Return f ail if the codewords is not valid
• Otherwise, return true

Repair Once the failure is detected, the repair phase consists two
sub phases:
• Sub phase 1: The corrupted data is firstly corrected by ECC.
• Sub phase 2: Since an (n,k)-ECC only incurs n−k

2 corrup-
tions, if the number of corruption is over n−k

2 , we cannot
use ECC to repair the corrupted data. Thus we use the
second sub phase based on RDC-NC: the client will con-
tact with healthy servers and asks them to generate a new
coded blocks, then combines these coded blocks to generate
α coded blocks using linear combination and stores them on
a new server.

Assume S y is the corrupted server which stores blocks
(CBy1, ...,CByα)
( 1 ) Step 1: The client contacts with l healthy servers S i1 , ..., S il

to ask them to compute a new coded block and the proof of
correct encoding.
∀i = [i1, il]
• Generate coefficients (xi1, ..., xiα) where xik

R← GF(p) with
k = [1, α]

• The client sends the request to S i to compute a new coded
block and the proof of correct encoding.

• The server S i does:
– Compute ai =

∑α
j=1 xi jCBi j

– Compute a proof of correct encoding: θ =
∑α

j=1 xi jTi j

mod p
– Send ai, {zi j1, ..., zi jm} j=[1,α] to the client

• The client re-generates u values λ1, ..., λu : λk = fKrtag (i||k)
where k = [1, u]

• Check if θ ,
∑α

j=1 xi j fK′rtag
(i|| j||zi j1||...||zi jm) +

∑u
k=1 λkaik
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where ai1, ..., aiu are symbols of block ai

( 2 ) Step 2: Recover the corrupted data in the server S y
• Generate u values λ1, ..., λu : λk = fKrtag (y||k) where k =

[1, u]
• ∀ j = [1, α]:

– ∀k = [1, l]: generate coefficients zy jk
R← GF(p)

– Compute coded block: CBy j =
∑l

k=1 zy jkak

– View CBy j as a column vector of u symbols CBy j =

(CBy j1, ...,CBy ju) with CBy jk ∈ GF(p)
– Compute repair tag for the block CBy j: Ty j =

fK′rtag
(i|| j||zy j1||...||zy jl) +

∑u
k=1 λkCBy jk mod p

( 3 ) Step 3: The client sends the following data to the new server
S ′y:
• {CBy j} j=[1,α]

• {zy jk} j=[1,α],k=[1,l]

• {Ty j} j=[1,α]

5. Security analysis
5.1 Data recover condition

Data recover condition of network coding: The data original
can be recovered as long as at least k out of the n servers collec-
tively store at least m coded blocks which are linearly indepen-
dent combinations of the original m file blocks [1]. Thus, as long
as we choose the parameters to satisfy this condition, our scheme
can recover data corruptions.

5.2 Repairing data in the servers Sn+1, ..., Sn+h

We consider two cases when corruption happens:
• Case 1: Corruption is detected in S 1, ..., S n

The corrupted blocks in S 1, ..., S n can be recovered by ECC
or from another healthy coded blocks using linear combina-
tion of network coding technique.

• Case 2: Corruption is detected in S n+1, ..., S n+h

Unlike S 1, ..., S n, the servers S n+1, ..., S n+h do not store
coded blocks. Thus, the corrupted block cannot be recov-
ered using network coding technique, but they can be recov-
ered by ECC. To tolerate more corruptions, we can encode
the data in S n+1, ..., S n+h by server code [5] as described in
Figure 10 because server code is an advanced ECC which
can achieve higher error resilience than a classic ECC [5].

Fig. 10 The approach for efficient repairing of the servers S n+1, ..., S n+h

6. Conclusion
We have proposed a new POR protocol in which the client can

ensure the data integrity based on RDC-NC scheme. By improv-
ing the previous work, our approach can solve the problem of
small data corruption by applying ECC to coded blocks. How-
ever, there are still some remaining problems that need to be
solved in future works.

7. Future works
We leave our following three remaining works in the future:

( 1 ) Compared with RDC-NC, our construction increases storage
cost due to ECC parity blocks and MAC. Although in this
paper, we can reduce this storage cost by combining them
into one codeword, we may minimize more storage cost by
combining repair tags into that codeword.

( 2 ) Since the server code can achieve higher error resilience than
classical ECC, we can apply server code to coded blocks in-
stead of classical ECC.

( 3 ) We improve our scheme to dynamic data in which the client
can perform update operations, i.e, modification, deletion,
insertion.
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Appendix

A.1 Error-correcting code (ECC)
ECC is an algorithm for expressing a sequence of numbers

that includes the original data and additional information (redun-
dancy/parity data) such that any errors can be detected and cor-
rected within certain limitations based on the remaining numbers.
An ECC usually has two parameter (n, k) where k is the number
of original blocks, n is the total number of blocks after adding
n − k redundant blocks.

We now give an example of ECC: (3,7)-Reed-Solomon code
defined in GF(929). The message −→m = (3, 2, 1) is used in this
example.
Encode We have k = 3, n = 7 as the parameters of Reed-Solomon
code. Let t = n − k = 4 and choose α = 3.

