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Performance Evaluation of Some Inverse lteration
Algorithms on PowerXCell™ 8i Processor
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Masami TAKATA HiroYUKI ISHIGAMI Kt KiMmura Y osHiMasA NAKAMURA

Abstract: In this paper, we compare with the inverse iteration algorithms on PowerXC8ll processor, which

has been known as a heterogeneous environment. When some of all the eigenvalues are close together or there are
clusters of eigenvalues, reorthogonalization must be adopted to all the eigenvectors associated with such eigenvalues.
Reorthogonalization algorithms need a lot of computational cost. The Classical Gram-Schmidt (CGS) algorithm, the
modified Gram-Schmidt (MGS) algorithm, and the Householder orthogonalization algorithm in terms of the compact
WY representation have been known as reorthogonalization algorithms. These algorithms can be computed using
BLAS level-1 and level-2. Since synergistic processor elements in PowerXC&illprocessor archive the high per-
formance of BLAS level-2 and level-3, the orthogonalization algorithms except the MGS algorithm can be computed
high-speed on parallel computers.

PACKage) [16], which is a software library for numerical linear
algebra, has codes that integrate all the above-mentioned algo-
The eigenvalue decomposition of a symmetric matrix is one rithms. These algorithms can be parallelized, except the root-free
of the most important operations in linear algebra. It is used in QR algorithm.
molecular orbital of chemical, vibrational analysis, image pro- The inverse iteration algorithm is an algorithm for comput-
cessing, data searches, etc.. ing eigenvectors independently associated with mutually distinct
Owing to recent improvements in the performance of comput- eigenvalues. However, when some eigenvalues are very close to
ers equipped with multicore processors, we have had more op-each other, the eigenvectors, which are computed using the in-
portunities to perform calculations on parallel computers. As a verse iteration algorithm, must be reorthogonalized. As reorthog-
result, there has been an increase in the demand for an eigenvaluenalization algorithms, the Classical Gram-Schmidt (CGS) algo-
decomposition algorithm that can bfextively parallelized. rithm [10], the MGS algorithm, the Householder orthogonaliza-
Any n x n symmetric matrix is transformed into a symmetric tion algorithm [15] are known. Reorthogonalization algorithms
tridiagonal matrix by using a sequence of Householder transfor- need a lot of computational cost. The CGS algorithm is suitable
mations [4], [9]. This preconditioning process helps to shorten algorithm for parallel computing. The orthogonality of eigenvec-
computational time drastically. Hence, eigenvalue decompositiontors computed by the CGS algorithm depends on the square of
algorithms of symmetric tridiagonal matrices are important. Sev- the condition number of the eigenvectors, which are generated
eral eigenvalue decomposition algorithms of a symmetric tridi- using the inverse iteration, in the same cluster of the eigenvalues
agonal matrix have been proposed [3], [7], [10], [12], [13], [17]. [20]. The MGS algorithm is sequential and flieient for parallel
They are classified into two types. The first type of algorithm computing. The orthogonality of eigenvectors computed by the
computes simultaneously all the eigenvalues and the eigenvecMGS algorithm depends on the condition number. The House-
tors. Algorithms of this type include the QR algorithm [10] holder orthogonalization algorithm can orthogonalize eigenvec-
and the divide-and-conquer algorithm [3], [13]. The second type tors by using the Householder transformation [19]. The orthog-
of algorithm computes all or some eigenvalues and all or someonality in the Householder orthogonalization algorithm does not
eigenvectors. Algorithms for computing eigenvalues include the depend on the condition number. The Householder algorithm is
root-free QR algorithm [12] and the bisection algorithm [10]. Al- sequential and irfécient for parallel computing. Ishigami et. al.
gorithms for computing eigenvectors include the figorithm have developed parallel algorithms for the Householder orthogo-
[7] and the inverse iteration algorithm with the modified Gram- nalization algorithm in terms of the compact WY representation
Schmidt (MGS) algorithm [10], [17]. LAPACK (Linear Algebra  [15], which is named as the cWY algorithm in this paper.
In ExaFLOP computing, since it is critical issue to minimize
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cell processor has PowerPC Processor Element (PPE) and eight is decomposed as
cores of Synergistic Processor Elements (SPEs). PPE and SPEs T - 0.DOT .
can share the same memory. Since SPEs are consisted as mul- =~ QrbQr (8)

