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Performance Evaluation of Some Inverse Iteration
Algorithms on PowerXCellTM 8i Processor
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Abstract: In this paper, we compare with the inverse iteration algorithms on PowerXCellT M 8i processor, which
has been known as a heterogeneous environment. When some of all the eigenvalues are close together or there are
clusters of eigenvalues, reorthogonalization must be adopted to all the eigenvectors associated with such eigenvalues.
Reorthogonalization algorithms need a lot of computational cost. The Classical Gram-Schmidt (CGS) algorithm, the
modified Gram-Schmidt (MGS) algorithm, and the Householder orthogonalization algorithm in terms of the compact
WY representation have been known as reorthogonalization algorithms. These algorithms can be computed using
BLAS level-1 and level-2. Since synergistic processor elements in PowerXCellT M 8i processor archive the high per-
formance of BLAS level-2 and level-3, the orthogonalization algorithms except the MGS algorithm can be computed
high-speed on parallel computers.

1. Introduction

The eigenvalue decomposition of a symmetric matrix is one
of the most important operations in linear algebra. It is used in
molecular orbital of chemical, vibrational analysis, image pro-
cessing, data searches, etc..

Owing to recent improvements in the performance of comput-
ers equipped with multicore processors, we have had more op-
portunities to perform calculations on parallel computers. As a
result, there has been an increase in the demand for an eigenvalue
decomposition algorithm that can be effectively parallelized.

Any n × n symmetric matrix is transformed into a symmetric
tridiagonal matrix by using a sequence of Householder transfor-
mations [4], [9]. This preconditioning process helps to shorten
computational time drastically. Hence, eigenvalue decomposition
algorithms of symmetric tridiagonal matrices are important. Sev-
eral eigenvalue decomposition algorithms of a symmetric tridi-
agonal matrix have been proposed [3], [7], [10], [12], [13], [17].
They are classified into two types. The first type of algorithm
computes simultaneously all the eigenvalues and the eigenvec-
tors. Algorithms of this type include the QR algorithm [10]
and the divide-and-conquer algorithm [3], [13]. The second type
of algorithm computes all or some eigenvalues and all or some
eigenvectors. Algorithms for computing eigenvalues include the
root-free QR algorithm [12] and the bisection algorithm [10]. Al-
gorithms for computing eigenvectors include the MR3 algorithm
[7] and the inverse iteration algorithm with the modified Gram-
Schmidt (MGS) algorithm [10], [17]. LAPACK (Linear Algebra
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PACKage) [16], which is a software library for numerical linear
algebra, has codes that integrate all the above-mentioned algo-
rithms. These algorithms can be parallelized, except the root-free
QR algorithm.

The inverse iteration algorithm is an algorithm for comput-
ing eigenvectors independently associated with mutually distinct
eigenvalues. However, when some eigenvalues are very close to
each other, the eigenvectors, which are computed using the in-
verse iteration algorithm, must be reorthogonalized. As reorthog-
onalization algorithms, the Classical Gram-Schmidt (CGS) algo-
rithm [10], the MGS algorithm, the Householder orthogonaliza-
tion algorithm [15] are known. Reorthogonalization algorithms
need a lot of computational cost. The CGS algorithm is suitable
algorithm for parallel computing. The orthogonality of eigenvec-
tors computed by the CGS algorithm depends on the square of
the condition number of the eigenvectors, which are generated
using the inverse iteration, in the same cluster of the eigenvalues
[20]. The MGS algorithm is sequential and inefficient for parallel
computing. The orthogonality of eigenvectors computed by the
MGS algorithm depends on the condition number. The House-
holder orthogonalization algorithm can orthogonalize eigenvec-
tors by using the Householder transformation [19]. The orthog-
onality in the Householder orthogonalization algorithm does not
depend on the condition number. The Householder algorithm is
sequential and inefficient for parallel computing. Ishigami et. al.
have developed parallel algorithms for the Householder orthogo-
nalization algorithm in terms of the compact WY representation
[15], which is named as the cWY algorithm in this paper.

