
IPSJ SIG Technical Report

GPU Acceleration of BCP Procedure for SAT Algorithms

Hironori Fujii1 Noriyuki Fujimoto1,a)

Abstract: The satisfiability problem (SAT) is widely applicable and one of the most basic NP-complete problems.
This problem has been required to be solved as fast as possible because of its significance, but it takes exponential
time in the worst case to solve. Therefore, we aim to save the computation time by parallel computing on a GPU. We
propose parallelization of BCP (Boolean Constraint Propagation) procedure, one of the most effective techniques for
SAT, on a GPU. For a 2.93GHz Intel Core i3 CPU and an NVIDIA GeForce GTX480, our experiment shows that the
GPU accelerates our SAT solver based on our BCP-embedded divide and conquer algorithm 6.7 times faster than the
CPU counterpart.

1. Introduction
The satisfiability problem (SAT for short) [1] is a problem of

determining if a given boolean expression (usually in the conjunc-
tive normal form) can be true by assigning some boolean values
into the boolean variables in the expression. Formally, SAT is
defined as follows:
• Let V = {V1,V2, · · · ,Vn} be a set of n boolean variables.
• Let C = {C1,C2, · · · ,Cm} be a set of m clauses where
– C j = (L j1 ∨ L j2 ∨ · · · ∨ L jk j

)
– Li ∈ {Vp,¬Vp}

• Question: Is there assignment to the variables in V such that
C1 ∧C2 ∧ · · · ∧Cm = true ?

where ¬ is a logical not operator, ∨ is a logical or operator, ∧ is
a logical and operator. Li is called a literal which is either af-
firmation or negation of a boolean variable. SAT problem such
that clauses are of exactly three literals is called 3SAT. Any SAT
instance can be transformed to a 3SAT instance with the same so-
lution. Therefore, without loss of generality, for simplicity, our
SAT solver accepts 3SAT instance only.

SAT is widely applicable and one of the most basic NP-
complete problems. This problem has been required to be solved
as fast as possible because of its significance, but it takes expo-
nential time in the worst case to solve. Recent SAT algorithms
can solve problem instances with several million variables in a
few hours. SAT algorithms can be categorized into complete-
type and incomplete-type. Complete-type algorithms can identify
whether any given problem instance is satisfiable or unsatisfiable.
In contrast, incomplete-type algorithms can not identify unsatis-
fiability but satisfiability. Many of common complete-type algo-
rithms can be categorized into so-called DPLL algorithm [2], [3].
DPLL algorithm performs BCP(Boolean Constraint Propagation)
procedure, which is a dominant part of the algorithm. BCP pro-
cedure occupies 80% to 90% of the whole execution. On the

1 Osaka Prefecture University, Sakai, Osaka 599–8531, Japan
a) fujimoto@mi.s.osakafu-u.ac.jp

other hand, Davis et al. proposed a method [4] to accelerate BCP
procedure by parallel processing with an FPGA. Davis et al. par-
allelized only BCP procedure for their method to be applicable
to various DPLL algorithms. With Xilinx Virtex 5 LX110T and
3.6GHz Intel Pentium 4, Davis et al. experimentally showed that
zChaff [5], [6], [7] with FPGA accelerated BCP procedure runs 5
to 16 times faster than the zChaff with the CPU only.

This paper proposes parallelization of BCP procedure on a
GPU, rather than an FPGA. Similar to Davis et al.’s method, the
proposed method can be used with various DPLL algorithms.
However, we adopt divide-and-conquer algorithm [14] (3SAT-
DC for short) with BCP procedure as our SAT solver used in
the experiments in this paper. 3SAT-DC is complete-type. For
a 2.93GHz Intel Core i3 CPU and an NVIDIA GeForce GTX480,
our experiment showed that the GPU accelerates our SAT solver
based on our BCP-embedded divide and conquer algorithm 6.7
times faster than the corresponding CPU implementation.