ticore, SPEs archive the hlgh performance of BLAS level-2 and by some orthogona| matri@.l._ Consequenﬂy’ by Combining

level-3 [1]. Basic Linear Algebra Subprograms (BLAS) is an ap- Eq.(7) with Eq.(8), the eigenvalue decompositionfofs given
plication programming interface standard for publishing libraries ag

to perform basic linear algebra operations such as vector and ma-

trix multiplications. BLAS level-1 can compute vector operations A= (QaQr)D(QaQr)". ©)
such as inner products, dot products and vector norms. BLAS

level-2 and level-3 contain matrix-vector and matrix-matrix op- 3- INverse iteration algorithm

erations, respectively. The CGS algorithm and the MGS algo-
rithm can be computed using BLAS level-2 and level-1, respec-
tively. The cWY needs BLAS level-1 and level-2. Note that, the

Householder orthogonalization algorithm is almost computed us-
ing BLAS level-2. Therefore, these orthogonalization algorithms
should be performed in SPEs. By using PPE, an implemema‘orthogonalization algorithms should be adopted.

tion of an inverse iteration is easy. In this paper, we compare |, section 3.1, we explain a concept of the inverse iteration

with the CGS algorithm, the MGS algorithm, and the cWY on 5i0rithm. In Section 3.2, 3.3, and 3.4, the CGS algorithm, the
PowerXCell'M 8i processor.

In Section 2, we give a brief review on eigenvalue decomposi-

In this section, we introduce the inverse iteration algorithm.
When some of all the eigenvalues are close together or there are
clusters of eigenvalues, reorthogonalization must be needed to
all the eigenvectors associated with such eigenvalues, since the
eigenvectors needs to be orthogonal to each other. Therefore, re-

MGS algorithm and the cWY are described, respectively. In Sec-
tion 3.5, these orthogonalization algorithm are compared. In Sec-

tion. In Section 3, we explain an inverse iteration algorithm and o 3.6 we descrive a relationship between BLAS and the or-
describe its orthogonalization algorithms. In Section 4, we con- thogonalization algorithms.

firm each performance in the inverse iteration algorithms with

orthogonalization algorithms on PowerXCeéfl 8i processor. 3.1 Concept

2. Eigenvalue decomposition When 1j is an approximate value of; and a starting vector
vj(o) are given, the inverse iteration algorithm can compute an

Let Aben x nmatrix such that eigenvector ofT. To this end, the following equation is solved

Avi = v, (j=1.2,...n) @ iteratively:
_ 1) oW = D
wherel; (1; : A; € C) andv;j (vj : vj(# 0) € C") are an eigen- (T /lJI)UJ Y (10)
value and an eigenvector 8f respectively. If eigenvectors of If the eigenvalues of are mutually well-separated, the solution
Aare linear independent, then of v](k) in Eq.(10) generically converges to the eigenvector asso-
AV = VD @ ciated with1; ask goes toco The above iteration algorithm is
- - the inverse iteration algorithm. When eigenvectors are com-
D= d'ag[/ll A ’ln]v @) puted, the computational cost of this algorithm is of order.
V = [vl vy - 'Un]- (4) The computational cost is less than that of other algorithms.In
the implementation, the vectmfk) must be normalized to avoid
SinceV is nonsingular, the inverse matik* exists and/~1V is
overflow.
equal to an identity matrik. Hence A is decomposed as
A= VDV ) 3.2 Classical Gr_am-Schm|dt algorithm .
The CGS algorithm has been proposed as the first reorthogo-
Eq.(5) is called eigenvalue decompositionfof nalization algorithm. In the CGS algorithm, a basis veactqy
Let A be real symmetric, then; € R andv; € R. Moreover, which is an orthogonal vector i, is computed as follows:
eigenvectora; are orthogonal to each other,if # A, # --- # i1
An. Note here thaV becomes orthogonal matrix by the normal- m] = v - Z(vj,wikvi, (11)
izationvj — vj/|lvj|l. ThenAis decomposed as i=1
x!
A=VDV" 6) ¢ = (12)
NSl

whereVT denotes the transposed matrix\af
In a famous algorithm, a real symmetric matfxs similarly
transformed into a symmetric tridiagonal matiiixby using the