In ExaFLOP computing, since it is critical issue to minimize
electricity, heterogeneous environments are suitable. Conse-
quently, it is important to validate the inverse iteration algorithms
with the CGS algorithm, the MGS algorithm, and the cWY in
heterogeneous environments. As a heterogeneous environment,
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cell processor has PowerPC Processor Element (PPE) and eight
cores of Synergistic Processor Elements (SPEs). PPE and SPEs
can share the same memory. Since SPEs are consisted as mul-
ticore, SPEs archive the high performance of BLAS level-2 and
level-3 [1]. Basic Linear Algebra Subprograms (BLAS) is an ap-
plication programming interface standard for publishing libraries
to perform basic linear algebra operations such as vector and ma-
trix multiplications. BLAS level-1 can compute vector operations
such as inner products, dot products and vector norms. BLAS
level-2 and level-3 contain matrix-vector and matrix-matrix op-
erations, respectively. The CGS algorithm and the MGS algo-
rithm can be computed using BLAS level-2 and level-1, respec-
tively. The cWY needs BLAS level-1 and level-2. Note that, the
Householder orthogonalization algorithm is almost computed us-
ing BLAS level-2. Therefore, these orthogonalization algorithms
should be performed in SPEs. By using PPE, an implementa-
tion of an inverse iteration is easy. In this paper, we compare
with the CGS algorithm, the MGS algorithm, and the cWY on
PowerXCellT M 8i processor.

In Section 2, we give a brief review on eigenvalue decomposi-
tion. In Section 3, we explain an inverse iteration algorithm and
describe its orthogonalization algorithms. In Section 4, we con-
firm each performance in the inverse iteration algorithms with
orthogonalization algorithms on PowerXCellT M 8i processor.

2. Eigenvalue decomposition

Let A ben× n matrix such that

Av j = λ jv j ( j = 1,2, ..., n) (1)

whereλ j (λ j : λ j ∈ C) andv j (v j : v j(, 0) ∈ Cn) are an eigen-
value and an eigenvector ofA, respectively. If eigenvectorsv j of
A are linear independent, then

AV = VD, (2)

D = diag
[
λ1 λ2 · · · λn

]
, (3)

V =
[
v1 v2 · · · vn

]
. (4)

SinceV is nonsingular, the inverse matrixV−1 exists andV−1V is
equal to an identity matrixI . Hence,A is decomposed as

A = VDV−1 (5)

Eq.(5) is called eigenvalue decomposition ofA.
Let A be real symmetric, thenλ j ∈ R andv j ∈ R. Moreover,

eigenvectorsv j are orthogonal to each other, ifλ1 , λ2 , · · · ,
λn. Note here thatV becomes orthogonal matrix by the normal-
izationv j → v j/‖v j‖. ThenA is decomposed as

A = VDV> (6)

whereV> denotes the transposed matrix ofV.
In a famous algorithm, a real symmetric matrixA is similarly

transformed into a symmetric tridiagonal matrixT by using the
Householder transformations. Namely,

Q>AAQA = T, (7)

with suitable orthogonal matrixQA. After the tridiagonalization,

T is decomposed as

T = QT DQ>T (8)

by some orthogonal matrixQT . Consequently, by combining
Eq.(7) with Eq.(8), the eigenvalue decomposition ofA is given
as

A = (QAQT)D(QAQT)>. (9)

3. Inverse iteration algorithm

In this section, we introduce the inverse iteration algorithm.
When some of all the eigenvalues are close together or there are
clusters of eigenvalues, reorthogonalization must be needed to
all the eigenvectors associated with such eigenvalues, since the
eigenvectors needs to be orthogonal to each other. Therefore, re-
orthogonalization algorithms should be adopted.

In Section 3.1, we explain a concept of the inverse iteration
algorithm. In Section 3.2, 3.3, and 3.4, the CGS algorithm, the
MGS algorithm and the cWY are described, respectively. In Sec-
tion 3.5, these orthogonalization algorithm are compared. In Sec-
tion 3.6, we descrive a relationship between BLAS and the or-
thogonalization algorithms.

3.1 Concept
When λ̃ j is an approximate value ofλ j and a starting vector

v(0)
j are given, the inverse iteration algorithm can compute an

eigenvector ofT. To this end, the following equation is solved
iteratively:(

T − λ̃ j I
)
v(k)

j = v(k−1)
j (10)

If the eigenvalues ofT are mutually well-separated, the solution
of v(k)

j in Eq.(10) generically converges to the eigenvector asso-
ciated withλ j as k goes to∞ The above iteration algorithm is
the inverse iteration algorithm. Whenm eigenvectors are com-
puted, the computational cost of this algorithm is of ordermn.
The computational cost is less than that of other algorithms.In
the implementation, the vectorv(k)

j must be normalized to avoid
overflow.