The remainder of this paper is organized as follows. Section
2 briefly reviews DPLL algorithm, BCP procedure, and SAT-DC.
Section 3 presents the proposed algorithm. Experiments to show
the performance of the proposed algorithm are reported in Sec-
tion 4. Section 5 briefly surveys the related works. Section 6
gives some concluding remarks and future works. Due to the lim-
ited space, this paper include no description on CUDA. Readers
unfamiliar with CUDA GPU architecture are recommended the
literature [8], [9], [10], [11], [12], [13].

2. Preliminaries
2.1 DPLL Algorithm

Basically, DPLL algorithm finds an optimal solution by check-
ing all the patterns of boolean value assignment to the variables
in a given boolean expression while discarding hopeless sets of
patterns without checking them. One of the methods to identify a
hopeless set of patterns is BCP procedure. DPLL algorithm per-
forms BCP procedure every decision phase which heuristically
determines the value of a variable. Other features of DPLL al-

c© 2012 Information Processing Society of Japan 1

1ⓒ 2012 Information Processing Society of Japan

Vol.2012-MPS-89 No.8
2012/7/16

IPSJ SIG Technical Report

gorithm are not used in the proposed method, and therefore not
described in this paper. See the literatures [2], [3] for more detail
of DPLL algorithm.

2.2 BCP Procedure
BCP procedure consists of ”implication” process and ”con-

flict” process. The ”implication” process finds a literal whose
value is consequently determined by other literals in the same
clause, and then repeat this process until no such a literal is found.
The ”conflict” process finds a clause with all literals false. In
the following, literals and clauses are respectively stored in ar-
rays named ”atom” and ”clause”. BCP procedure repeatedly calls
function BCPEngine until no more implication occurs or conflict
is detected. After ”implication” process, BCPEngine scans all
clauses to detect implication or conflict in O(m). If every lit-
eral in a clause is false, then BCPEngine finishes after updating
flag variable ”conf” to indicate that conflict occurs. Otherwise,
BCPEngine performs ”implication” process. If exactly one literal
is unknown and any other literal is false, then BCPEngine detects
implication and assigns the value which makes the unknown lit-
eral true into the corresponding element of array ”atom” .Then,
BCPEngine pushes the index value of the modified element of ar-
ray ”atom” to array ”implicated” and increments the stack pointer
”sp”.Finally, BCPEngine updates flag variable ”imp” to indicate
the detection of implication.

2.3 3SAT-DC
Listing 1 shows a pseudo code of 3SAT-DC where the param-

eter ”f” of function ”3SAT-DC” is a given logical expression and
notation ”f(x=propositional constant)” represents the logical ex-
pression such that ”f” is simplified by substituting the constant
to propositional variable ”x” . 3SAT-DC is a recursive procedure
for a clause with the minimum unknown literals at that time. The
time complexity of 3SAT-DC is O(m1.84n) [14].

3. The Proposed Algorithm
3.1 An Overview

BCP procedure is inherently sequential because it consists of
iterations of O(m) time. Therefore, we parallelize only each it-
eration on a GPU and performs the other part on a CPU. To do
so, we partition m clauses. Listing 2 shows a pseudo code of the
proposed CPU code for DPLL algorithm with parallelized BCP
procedure. After partitioning given clauses, DPLL algorithm with
parallelized BCP procedure searches a solution while transferring
data on the current status of search to memory on a CPU or a GPU
every decision. The difference between serial DPLL algorithm in
Section 2.1 and the parallel version is addition of clause partition-
ing in line 2 of Listing 2.

3.2 Clause Partitioning
We partition clauses into groups in order to parallelize BCP

procedure. Each group is processed by a thread block. Hence,
we partition clauses into groups the same number of clauses for
load balance. The maximum number of active thread blocks is
eight times the number numMP of multiprocessors. Hence, we
set the number numsubclause of clauses in a group at (numclause

+ numMP * 8 - 1) / (numMP * 8). Due to this, the number of
groups is at most the maximum number of active thread blocks.