In Eq.(11), (vj, zj)x; meansan orthographic projection on the
direction tox; of vj. Throughw; is subtracted the orthographic

: projection,v; can be picked out of elemenis;, x5, - - -, zj_1.
Householder transformations. Namely, Thus,z; is orthogonalized.
QIAQa=T. @ Fig. 1shows the orthogonalization algorithm using the CGS al-

gorithm. Since Eq.(11) and Eq.(12) are computed using an inner
with suitable orthogonal matriQ,. After the tridiagonalization, product, BLAS level-1 has to be adopted. Therefore, to adopt
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1 1 = ;. 1: for j=1tondo
2: for j = 2tomdo 2: Generatevj(o) from random numbers.
3. Generatej in an algorithm. 3: k=0
4. Eq.(11) and Eq.(12) : Orthogonalizg to «; by usingzy, - - -, xj-1. 4:  repeat
5: end for 5: Kek+1. -
Fig. 1 Classical Gram-Schmidt algorithm. 6: Normalizev;™. o .

7: Eq.(10) : Computev} ) by usingvg D,
1: for j=1tondo 8: if |4 - Aj-1| < 10°3|T|l, then
2: Generata;}o) from random numbers. 9: fori=jito i -1do
3. k=0 10: ¥ UJ( ) _ (v}k),:ci)wi
4:  repeat 11: end for
5: ke—k+1. 12: else
6: Normalizev{ ™. 13: 1=
7: Eq.(10) : Compute'! by usingv®*?. 14: endif
8 if q; )fl < f03 ll_ t{] 9v; 15:  until some condition is met.
o ! lfcj);i L1l o 1”d|c|)’ en 16:  Normalizev! to ;.

: =1to] o 17: end for
) Fig. 3 Inverse iteration algorithm with the MGS algorithm.
10: vj(k) — vj(k) =[x, 22, -+, xj] v%k)
m}ll

11: end for
12: else 1: for j = 1tomdo
13: ji=] 2:  Generata; in an algorithm.
14: end if . ’ T T T

3 v =(l -siyjyl, ) (I - | - vj.
15:  until some condition is met. : = (1 =511, 1y1_1) ) ( , seyzv7) (1 - sy v

: ® 4:  Computey; ands; by usingv’.

16:  Normalizev;” to z;. i
17: end for 5  x=(I-smy])(1 - 2v293) - (| - swiy] ) e

6: end for
Fig. 2 Inverse iteration algorithm with the CGS algorithnj, means the ) o )

index j of the first eigenvalue of a cluster. Fig. 4 Householder orthogonalization algorithm.

BLAS level-2, Eq.(11) and Eq.(12) should be transformed into
the following vector product.

neck of the inverse iteration with respect to the computational

wT

w# time. The MGS algorithm is mainly based on BLAS level-1 such
m; =vj - [®1, @2, , @) 1] _2 vj. (13) as the inner product operation and the AXPY operation [1].