3.2 Classical Gram-Schmidt algorithm
The CGS algorithm has been proposed as the first reorthogo-

nalization algorithm. In the CGS algorithm, a basis vectorx j ,
which is an orthogonal vector inv j , is computed as follows:

x′
j = v j −

j−1∑
i=1

〈v j ,xi〉xi , (11)

x j =
x′

j

‖x′
j‖

(12)

In Eq.(11), 〈v j ,xi〉xi meansan orthographic projection on the
direction toxi of v j . Throughv j is subtracted the orthographic
projection,v j can be picked out of elementsx1,x2, · · · ,x j−1.
Thus,x j is orthogonalized.

Fig. 1shows the orthogonalization algorithm using the CGS al-
gorithm. Since Eq.(11) and Eq.(12) are computed using an inner
product, BLAS level-1 has to be adopted. Therefore, to adopt
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1: x1 = v1.
2: for j = 2 tom do
3: Generatev j in an algorithm.
4: Eq.(11) and Eq.(12) : Orthogonalizev j to x j by usingx1, · · · , x j−1.
5: end for

Fig. 1 Classical Gram-Schmidt algorithm.

1: for j = 1 ton do
2: Generatev(0)

j from random numbers.
3: k = 0
4: repeat
5: k← k+ 1.
6: Normalizev(k−1)

j .

7: Eq.(10) : Computev(k)
j by usingv(k−1)

j .

8: if |λ̃ j − λ̃ j−1 | ≤ 10−3‖T‖, then
9: for i = j1 to j − 1 do

10: v(k)
j ← v(k)

j − [x1,x2, · · · ,x j−1]


x>1
x>2
.
.
.

x>j−1

v
(k)
j

11: end for
12: else
13: j1 = j
14: end if
15: until some condition is met.
16: Normalizev(k)

j tox j .
17: end for

Fig. 2 Inverse iteration algorithm with the CGS algorithm.j1 means the
index j of the first eigenvalue of a cluster.

BLAS level-2, Eq.(11) and Eq.(12) should be transformed into
the following vector product.

x′
j = v j − [x1,x2, · · · ,x j−1]


x>1
x>2
...

x>j−1

v j . (13)

Fig. 2 is a code, which is based on DSTEIN in LAPACK and
modified the orthogonalization process from the MGS algorithm
to the CGS algorithm. Specifically, line 10 in Fig. 2 is changed to
Eq.(13).

3.3 Modified Gram-Schmidt algorithm
If the MGS algorithm is adopted to reorthogonalize eigenvec-

tors, the computational cost is of orderm2n. Therefore, the com-
putational cost, for which eigenvectors of a matrixT are com-
puted, increases significantly. In general, to implement the in-
verse iteration algorithm on computers, the MGS algorithm with
the Peters-Wilkinson method [17] is adopted as the standard or-
thogonalization process. The MGS algorithm with the Peters-
Wilkinson method is also available on DSTEIN, which is imple-
mented in the LAPACK code [16] of the inverse iteration algo-
rithm for computing eigenvectors of a real symmetric tridiago-
nal matrix. In the Peters-Wilkinson method, when the distance
between the close eigenvalues is less than 10−3‖T‖, these close
eigenvalues are regarded as members of the same cluster of eigen-
values, and all of the eigenvectors associated with these eigenval-
ues are orthogonalized.

Fig. 3 shows the inverse iteration algorithm based on the MGS
algorithm with the Peters-Wilkinson method. This loop includes
the iteration based on Eq.(10) and the orthogonalization of the
eigenvectors. This orthogonalization process becomes a bottle-

1: for j = 1 ton do
2: Generatev(0)

j from random numbers.
3: k = 0
4: repeat
5: k← k+ 1.
6: Normalizev(k−1)

j .

7: Eq.(10) : Computev(k)
j by usingv(k−1)

j .

8: if |λ̃ j − λ̃ j−1 | ≤ 10−3‖T‖, then
9: for i = j1 to j − 1 do

10: v(k)
j ← v(k)

j − 〈v
(k)
j ,xi〉xi

11: end for
12: else
13: j1 = j
14: end if
15: until some condition is met.
16: Normalizev(k)

j tox j .
17: end for

Fig. 3 Inverse iteration algorithm with the MGS algorithm.