3.3 Parallelized BCP Procedure
This section describes how to parallelize the serial BCP proce-

dure in Section 2.2.
3.3.1 Calling from a CPU

Listing 3 shows a CUDA C code of the proposed parallelized
BCP procedure called from line 5 in Listing 2. The differences
between the serial BCP and the parallel version are:
• Status data are packed into the same array as many as possi-

ble.
• Data transfers between a CPU and a GPU are inserted before

and after do-while statement and kernel function call.
The reason why status data are packed into the same array is to re-
duce the number of cudaMemcpy execution. The overhead of cu-
daMemcpy invocation is heavy. Therefore, memory transfer time
can be reduced by reduce the nuber of the invocations. In the pro-
posed CUDA C code, flag variables ”conf” and ”imp” are packed
into array ”flag”. Also, stack pointer ”sp” and array ”implicated”
are packed into array ”sp implicated”. Due to these packings, the
whole execution time is reduced to about 90%. The proposed
CUDA C code transfers array ”atom” and ”sp implicated” before
and after executing parallelized BCP procedure (line 7 to 10 and
18 to 21 in Listing 3). However, if no conflict occurs, the latter
transfer is not performed to avoid excess transfer. After executing
kernel function BCPEngine, variable ”flag” is transfered (line 15
in Listing 3).

3.4 Kernel Function BCPEngine
Listing 4 shows the CUDA C code of the proposed kernel func-

tion BCPEngine. The number of thread blocks is the number s
of groups. The number of threads in a thread block is prede-
fined constant BLKSZ. The arguments subset and orderedClause
represent partitioned groups together. Each element of ordered-
Clause holds a clause. Clauses in the same group are consecu-
tively stored in array orderedClause. The head index of elements
of each group is stored array ”subset”. The type of orderedClause
is int[4] rather than int[3]. Since every clause of 3SAT instance
has exactly three literals, int[3] is sufficient to hold each clause.
However, the proposed kernel stores each clause into int[4] with
padding in order to enable coalesce access.

The kernel function BCPEngine works as follows. As prepara-
tion, the number ”size” of clauses in the group assigned to each
thread block is calculated (line 4 in Listing 4). Also, pointer
”orderedClause” is moved so as to point at the head clause of
the assigned group (line 5 in Listing 4). Hence, in the lines be-
low line 5, each thread block can access the assigned group via
orderedClause[0..size-1]. The processing for each clause is al-
most same as the serial BCPEngine, but there are four different
points. First, flag ”conflict” is checked before each clause is pro-
cessed and if conflict is detected then each thread is finished .Sec-
ond, each clause is loaded into variable ”c” of type int4 to realize
coalesced access .Third, detection of simultaneous implication by
multiple threads is processed by CUDA atomic functions (line 27
to 30 in Listing 4). If multiple threads detect implications for the

c© 2012 Information Processing Society of Japan

2ⓒ 2012 Information Processing Society of Japan

Vol.2012-MPS-89 No.8
2012/7/16

IPSJ SIG Technical Report

Listing 1 A pseudo code of 3SAT-DC

1 3SAT−DC(f)
2 {

3 i f (f == FALSE) re turn FALSE ;
4 min c = a c l a u s e wi th minimum number o f l i t e r a l s ;
5 i f (min c == an empty c l a u s e) re turn TRUE;
6 i f (min c == (x)) re turn 3SAT−DC(f (x = t r u e)) ;
7 e l s e i f (min c == (x o r y))
8 re turn 3SAT−DC(f (x = t r u e)) | | 3SAT−DC(f (x = f a l s e , y = t r u e)) ;
9 e l s e / ∗ min c==(x or y or z) ∗ /

10 re turn 3SAT−DC(f (x = t r u e)) | | 3SAT−DC(f (x = f a l s e , y = t r u e))
11 | | 3SAT−DC(f (x = f a l s e , y = f a l s e , z = t r u e)) ;
12 }

Listing 2 A pseudo code of the proposed CPU code for DPLL algorithm with parallelized BCP procedure

1 p r e p r o c e s s t o d e t e c t t r i v i a l u n s a t i s f i a b i l i t y
2 p a r t i t i o n c l a u s e s i n t o g ro up s
3 whi le (1) {
4 D e c i s i o n
5 whi le (BCP () == c o n f l i c t) {
6 i f (no more b a c k t r a c k) re turn FALSE
7 b a c k t r a c k
8 }