93111 3.4 Householder orthogonalization algorithm

Fig. 2 is a code, which is based on DSTEIN in LAPACK and The Householder orthogonalization algorithm is one of the al-
modified the orthogonalization process from the MGS algorithm €rnative orthogonalization algorithms. When some vectgrs

to the CGS algorithm. Specifically, line 10 in Fig. 2 is changed to Wi € &' satisfyl|vjll2 = [lw;l2, there exists the symmetric matrix
Eq.(13). H; satisfyingHjH = H/H; = |, Hjv; = w; defined by

3.3 Modified Gram-Schmidt algorithm Hj=1-syy]. (14)

If the MGS algorithm is adopted to reorthogonalize eigenvec-
tors, the computational cost is of ordefn. Therefore, the com- ~ Wherey; = v; — w; ands; = 2/|lyjl|3. The transformation by
putational cost, for which eigenvectors of a maffixare com- H; is called the Householder transformatioRig. 4 shows the
puted, increases significantly. In general, to implement the in- Householder orthogonalization algorithm. The vecjoris the
verse iteration algorithm on computers, the MGS algorithm with Vector, in which the elements from 1 fo- 1 are the same as the
the Peters-Wilkinson method [17] is adopted as the standard or-elements ob and the elements fror+ 1 ton are zero{ and
thogonalization process. The MGS algorithm with the Peters- wj are defined as follows:
Wilkinson method is also available on DSTEIN, which is imple-

mented in the LAPACK code [16] of the inverse iteration algo- fu]f = [”]‘{1) u]”_” ”ﬁm v'j(m]T
rithm for. computing elgenvgctprs of a real symmetric tr|fj|ago- = Hj_1Hj- - HoHyvj, (15)
nal matrix. In the Peters-Wilkinson method, when the distance , , T
between the close eigenvalues is less thar|[q|, these close wj = [vj{l} o Vjgey C 0] ’ (16)
eigenvalues are regarded as members of the same cluster of eigen-

\Where,

values, and all of the eigenvectors associated with these eigenva

ues are orthogonalized. _
Flg_. 3shoyvs the inverse |t§r§t|on algorithm ba_sed on _the MGS ¢ = —Sgn(v}m) Z U’j(i}z' @an

algorithm with the Peters-Wilkinson method. This loop includes oy

the iteration based on Eq.(10) and the orthogonalization of the

eigenvectors. This orthogonalization process becomes a bottleH;, y; ands; are computed using; asfollows:

© 2012 Information Processing Society of Japan 3
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for j = 1tomdo
Generate; in an algorithm
of = (1= Y187, Y], ).
Computey; ands; by usingv;.
. Eq.(24) and Eq.(25) : Updatg andS; by usings;, yj, Sj-1 andYj_z.
6. g =(1-YSY])e;.
7: end for

1
2:
3:
4:
5

Fig. 5 Householder orthogonalization algorithm in terms of the compact
WY representation.

Hi = I - sjyjyf (18)
Yj = ’UJ( - wj (19)
n
Iyl = W =)+ . v (20)
i=j+1
n
Y- 20+ (21)
i=]
= Z(C]2 — U](j}Cj). (22)
2 1
Sj (23)

T ) -
”yjllz C]— - U,““CJ

The vectore; in Fig. 4 is thej-th vector of am-dimensional iden-
tity matrix.
The orthogonality of the vectors; generated by the House-

holder orthogonalization algorithm does not depend on the con-

dition number of a matriX. Therefore, the Householder orthog-

Vol.2012-MPS-89 No.4

2012/7/16
1: for j=1tondo
2: Generatevj(o) from random numbers.
3 k=0
4:  repeat
5: kKe—k+1.
6: Normalizev{ ™.
7 Solve linear equations(T - j1) v® = v
8: if 14j — Aj_1l < 20°3|T||, then
9 je = i-a
10: if jc=1andk= 10 then
11: ComputeY; = y; andS; = s; by usingw;,.
12: end if ©
13: vl =(1-Y.SLY]) . _
14: Computey;.,1 ands; 1 by usingvy , ;.
15: Eq.(24) and Eq.(25) : Updatg .1 andS; 1 by usings;.,1,
Yje+1, Sjc andYj,.
16: G (I - ch+1Sjc+1Yj:+l) €jc+1-
17: else
18: j1e .
19: end if
20:  until some condition is met.
21: Normalize'uj(k) to vj.
22: end for
Fig. 6 Inverse iteration algorithm with the cWY algorithm.