1: for j = 1 tom do
2: Generatev j in an algorithm.

3: v′
j =
(
I − sj−1y j−1y

>
j−1

)
· · ·
(
I − s2y2y

>
2

) (
I − s1y1y

>
1

)
v j .

4: Computey j andsj by usingv′
j .

5: x j =
(
I − s1y1y

>
1

) (
I − s2y2y

>
2

)
· · ·
(
I − sjy jy

>
j

)
e j .

6: end for

Fig. 4 Householder orthogonalization algorithm.

neck of the inverse iteration with respect to the computational
time. The MGS algorithm is mainly based on BLAS level-1 such
as the inner product operation and the AXPY operation [1].

3.4 Householder orthogonalization algorithm
The Householder orthogonalization algorithm is one of the al-

ternative orthogonalization algorithms. When some vectorsv j ,
w j ∈ Rn satisfy‖v j‖2 = ‖w j‖2, there exists the symmetric matrix
H j satisfyingH jH>j = H>j H j = I , H jv j = w j defined by

H j = I − sjy jy
>
j , (14)

wherey j = v j − w j and sj = 2/‖y j‖22. The transformation by
H j is called the Householder transformation.Fig. 4 shows the
Householder orthogonalization algorithm. The vectory j is the
vector, in which the elements from 1 toj − 1 are the same as the
elements ofv′

j and the elements fromj + 1 to n are zero.v′
j and

w j are defined as follows:

v′
j =
[
v′j{1} · · · v′j{ j−1} v

′
j{ j} · · · v′j{n}

]>
= H j−1H j−2 · · ·H2H1v j , (15)

w j =
[
v′j{1} · · · v′j{ j−1} c j 0

]>
, (16)

where,

c j = −sgn
(
v′j{ j}
) √√ n∑

i= j

v′j{i}
2. (17)

H j , y j andsj are computed usingv j asfollows:
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1: for j = 1 tom do
2: Generatev j in an algorithm

3: v′
j =
(
I − Yj−1S>j−1Y>j−1

)
v j .

4: Computey j andsj by usingv′
j .

5: Eq.(24) and Eq.(25) : UpdateYj andS j by usingsj , y j , S j−1 andYj−1.

6: q j =
(
I − YjS jY>j

)
e j .

7: end for

Fig. 5 Householder orthogonalization algorithm in terms of the compact
WY representation.

H j = I − sjy jy
>
j (18)

y j = v′
j −w j (19)

‖y j‖22 = (v′j{ j} − c j)
2 +

n∑
i= j+1

v′j{i}
2 (20)

=

n∑
i= j

v′j{i}
2 − 2v′j{ j}c j + c2

j (21)

= 2
(
c2

j − v′j{ j}c j

)
. (22)

sj =
2

‖y j‖22
=

1

c2
j − v′j{ j}c j

. (23)

The vectore j in Fig. 4 is thej-th vector of ann-dimensional iden-
tity matrix.

The orthogonality of the vectorsx j generated by the House-
holder orthogonalization algorithm does not depend on the con-
dition number of a matrixT. Therefore, the Householder orthog-
onalization algorithm is more stable than the MGS algorithm. On
the other hand, being similar to the MGS algorithm, it is sequen-
tial algorithm that is mainly based on BLAS level-1. Its compu-
tational cost is higher than that of the MGS algorithm. Thus the
Householder orthogonalization algorithm is an ineffective algo-
rithm in parallel computing.

By combination with the compact WY representation [18],
the Householder orthogonalization algorithm becomes capable of
computation with BLAS level-2 [20]. Hence, in this paper, the
cWY is adopted to an inverse iteration. LetY1 = y1 ∈ Rn× j and
S1 = s1 ∈ R1×1. MatricesYj and upper triangular matricesS j is
defined recursively as follows:

Yj =
[
Yj−1 y j

]
, (24)

S j =

S j−1 −sjS j−1Y>j−1y j

0 sj

 . (25)

In this case, the following equation holds

H1H2 · · ·H j = I − YjS jY
>
j . (26)

As shown by Eq.(26), the product of the Householder matrices
H1H2 · · ·H j can be rewriten in a simple block matrix form. Here
I − YjS jY>j is called the compact WY representation of the prod-
uct of the Householder matrices.Fig. 5 shows the orthogonaliza-
tion algorithm.