9 }

Listing 3 A CUDA C code of the proposed parallelized BCP procedure

1 # d e f i n e BLKSZ 64
2 i n t BCP GPU (i n t numatom , i n t ∗atom , i n t s , i n t ∗ s p i m p l i c a t e d , i n t ∗ d s u b s e t ,
3 i n t ∗ d o r d e r e d C l a u s e , i n t ∗ d atom , i n t ∗ d f l a g , i n t ∗ d s p i m p l i c a t e d)
4 {

5 i n t f l a g [2] ; / / f l a g [0] : conf , f l a g [1] : imp
6 cudaMemset (& d f l a g [0] , 0 , s i z e o f (i n t)) ; / / c o n f = 0;
7 cudaMemcpy (d atom , atom , s i z e o f (i n t) ∗ (numatom + 1) ,
8 cudaMemcpyHostToDevice) ;
9 cudaMemcpy (d s p i m p l i c a t e d , s p i m p l i c a t e d , s i z e o f (i n t) ∗ (numatom +1) ,

10 cudaMemcpyHostToDevice) ;
11 do {

12 cudaMemset (& d f l a g [1] , 0 , s i z e o f (i n t)) ; / / imp = 0;
13 BCPEngine<<< s , BLKSZ >>>(d s u b s e t , d o r d e r e d C l a u s e ,
14 d atom , d f l a g , d s p i m p l i c a t e d) ;
15 cudaMemcpy (f l a g , d f l a g , s i z e o f (i n t)∗2 , cudaMemcpyDeviceToHost) ;
16 } whi le (! f l a g [0] && f l a g [1]) ; / / c o n f == 0 && imp != 0
17 i f (! f l a g [0]) { / / no c o n f l i c t
18 cudaMemcpy (atom , d atom , s i z e o f (i n t) ∗ (numatom + 1) ,
19 cudaMemcpyDeviceToHost) ;
20 cudaMemcpy (s p i m p l i c a t e d , d s p i m p l i c a t e d , s i z e o f (i n t) ∗ (numatom +1) ,
21 cudaMemcpyDeviceToHost) ;
22 }

23 re turn f l a g [0] ; / / r e t u r n c o n f ;
24 }

c© 2012 Information Processing Society of Japan 3

3ⓒ 2012 Information Processing Society of Japan

Vol.2012-MPS-89 No.8
2012/7/16

IPSJ SIG Technical Report

same variable and attempt to assign the variable different values,
then conflict should be detected as shown in line 31 in Listing 4.
However, even if line 31 is deleted, no problem occurs because it
will be detected as conflict at the next invocation of BCPEngine.
Preliminary experiments show that the code without line 31 is
faster by a few percent. Therefore, we deleted line 31. Fourth,
implication flag variable on global memory is not updated imme-
diately. Instead, each thread updates myImplication flag variable
on a register at each iteration and finally updates implication flag
variable once (line 34 in Listing 4).
3.4.1 Cache Configuration

The proposed kernel function in Listing 4 never use shared
memory. Instead, it relies on cache memory of Fermi architec-
ture. Fermi GPUs can configure size of shared memory and L1
cache memory either 16KB/48KB or 48KB/16KB. Our current
implementation never use shared memory. Therefore, we set the
size of L1 cache memory at 48KB.

4. Experiments
This section compares the performance of the proposed CUDA

program with a CPU program that performs the same computa-
tion. We measured the execution time (average of 10 trials for
each test) of not only BCP procedure but also whole execution
of 3SAT-DC with BCP procedure. We embedded invocations of
BCP procedure just before recursive calls in line 6, 8, 10, and
11 in Listing 1, which correspond to Decisions. Furthermore, we
set up the maximum number BCPMAX of invocations of BCP
procedure. If our SAT solver executed BCP procedure BCPMAX
times, we stopped our SAT solver and measured the execution
time at that time. If our SAT solver found a solution or exhausted
the search space before BCP procedure was executed BCPMAX
times, the execution time at that time is measured. We fixed the
number of threads in a thread block at 64 because preliminary
experiments showed the number is better.