Table 1 Comparison of the orthogonalization algorithms [5] [20].

algorithms  Computation  Syrfwonization ~ Orthogonality
CGS almosen¥n Oo(m) O(ex(A)?)
MGS almost 2¢n o(m?) O(ex(A)
House almost@#n o(m) O(e)
cWY almost 4rn o(m) O(e)

onalization algorithm is more stable than the MGS algorithm. On

the other hand, being similar to the MGS algorithm, it is sequen- in Fig.6.

tial algorithm that is mainly based on BLAS level-1. Its compu- The cWY algorithm has a stable orthogonality arising from the
tational cost is higher than that of the MGS algorithm. Thus the Householder transformations, and its mathematical calculation is

Householder orthogonalization algorithm is anffeetive algo-
rithm in parallel computing.
By combination with the compact WY representation [18],

mainly performed by BLAS level-2 such as the product of a ma-
trix and a vector and a rank-1 update operation.

the Householder orthogonalization algorithm becomes capable of3-5> Comparison of the orthogonalization algorithms

computation with BLAS level-2 [20]. Hence, in this paper, the
cWY is adopted to an inverse iteration. D&t = y; € R™ and

S1 = s € R, MatricesY; and upper triangular matric&; is
defined recursively as follows:

The cWY algorithm has a stable orthogonality arising from the
Householder transformations, and its mathematical calculation is
mainly performed by BLAS level-2 such as the product of a ma-
trix and a vector and a rank-1 update operation. As a result, this
orthogonalization has more stable and sophisticated orthogonal-

Yj = [Yj-l yj], (24) ity, and it is more &ective for parallel computing than the MGS
S Sja —Sij—leT_lyj 5 algorithm. Table 1 displays theftirences in performance of the
1o 5 : (29) four orthogonalization methods, considered in the above sections.
In this table, “House” denotes the Householder orthogonalization
In this case, the following equation holds algorithm. Computationdenotes the order of the computational
HiH - Hj = 1 = Y;S;Y7. (26) cost. .Serchronizatiorden.otes the order of the number of syn-
chronizationsOrthogonalitydenotes the norifV ™V — 1||, where
As shown by Eq.(26), the product of the Householder matrices V = [vs,--- ,v,]. € denotes the machine epsilon andenotes

HiH>--- Hj can be rewriten in a simple block matrix form. Here
| - YJ-S,-Y].T is called the compact WY representation of the prod-
uct of the Householder matriceiig. 5 shows the orthogonaliza-
tion algorithm.

Fig. 6 is a code, which is based on DSTEIN in LAPACK and

the condition number of a matrix. These are the results obtained
from [5] and [20].

On the other hand, the computational cost in the CGS algo-
rithm is twice less than that in the cWY algorithm. Therefore,
when high orthogonality is not needed, the CGS algorithm is also

changed the orthogonalization process from the MGS algorithm the suitable selection for the orthogonalization.

to the cWY algorithm. In other words, the MGS algorithm (from
line 4 to 15 in Fig. 3) is rewriten the cWY algorithm.In Fig. 6, the
index j. denotes thg.-th eigenvalue of the cluster in computing
the jc-th eigenvector. This indej needs to compute and update
S; andY;. Therefore, a variablg: should be confirmed on line 9