Fig. 6 is a code, which is based on DSTEIN in LAPACK and
changed the orthogonalization process from the MGS algorithm
to the cWY algorithm. In other words, the MGS algorithm (from
line 4 to 15 in Fig. 3) is rewriten the cWY algorithm.In Fig. 6, the
index jc denotes thejc-th eigenvalue of the cluster in computing
the jc-th eigenvector. This indexjc needs to compute and update
S j andYj . Therefore, a variablejc should be confirmed on line 9

1: for j = 1 ton do
2: Generatev(0)

j from random numbers.
3: k = 0
4: repeat
5: k← k+ 1.
6: Normalizev(k−1)

j .

7: Solve linear equations :
(
T − λ̃ j I

)
v(k)

j = v(k−1)
j .

8: if |λ̃ j − λ̃ j−1 | ≤ 10−3‖T‖, then
9: jc ← j − j1.

10: if jc = 1 andk = 1， then
11: ComputeY1 = y1 andS1 = s1 by usingv j1 .
12: end if
13: v′

jc+1 =
(
I − YjcS

>
jc
Y>jc
)
v(k)

j .
14: Computey jc+1 andsjc+1 by usingv′

jc+1.
15: Eq.(24) and Eq.(25) : UpdateYjc+1 and S jc+1 by usingsjc+1,

y jc+1, S jc andYjc .

16: v(k)
j ←

(
I − Yjc+1S jc+1Y>jc+1

)
ejc+1.

17: else
18: j1 ← j.
19: end if
20: until some condition is met.
21: Normalizev(k)

j to v j .
22: end for

Fig. 6 Inverse iteration algorithm with the cWY algorithm.

Table 1 Comparison of the orthogonalization algorithms [5] [20].

algorithms Computation Synchronization Orthogonality
CGS almost2m2n O(m) O(εκ(A)2)
MGS almost 2m2n O(m2) O(εκ(A))
House almost 4m2n O(m2) O(ε)
cWY almost 4m2n O(m) O(ε)

in Fig.6.
The cWY algorithm has a stable orthogonality arising from the

Householder transformations, and its mathematical calculation is
mainly performed by BLAS level-2 such as the product of a ma-
trix and a vector and a rank-1 update operation.

3.5 Comparison of the orthogonalization algorithms
The cWY algorithm has a stable orthogonality arising from the

Householder transformations, and its mathematical calculation is
mainly performed by BLAS level-2 such as the product of a ma-
trix and a vector and a rank-1 update operation. As a result, this
orthogonalization has more stable and sophisticated orthogonal-
ity, and it is more effective for parallel computing than the MGS
algorithm. Table 1 displays the differences in performance of the
four orthogonalization methods, considered in the above sections.
In this table, “House” denotes the Householder orthogonalization
algorithm. Computationdenotes the order of the computational
cost. Synchronizationdenotes the order of the number of syn-
chronizations.Orthogonalitydenotes the norm‖V>V− I‖, where
V = [v1, · · · ,vn]. ε denotes the machine epsilon andκ denotes
the condition number of a matrix. These are the results obtained
from [5] and [20].

On the other hand, the computational cost in the CGS algo-
rithm is twice less than that in the cWY algorithm. Therefore,
when high orthogonality is not needed, the CGS algorithm is also
the suitable selection for the orthogonalization.

3.6 Adoption of BLAS
The line from 1 to 7 on each algorithm is the code in the in-

verse iteration algorithm without an orthogonalization algorithm.
This computational costmn is relatively smaller than that in the

c© 2012 Information Processing Society of Japan 4

Vol.2012-MPS-89 No.4
2012/7/16



IPSJ SIG Technical Report

inverse iteration algorithm with an orthogonalization algorithm
shown in Table 1. Therefore, we adopt SPEs to orthogonalization
algorithms.

In the CGS algorithm, the line 10 on Fig. 2 can be computed
using BLAS level-2. In the MGS algorithm, BLAS level-1 is
adopted in the line 10 on Fig. 3. In the cWY algorithm, the line
13 and 16 on Fig. 6 can be performed with BLAS level-2, and the
line 11 and 14 can be performed with BLAS level-1.