For each test, a single core of 2.93 GHz Intel Core i3 and
NVIDIA GeForce GTX480 was used. The OS used is Windows7
Professional SP1 with NVIDIA graphics driver Version 285.62.
For compilation, Microsoft Visual Studio 2008 Professional Edi-
tion with optimization option /O2 and CUDA 3.2 SDK were used.

4.1 Performance and Problem Size
In this section, we compare the performance of GPU with

that of CPU for various problem sizes. The used problem in-
stances were generated by Motoki’s 3SAT instance generator G3
(n,m) [15], [16] (G3 for short). G3 generates a boolean expression
that has exactly one solution with high probability. In general, to
solve 3SAT instance with many (a few) solutions is easy (hard).

Figure 1, 2, and 3 show a performance comparison between
CPU and GPU with problem instances generated by G3. As for
Figure 1 and 2, x-axis is the number of variables and y-axis is
the execution time in second. Figure 1 shows performance for
relatively small instances with BCPMAX 50000. Figure 2 shows
performance for relatively large instances with BCPMAX 10000.
Figure 3 shows the speedup ratios in case of Figure 1 and 2.
As for Figure 3, x-axis is the number of variables and y-axis is
speedup ratio. Our GPU solver runs faster with an increase of

Fig. 1 A performance comparison between CPU and GPU (small instance)

Fig. 2 A performance comparison between CPU and GPU (large instance)

Fig. 3 Speedup ratios of GPU to CPU

the problem size (i.e., the number of variables). Although GPU is
slower than CPU for small problems, it is reversed for 2500 vari-
ables. The best GPU performance is about 4.5 times than CPU
for 50000 variables. For more than 50000 variables, the perfor-
mance of GPU tends to decrease with an increase of the problem
size.

4.2 Performance and the Number of BCP Procedure Done
In this section, we fix problem size and compare the perfor-

mance of GPU with that of CPU for various values of BCPMAX.
We randomly selected 10 instances from SAT11 Competition [17]
with category RANDOM, 50000 variables, and 210000 clauses.

c© 2012 Information Processing Society of Japan

4ⓒ 2012 Information Processing Society of Japan

Vol.2012-MPS-89 No.8
2012/7/16

IPSJ SIG Technical Report

Listing 4 A CUDA C code of the proposed parallelized BCP procedure

1 g l o b a l vo id BCPEngine (i n t ∗ s u b s e t , i n t (∗ o r d e r e d C l a u s e) [4] ,
2 i n t ∗atom , i n t ∗ f l a g , i n t ∗ s p i m p l i c a t e d)
3 {

4 i n t s i z e = s u b s e t [blockIdx . x + 1] − s u b s e t [blockIdx . x] ;
5 o r d e r e d C l a u s e += s u b s e t [blockIdx . x] ;
6 i n t m y I m p l i c a t i o n = 0 ;
7 f o r (i n t i = threadIdx . x ; i < s i z e ; i += blockDim . x) {
8 i f (f l a g [0]) r e t u r n ; / / Ano ther t h r e a d d e t e c t e d c o n f l i c t
9 i n t c [4] ;