© 2012 Information Processing Society of Japan
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The line from 1 to 7 on each algorithm is the code in the in-
verse iteration algorithm without an orthogonalization algorithm.
This computational costnis relatively smaller than that in the
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inverse iteration algorithm with an orthogonalization algorithm Table 2 Experimental results
shown in Table 1. Therefore, we adopt SPEs to orthogonalization algorithm  time[sec.] |IAV - VDIl VTV — 1]l
: typel (dimension sizis 2100.)
algorithms. . i . CGS 1035 9.1% 10T 2.50x 1014
In the CGS algorithm, the line 10 on Fig. 2 can be computed MGS 732  9.15¢10°15 2.50% 10°24
using BLAS level-2. In the MGS algorithm, BLAS level-1 is cWY 1351  0.70x10°%® 2.61x 10
: : - - : (dimension size ig200.)
adopted in the .Ilne 10 on Fig. 3. In the .cWY algorithm, the line oGS 6054 17510 33T I
13 and 16 on Fig. 6 can be performed with BLAS level-2, and the MGS 64.51 1.25¢ 10°4 3.32x 10714
line 11 and 14 can be performed with BLAS level-1. cwY 94.27  0.067 10 3.36x 10"
(dimension size i$300.)
4. Experiments CGS 18852  1.5% 10 3.49x 10
MGS 47853  1.5% 10 3.49x 10°%4
In this section, we describe some numerical experiments per- (dFWY - 3}38483) 030<10%*  452x10
. . . Imension size | .
formed u5|.ng the CGS algorlthm., the MGS algorithm, and the CGS 768.40 185107 347107
cWY algorithm on PowerXCellM 8i processor. MGS 5887.12 1.8k 1074 3.47x 1074
In the experiments, we use GigaAccel 180, which is a PCI Ex- — (d‘?WY _ _1,40281-33) 10K 10  21.48x10%
. . ype imension SIZEs .
press board with PowerXCélN 8i processor. PowerXCél CGS 315 87X 10T 106X 10
8i processor is one of Cell Broadband EndiMe The theoreti- MGS 263.82  8.64 1071 1.11x 10713
. .. . . 14 13
cal performances of a single and double precision floating-point (d'cr\r?cl;r(\s'on = 7:2'32) 0.3% 10° 2.56x 107
. . . . . | | 1ze | .
arithmetic operation on an SPE in PowerXGHII8i processor cGS 24792 171053 184x 103
are 180GFLOPS and 90GFLOPS ir8@Hz, respectively. We MGS 2392.14 1.7k 101 1.97x 10713
. . . . 13 13
implement those algorithms by using Cell SDK 3.1 [2], which CWY 45693  0.05x 10" 4.96x 100
. . (dimension size i$300.)
is developed by the IBM corporate [14]. Cell SDK 3.1 includes CGS 75469  26&% 1053 7 83x 1053
the parallelized BLAS for Cell Broadband Engité The MGS MGS 7864.63  2.6% 10  3.04x 10713

cWY 1394.79  0.06k% 10°%3 7.45x 10713

algorithm is implemented in Cell SDK 3.1. (@imension size 18400)

As experimental matrices, we use three types. Type 1 is a ran- CGS 171853  35%x 102 433x 103
dom matrix, of which elements are set to the random number on MGS 1677071  3.48& 107 453x 10713
the interval from 0 to 1. Type 2 is shown as follows: cWy 318658 0.07&% 107 10.18x 107"

’ ’ type3  (dimension sizes 2100.)
1 1 CGS 2013 1.1x107% 1.00x 10 °
MGS 28.15 1.1k 10% 1.07x 10713
111 cWY 3564 018 101 1.06x 10713
27 (dimension size i4200.)
’ ) CGS 89.47  1.7%10712 7.72x 10712
1 1 1 MGS 202.16  1.7%101? 1.53x 10712
1 1 WY 158.18  0.25¢107*2 0.95x 10712
(dimension size i$300.)

Type 3 is the glued-Wilkinson matr/;, which is real symmet- CGS 21098  2.3% 10'11 77.29% 1013
: : : MGS 678.24 2.5k 10 2.00x 10
I’IC. alnd has dlmensmns on the order of thousands. The glued- WY 37178 2685 10-1t 217% 10-10

Wilkinson matrix has been used to evaluate the performance of (dimension size i8400.)
the inverse iteration algorithms as the benchmark problems of CGS 39150 7.9%10% 757.15x 1071
MGS 1422.99  7.9410°7% 3.13x 101!

eigenvalue decomposition [6], [8]I.V§ consists of the block ma-
trix W}, € R?>?! and the scalar parametee R and is defined
as follow:

cWY 678.31 3.1 10°%? 3.13x 107!