4. Experiments

In this section, we describe some numerical experiments per-
formed using the CGS algorithm, the MGS algorithm, and the
cWY algorithm on PowerXCellT M 8i processor.

In the experiments, we use GigaAccel 180, which is a PCI Ex-
press board with PowerXCellT M 8i processor. PowerXCellT M

8i processor is one of Cell Broadband EngineT M. The theoreti-
cal performances of a single and double precision floating-point
arithmetic operation on an SPE in PowerXCellT M 8i processor
are 180GFLOPS and 90GFLOPS in 2.8GHz, respectively. We
implement those algorithms by using Cell SDK 3.1 [2], which
is developed by the IBM corporate [14]. Cell SDK 3.1 includes
the parallelized BLAS for Cell Broadband EngineT M. The MGS
algorithm is implemented in Cell SDK 3.1.

As experimental matrices, we use three types. Type 1 is a ran-
dom matrix, of which elements are set to the random number on
the interval from 0 to 1. Type 2 is shown as follows:

1 1
1 1 1
. . .

. . .
. . .

1 1 1
1 1


. (27)

Type 3 is the glued-Wilkinson matrixW†g , which is real symmet-
ric and has dimensions on the order of thousands. The glued-
Wilkinson matrix has been used to evaluate the performance of
the inverse iteration algorithms as the benchmark problems of
eigenvalue decomposition [6], [8].W†g consists of the block ma-
trix W†21 ∈ R21×21 and the scalar parameterδ ∈ R1×1 and is defined
as follow:

W†g =



W†21 δ

δ W†21 δ

δ
. . .

. . .

. . .
. . . δ

δ W†21


, (28)

whereW†21 is defined by

W†21 =



10 1
1 9 1

1
. . .

. . .

. . . 0
. . .

. . .
. . . 1
1 10


, (29)

Table 2 Experimental results

algorithm time[sec.] ‖AV− VD‖F ‖V>V − I‖F
type1 (dimension sizeis 2100.)