10 ∗ ((i n t 4 ∗) c) = ∗ ((i n t 4 ∗) o r d e r e d C l a u s e [i]) ;
11 i f (c [0] ∗ atom [abs (c [0])] >= 0) go to F ;
12 i f (c [1] ∗ atom [abs (c [1])] >= 0) go to F ;
13 i f (c [2] ∗ atom [abs (c [2])] >= 0) go to F ;
14 f l a g [0] = 1 ; / / c o n f = 1;
15 r e t u r n ;
16 F :
17 i n t numUnknown = 0 ; i n t idxUnknown ;
18 i f (atom [abs (c [0])] ==UNKNOWN) { numUnknown++; idxUnknown =0 ; }
19 i f (atom [abs (c [1])] ==UNKNOWN) { numUnknown++; idxUnknown =1 ; }
20 i f (atom [abs (c [2])] ==UNKNOWN) { numUnknown++; idxUnknown =2 ; }
21 i f (numUnknown == 1) { / / e x a c t l y one l i t e r a l o f unknown v a l u e i n o r d e r e d C l a u s e [i]
22 i f (c [0] ∗ atom [abs (c [0])] > 0) c o n t i n u e ;
23 i f (c [1] ∗ atom [abs (c [1])] > 0) c o n t i n u e ;
24 i f (c [2] ∗ atom [abs (c [2])] > 0) c o n t i n u e ;
25 i n t l i tUnknown = c [idxUnknown] ;
26 i n t v a l = (l i tUnknown > 0) ? TRUE : FALSE ;
27 i n t o l d = atomicCAS(&atom [abs (l i tUnknown)] , UNKNOWN, v a l) ;
28 i f (o l d == UNKNOWN) { m y I m p l i c a t i o n ++;
29 s p i m p l i c a t e d [atomicAdd(& s p i m p l i c a t e d [0] , 1)]
30 = abs (l i tUnknown) ; }
31 / / e l s e i f (o l d != v a l) { f l a g [0] = 1; r e t u r n ; }
32 }

33 }

34 i f (m y I m p l i c a t i o n) f l a g [1] = 1 ; / / imp = 1;
35 }

36 }

c© 2012 Information Processing Society of Japan 5

5ⓒ 2012 Information Processing Society of Japan

Vol.2012-MPS-89 No.8
2012/7/16

IPSJ SIG Technical Report

Fig. 4 Relation between speedup ratio and BCPMAX

Figure 4 shows the result. The x-axis shows the name of in-
stance file name and the y-axis is speedup ratio. The speedup
ratio is improved with an increase of BCPMAX. Even if BCP-
MAX is 1000, GPU is 1.5 times faster than CPU in average. The
best performance (6.7 times speedup) of GPU is obtained when
BCPMAX is 10000. For BCPMAX larger than 10000, the per-
formance improvement is negligible.

5. Related Works
As far as we know, there exist five existing research on SAT

algorithm parallelized on a CUDA GPU, as shown below.
In [18], Meyer et al. proposed a complete-type method to par-

allelize 3SAT-DC like us. However, they did not use BCP pro-
cedure. Instead, they proposed a problem partitioning method to
parallelize divide-and-conquer itself and their own heuristic for
Decision phase.

In [19], McDonald et al. proposed an incomplete-type method
to parallelize WalkSAT algorithm with clause learning. Their
parallelization method is to run many threads such that each
thread executes serial WalkSAT algorithm with pseudo random
sequence different any other thread.

In [20], Gulati et al. proposed a complete-type method named
MESP (MiniSAT enhanced with SurveyPropagation). They
experimentally showed speedup ratio of 2.35 in average with
2.67GHz Intel i7 CPU and NVIDIA GeForce 280GTX GPU.

In [21], Wang et al. proposed an incomplete-type method of a
celler genetic algorithm with random walk local search.

In [22], Deleau et al. proposed an incomplete-type method
such that SAT instance is represented by a 0-1 matrix and 0-1
matrix multiplication is used to search a solution for a given SAT
instance.

6. Conclusion and Future Work
This paper has proposed a method to parallelize BCP proce-

dure for SAT algorithm and has implemented a CUDA GPU pro-
gram based on the proposed method. Experimental results show
that the proposed GPU SAT solver runs maximum 6.7 times faster
than the corresponding CPU solver. One of future works is to re-
alize more speedup by improving clause partitioning method and

so on.
Acknowledgments This manuscript is based on the previous

style file for A4 landscape papers. The Editorial Board of the
JIP sincerely thanks its members for their effort in preparing the
previous version.