Firstly, we compute a generator polynomial g(x):
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g(x) = (x − α)(x − α2)...(x − αt)
= (x − 3)(x − 32)(x − 33)(x − 34)
= x4 + 809x3 + 723x2 + 568x + 522

Then, we compute the remainder sr(x):
sr(x) = p(x)xt mod g(x)

= 547x3 + 738x2 + 442x + 455
Using the remainder sr(x) to compute the codeword s(x):
s(x) = p(x)xt − sr(x)

= 3x6 + 2x5 + 1x4 + 382x3 + 191x2 + 487x + 474
Finally, we send this codeword s(x) to the receiver.

Verify Assume that the codeword s(x) is modified as r(x) with
the errors e(x):

r(x) = s(x) + e(x)
= 3x6 + 2x5 + 123x4 + 456x3 + 191x2 + 487x + 474

Thus, our purpose is to check where the errors are in codeword
and what error values are.

Firstly, we compute syndromes by evaluating r(x) at powers of
α:
• S 1 = r(31) = 3.36+2.35+123.34+456.33+191.32+487.3+

474 = 732
• S 2 = r(32) = 637
• S 3 = r(33) = 762
• S 4 = r(34) = 925
Then, we calculate the error locator polynomial Λ(x) using

Berlekamp - Massey algorithm:
n S n C
1 732 197x + 1
2 637 173x + 1
3 762 634x2 + 173x + 1
4 925 329x2 + 821x + 1

The finally value of C is the error locator polynomial:
Λ(x) = 329x2 + 821x + 1.

After obtaining the error locator polynomial, we find the error
values by solving the equation in GF(929):

Λ(x) = (329x2 + 821x + 1) mod 929 = 0
We have 2 solutions:
• x1 = 757 = 1

33 because 757.33 = 1 in GF(929)
• x2 = 562 = 1

34 because 562.34 = 1 in GF(929)
Thus we know the errors happened at the position x3 and x4.

Finally, we find error values by applying the Forney algorithm:
Ω(x) = s(x).Λ(x) mod xt

= s(x).Λ(x) mod x4

= 546x + 843
= 74

Λ′(x) = 658x + 821
Then, the error values are:
• e1 =

−Ω(x1)
Λ′(x1) =

−649
54 = 280 × 843 = 74 happened in the posi-

tion x3

• e2 =
−Ω(x2)
Λ′(x2) = 122 happened in the position x4

Therefore, the error is e(r) = 122x4 + 74x3

Recover We subtract e(r) = 122x4 + 74x3 from r(x) to reproduce
the original codeword s(x):

s(x) = r(x) − e(x)
= 3x6 + 2x5 + 1x4 + 382x3 + 191x2 + 487x + 474

A.2 RS-UHF (Universal hash function based
on Reed-Selomon code)

Assume that a message m is a vector −→m = (m1, ...,ml) and we
use (n, l)-Reed Solomon code. −→m can be viewed in terms of a
polynomial representation of the form p−→m = mlxl−1 + ml−1xl−2 +

... + m1.
A Reed-Solomon code can be defined in terms of a vector

−→k = (k1, ..., kn). The codeword of a message −→m is the evaluation
of polynomial p−→m at point (k1, ..., kn): (p−→m (k1), ..., p−→m (kn)).

A UHF is hκ(m) = p−→m (κ) where κ is the key.

A.3 UMAC (MAC obtained from Universal
hash function UHFs)

Let I denote a field with operation (+,×), i.e, GF(p) where p
is large prime Given a UHF family h : KUHF × Il → I and PRF
g : KPRF × L→ I, UMAC is a tuple of (UGen, UTag, UVer):
• UGen(1λ): generate key (κ, κ′) uniformly at ransom from

KUHF × KPRF

• UTag: KUHF×KPRF×Il → L×I is defined as UTagκ,κ′ (m) =
(r, hκ(m) + gκ′ (r)) where r is randomly chosen in L

• UVer: KUHF × KPRF × Il × L × I is defined as
UVerκ,κ′ (m, (c1, c2)) = 1 if and only if hκ(m) + gκ′ (c1) = c2.

A.4 IP-ECC (Integrity-protected error-
correcting code)

Assume that we use (n, l)-Reed Solomon code. IP-ECC has 3
algorithms:
• KGenECC(1λ): taking the security parameter λ as the input,

this algorithm generates key κ to compute Reed-Solomon
code and key κ′ to compute MAC.

• MTagECCκ,κ′ (m1, ...,ml): This algorithm takes the message
as the input. The output is (c1, ..., cn) where ci = RS −
UHFκ(−→m) + gκ′ (r) in which g is a pseudo-random function
and r is a random value.

• MVerECCκ,κ′ (c1, ..., cn): This algorithm strips off the PRF
as c′i = ci − gκ′ (r) and then uses the decoding algorithm
of Reed-Solomon code to obtain the original message −→m =
(m1, ...,ml).
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