CGS 10.35 9.15× 10−15 2.50× 10−14

MGS 7.32 9.15× 10−15 2.50× 10−14

cWY 13.51 0.70× 10−15 2.61× 10−14

(dimension size is4200.)
CGS 60.54 1.25× 10−14 3.31× 10−14

MGS 64.51 1.25× 10−14 3.32× 10−14

cWY 94.27 0.067× 10−14 3.36× 10−14

(dimension size is6300.)
CGS 188.52 1.52× 10−14 3.49× 10−14

MGS 478.53 1.53× 10−14 3.49× 10−14

cWY 318.04 0.30× 10−14 4.52× 10−14

(dimension size is8400.)
CGS 768.40 1.82× 10−14 3.47× 10−14

MGS 5887.12 1.81× 10−14 3.47× 10−14

cWY 1408.27 1.01× 10−14 21.48× 10−14

type2 (dimension sizeis 2100.)
CGS 43.15 8.72× 10−14 1.06× 10−13

MGS 263.82 8.64× 10−14 1.11× 10−13

cWY 78.75 0.37× 10−14 2.56× 10−13

(dimension size is4200.)
CGS 247.92 1.79× 10−13 1.84× 10−13

MGS 2392.14 1.77× 10−13 1.97× 10−13

cWY 456.93 0.052× 10−13 4.96× 10−13

(dimension size is6300.)
CGS 754.69 2.64× 10−13 2.83× 10−13

MGS 7864.63 2.63× 10−13 3.04× 10−13

cWY 1394.79 0.061× 10−13 7.45× 10−13

(dimension size is8400.)
CGS 1718.53 3.51× 10−13 4.33× 10−13

MGS 16770.71 3.48× 10−13 4.53× 10−13

cWY 3186.58 0.078× 10−13 10.18× 10−13

type3 (dimension sizeis 2100.)
CGS 20.13 1.11× 10−12 1.00× 10−13

MGS 28.15 1.11× 10−12 1.07× 10−13

cWY 35.64 0.18× 10−13 1.06× 10−13

(dimension size is4200.)
CGS 89.47 1.75× 10−12 7.72× 10−12

MGS 202.16 1.75× 10−12 1.53× 10−12

cWY 158.18 0.25× 10−12 0.95× 10−12

(dimension size is6300.)
CGS 210.98 2.37× 10−11 77.29× 10−10

MGS 678.24 2.51× 10−11 2.00× 10−10

cWY 371.78 26.89× 10−11 2.17× 10−10

(dimension size is8400.)
CGS 391.50 7.93× 10−12 757.15× 10−11

MGS 1422.99 7.94× 10−12 3.13× 10−11

cWY 678.31 3.13× 10−12 3.13× 10−11

andδ satisfies 0< δ < 1 and is also the semi-diagonal element of
W†g . SinceW†g is real symmetric tridiagonal and its semi-diagonal
elements are nonzero, all the eigenvalues ofW†g are distinct and
real, and they are divided into 21 clusters of close eigenvalues.
Whenδ is small, the distance between the minimum and maxi-
mum eigenvalues in any cluster is small. In our experiments, we
setδ = 10−4.

Table 2 shows the experimental results of the orthogonaliza-
tion algorithms. Time in Table 2 is the computational time.
‖AV − VD‖F and‖V>V − I‖F mean the frobenius norm of syn-
chronization and orthogonalization, respectively.

In type 1, each eigenvalue is usually separated. On the other
hand, eigenvalues in type 2 and 3 become cluster. Therefore,
‖AV − VD‖F and‖V>V − I‖F are smaller than that in type 2 and
3.

In 2100 dimension size of type 1 in Table 2, the computational
time in the MGS algorithm, which is implemented by the IBM
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corporate, is smaller than that in the other orthogonalization al-
gorithms. However, the increasing rate of the computational time
in the MGS algorithm is higher as shown in Table 2. The MGS
algorithm is computed using BLAS level-1. On the other hand,
the CGS algorithm and the cWY algorithm are almost computed
using BLAS level-2. Therefore, in the computational time, the
CGS algorithm and the cWY algorithm are better.

In Table 2,‖AV − VD‖F in the CGS algorithm is nearly equal
to that in the MGS algorithm.‖AV−VD‖F of the cWY algorithm
is the smallest, except the case of 6300 dimension size in type
3. The exception is likely to be caused by the order ofv j . In
the experiments,v j is listed in descending order of eigenvalues,
which are related to eigenvectors. Therefore, by using the cWY
algorithm with suitable order ofv j , accuracy of eigenvector com-
putation can become more properly.

In type 1 and 2 of Table 2,‖V>V − I‖F in the CGS algorithm
is nearly equal to that in the MGS algorithm. The CGS algo-
rithm and the MGS algorithm are focused on the orthogonality of
eigenvectors. On the other hand, in the cWY algorithm, accuracy
of eigenvalue decomposition is given importance. Therefore, the
orthogonality of eigenvectors is something lower than that in the
CGS algorithm and the MGS algorithm.

In type 3 of Table 2,‖V>V− I‖F in the CGS algorithm is worse
than that in the other orthogonalization algorithm. Inδ = 10−4,
eigenvalues in type 3 are extremely close together. Therefore, the
CGS algorithm is aborted thatv j is picked out.

In summarization, the computational time in the cWY algo-
rithm is adequate speedy. Furthermore,‖AV−VD‖F and‖V>V−
I‖F in the cWY algorithm is sufficient accuracy. Hence, the cWY
algorithm is suitable, except case that the high-orthogonality of
eigenvectors is given importance.

5. Conclusions

In this paper, we validated the parallel performance of the in-
verse iteration algorithms with the CGS algorithm, the MGS al-
gorithm, and the cWY algorithm on PowerXCellT M 8i proces-
sor. PowerXCellT M 8i processor is one of heterogeneous environ-
ments. In ExaFLOP computing, since it is critical issue to mini-
mize electricity, heterogeneous environments are suitable. SPEs
in PowerXCellT M 8i processor archive the high performance of
BLAS level-2 and level-3. The inverse iteration algorithms are
algorithms for computing eigenvectors and need a lot of com-
putational cost. Therefore, the algorithms should be computed
with SPEs. The experimental results show that the computational
time of the CGS algorithm and the cWY algorithm are shorter and
‖AV−VD‖F and‖V>V−I‖F of the cWY algorithm are sufficiently
small.

In a future work, the inverse iteration algorithms should be
compared on General-purpose computing on graphics processing
units (GPGPU).
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