References
[1] Garey, M. R. and Johnson, D. S. : Computers and Intractability: A

Guide to the Theory of NP-Completeness, W.H. Freeman (1979)
[2] Davis, M. and Putnum, H. : A Computing Procedure for Quantifica-

tion Theory, Journal of the ACM, Vol.7, No.3, pp.201-215 (1960)
[3] Davis, M., Logemann, G., and Loveland, D. : A Machine Program for

Theorem Proving, Communications of the ACM, Vol.5, No.7, pp.394-
397 (1962)

[4] Davis, J. D., Tan, Z., Yu, F., and Zhang, L. : Designing an Efficient
Hardware Implication Accelerator for SAT Solving, LNCS Vol.4996,
pp.48-62 (2008)

[5] SAT Research Group, Princeton University : zChaff,
http://www.princeton.edu/ chaff/zchaff.html

[6] Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., and Malik, S. :
Chaff: Engineering an Efficient SAT Solver, 39th Design Automation
Conference (DAC), (2001)

[7] Mahajan, Y. S., Fu, Z., and Malik S. : Zchaff2004: An efficient SAT
solver, International Conference on Theory and Applications of Satis-
fiability Testing (SAT), pp.360-375 (2004)

[8] Kirk, D. B. and Hwu, W. W.; Programming Massively Parallel Proces-
sors: A Hands-on Approach. Morgan Kaufmann (2010)

[9] Sanders, J. and Kandrot, E.; CUDA by Example: An Introduction
to General-Purpose GPU Programming. Addison-Wesley Professional
(2010)

[10] Lindholm, E., Nickolls, J., Oberman, S., and Montrym, J.: NVIDIA
Tesla: A Unified Graphics and Computing Architecture. IEEE Micro,
Vol.28, No.2, pp.39–55 (2008)

[11] Garland, M. and Kirk, D. B.: Understanding Throughput-Oriented Ar-
chitectures, Communications of the ACM, Vol.53, No.11, pp.58-66
(2010)

[12] NVIDIA: CUDA Programming Guide Version 4.0.
http://www.nvidia.com/object/ cuda develop.html (2011)

[13] NVIDIA: CUDA Best Practice Guide 4.0.
http://www.nvidia.com/object/ cuda develop.html (2011)

[14] Monien, B. and Speckenmeyer, E. : Solving satisfiability in less than
2n steps, Discrete Applied Mathematics, Vol.10, No.3, pp.287-295
(1985)

[15] Motoki, M. : SAT Instance Generation Page,
http://www.is.titech.ac.jp/ watanabe/gensat/

[16] Motoki, M. and Uehara, R. : Unique Solution Instance Generation
for the 3-Satisfiability (3SAT) Problem, International Conference on
Theory and Applications of Satisfiability Testing (SAT), pp.293-307
(2000)

[17] Jarvisalo, M., Berre, D. L. and Roussel, O. : SAT Competition 2011,
http://www.satcompetition.org/2011/ (2011)

[18] Meyer, Q., Schönfeld, F., Stamminger, M., and Wanka, R. : 3-SAT on
CUDA: Towards a Massively Parallel SAT Solver, High Performance
Computing and Simulation Conference (HPSC), pp.306-313 (2010)

[19] McDonald, A. and Gordon, G. : ParallelWalkSAT with Clause Learn-
ing, Data Analysis Project Presentation, School of Computer Science,
Carnegie Mellon University, http://www.ml.cmu.edu/research/dap-
papers/dap mcdonald.pdf (2009)

[20] Gulati, K. and Khatri, S. P. : Boolean Satisfiability on a Graphics
Processor, the 20th Great Lakes Symposium on VLSI (GLSVLSI),
pp.123-126 (2010)

[21] Wang, Y. : NVIDIA CUDA Architecture-based Parallel Incomplete
SAT Solver, Master Project Final Report, Faculty of Rochester Insti-
tute of Technology (2010)

[22] Deleau, H., Jaillet, C., and Krajecki, M. : GPU4SAT: Solving the SAT
Problem on GPU, http://para08.idi.ntnu.no/docs/submission 49.pdf
(2008)

c© 2012 Information Processing Society of Japan

6ⓒ 2012 Information Processing Society of Japan

Vol.2012-MPS-89 No.8
2012/7/16