ands satisfies O< § < 1 and is also the semi-diagonal element of
¢ _ Wg SinceWZ is real symmetric tridiagonal and its semi-diagonal
0 Wzil s elements are nonzero, all the eigenvaluewéfare distinct and
W; _ .. (28) real, and they are divided into 21 clusters of close eigenvalues.
Whensé is small, the distance between the minimum and maxi-
s mum eigenvalues in any cluster is small. In our experiments, we
o | wi, setd = 1074,
. ‘ Table 2 shows the experimental results of the orthogonaliza-
whereW,, is defined by tion algorithms. Time in Table 2 is the computational time.
10 1 1 [IAV — VD||r and|[VTV — I||r mean the frobenius norm of syn-
1 9 1 chronization and orthogonalization, respectively.

) ) In type 1, each eigenvalue is usually separated. On the other
Wi = - (29) hand, eigenvalues in type 2 and 3 become cluster. Therefore,
2 -0 - ’ [lAV — VD||r and|IVTV — I||r are smaller than that in type 2 and

3.
In 2100 dimension size of type 1 in Table 2, the computational

time in the MGS algorithm, which is implemented by the IBM

W
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corporate, is smaller than that in the other orthogonalization al-
gorithms. However, the increasing rate of the computational time (3]
in the MGS algorithm is higher as shown in Table 2. The MGS
algorithm is computed using BLAS level-1. On the other hand, [4]
the CGS algorithm and the cWY algorithm are almost computed 5
using BLAS level-2. Therefore, in the computational time, the
CGS algorithm and the cWY algorithm are better. [6]

In Table 2,||AV — VD||r in the CGS algorithm is nearly equal
to that in the MGS algorithm|AV -V D|| of the cWY algorithm 7]
is the smallest, except the case of 6300 dimension size in type
3. The exception is likely to be caused by the ordetwgpf In
the experimentsy; is listed in descending order of eigenvalues, [8]
which are related to eigenvectors. Therefore, by using the cWY g
algorithm with suitable order af;, accuracy of eigenvector com-
putation can become more properly.

In type 1 and 2 of Table 2)V"V — ||| in the CGS algorithm
is nearly equal to that in the MGS algorithm. The CGS algo- [11]
rithm and the MGS algorithm are focused on the orthogonality of
eigenvectors. On the other hand, in the cWY algorithm, accuracy[12]
of eigenvalue decomposition is given importance. Therefore, the
orthogonality of eigenvectors is something lower than that in the
CGS algorithm and the MGS algorithm. [13]

In type 3 of Table 2||VTV — ||| in the CGS algorithm is worse
than that in the other orthogonalization algorithm.éls 1074,
eigenvalues in type 3 are extremely close together. Therefore, thg15)
CGS algorithm is aborted thai is picked out.

In summarization, the computational time in the cWY algo-
rithm is adequate speedy. Furthermdi@y — VD||r and||VTV —
Il|lr in the cWY algorithm is sfficient accuracy. Hence, the cWY
algorithm is suitable, except case that the high-orthogonality of
eigenvectors is given importance.

(10]

[14]

[16]

(17]

. [18]

5. Conclusions

In this paper, we validated the parallel performance of the in- [19]
verse iteration algorithms with the CGS algorithm, the MGS al-
gorithm, and the cWY algorithm on PowerXCEM 8i proces-
sor. PowerXCellM 8i processor is one of heterogeneous environ-
ments. In ExaFLOP computing, since it is critical issue to mini-
mize electricity, heterogeneous environments are suitable. SPEs
in PowerXCell™ 8i processor archive the high performance of
BLAS level-2 and level-3. The inverse iteration algorithms are
algorithms for computing eigenvectors and need a lot of com-
putational cost. Therefore, the algorithms should be computed
with SPEs. The experimental results show that the computational
time of the CGS algorithm and the cWY algorithm are shorter and
[IAV=VD||r and||VTV-I||r of the cWY algorithm are suffiently
small.

In a future work, the inverse iteration algorithms should be
compared on General-purpose computing on graphics processing
units (GPGPU).

[20]
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