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Abstract: Monochrome two-dimensional barcodes are rapidly becoming a de-facto standard for distributing digital
data through printed medium because of their small cost and portability. Increasing the data density of these barcodes
improves the flexibility and effectiveness of existing applications of barcodes, and has the potential to create novel
means for data transmission and conservation. However, printing and scanning equipment introduce uncontrollable
effects on image at very refined level, and the effects are beyond the scope of the error control mechanisms of existing
barcode schemes. To realize high-density barcodes, it is essential to develop novel symbology and error control mech-
anisms which can manage these kinds of effects and provide practical reliability. To tackle this problem, this paper
studies the communication channel defined by high-density barcodes, and proposes several error control techniques
to increase the robustness of the barcode scheme. Some of these techniques convert the peculiar behavior of printing
equipment to the well-studied model of additive white Gaussian (AWGN) channel. The use of low-density parity
codes is also investigated, as they perform much better than conventional Reed-Solomon codes especially for AWGN
channels. Through experimental evaluation, it is shown that the proposed error control techniques can be essential
components in realizing high-density barcodes.

Keywords: two-dimensional barcodes, low-density parity check codes, error control, automatic identification and
data capture

1. Introduction

In data management systems, storing data in two-dimensional

(2D) barcodes [7] has some advantages over digital media. Ap-
plications which use 2D barcodes mainly rely on its high data ca-
pacity (compared to one-dimensional barcodes) and portability to
provide better functionality. More than store indices to external
databases (e.g., ID numbers, product codes, or website URLs),
2D barcodes can store a small database as well (e.g., contact in-
formation, registered mail or a flight ticket data). The ability of
2D barcodes to embed data on a printed symbol allows data to
be distributed in many physical locations. Furthermore, a printed
barcode survives for a long time (possibly decades), even if no
additional costs are paid for maintenance and conservation. Be-
cause of these favorable properties, 2D barcodes are used in many
applications where data sources are decentralized, such as health
care [15], government [3], e-commerce [5] and other data man-
agement systems.

Past studies on barcode capacity mainly focused on improv-
ing the symbology of 2D barcodes, i.e., enhancing its structure
and processing methods to increase data capacity while retaining
its compact size and portability. Some technologies investigate
colored data cell designs in order to increase the amount of data
represented per cell [6], [13]. Using colored cells increases the
density of barcodes, but high-quality color printers are expensive
in general, and the degradation of colors over time can make it
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difficult to retrieve the original data. It will be more versatile and
cost-efficient to develop monochrome 2D barcodes, because the
equipment used to produce monochrome symbols are generally
less expensive to acquire and operate, and symbols can be kept in
storage medium that are cheaper and easier to maintain, such as
paper products.

Another approach to improve the symbology of 2D barcodes
is through increasing the data density of a barcode symbol. Data
density is defined as the amount of data stored per unit area of a
symbol; for instance, the number of cells printed per square mil-
limeter (assuming that cells represent binary values). However,
one inherent issue of storing digital data in a physical format is its
decreased robustness against errors. Data stored in high-density
monochrome barcodes are susceptible to errors caused by print-
ing and scanning hardware, or physical damage inflicted on the
symbol or its storage medium.

To enhance reading robustness, most 2D barcode symbologies
use Reed-Solomon (RS) codes [11] to encode data prior to gen-
erating the symbol. In recent years, it has been shown that well-
designed low-density parity check (LDPC) codes [4] perform well
compared to RS codes in many communication channels. A re-
markable aspect of LDPC codes is that we can perform soft-

decision decoding for LDPC codes with almost linear-time com-
plexity. Soft-decision decoding is an algorithm for error correc-
tion in which inputs to the algorithm can have continuous val-
ues. It is more powerful than hard-decision decoding algorithms
in which inputs are quantized into two level, but requires very
large computational complexity in general. Soft-decision decod-
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Fig. 1 System diagram of the barcode system.

ing was considered to be impractical for many years, but the
sparse nature of LDPC codes allow efficient algorithms of soft-
decision decoding to be implemented. Because of this, LDPC
codes show a much better performance than conventional error-
correcting codes, including RS codes [1], [2].

The goal of this research study is to examine error control tech-
niques in order to improve the robustness of monochrome 2D bar-
codes with high data density. Particularly, this paper analyzes the
effectiveness of LDPC codes compared to RS codes. Understand-
ing these factors can deepen our knowledge of high-density bar-
codes and lead to design improvements for symbologies and their
applications. Note that the symbology proposed in this paper is
not meant to be an independent 2D barcode standard, but rather
serve as a mechanism to develop and test fundamental techniques
for reliable high-density barcodes.

The rest of this paper is structured as follows. Section 2 de-
scribes the channel model of a high-density 2D barcode, along
with factors which cause errors in the channel. Then, the encod-
ing and printing procedures of the experimental symbology are
outlined in Section 3. Section 4 outlines the scanning and decod-
ing procedures of the symbology. Finally, the methodology and
results of evaluating the symbology are discussed in Section 5.

2. Channel Model of High-density 2D Bar-
codes

The “communication channel” defined by a barcode system is
not a simple binary digital channel. In order to understand how
to protect data in barcodes using LDPC codes, the channel model

exhibited by the symbology must first be investigated.
The system diagram of our proposed high-density barcode sys-

tem is shown in Fig. 1, though several components which have
little relation to error control are not shown in the figure. Given
the data to be stored in a barcode symbol, we first perform an en-
coding process of an error-correcting code. In this study, LDPC

codes considered for this process are discussed in Section 3.1.
The result of the encoding is then passed to the image construc-
tion process. Basically, data bits are represented as solid squares
called data cells, where a white cell signifies the bit value ‘0’
and a black cell signifies the bit value ‘1’. Additionally, several
techniques discussed in Sections 3.2, 3.3 and 3.4 are employed
to attain robustness in the printed image. The image construc-
tion process determines the barcode image which is given to the
printing device such as a laser printer.

To access the stored data, the printed barcode image is scanned
using a flatbed scanner. Because the printed image is expected
to be disturbed by several factors, which are discussed in Sec-
tion 2.1, we first need to reconstruct the original image, and then
need to estimate the value of each symbol (data bit) from the re-
constructed image. In this study, the estimated value of a sym-
bol is simply computed as the ratio of black pixels over the total
number of pixels in an (estimated) cell area. These issues are
addressed in the Section 4.1. The estimated symbols are given
to the LDPC decoder (Section 4.2), and we finally obtain the es-
timated data. From the viewpoint of encoder/decoder of LDPC
codes, these estimated values can be regarded as the output of the
communication channel, while the binary (0 or 1) result of ECC
encoder should be regarded as the channel input.

As Fig. 1 shows, the error control mechanism consists of sev-
eral components. To evaluate the effectiveness of each compo-
nent, we focus on two empirical measures: peak signal-to-noise

ratio (PSNR) for evaluating the image reconstruction process,
and bit error rate (BER) [8] for evaluating the use of LDPC codes.
( 1 ) Obviously, an LDPC code performs well if the input to the

decoder is accurate. Because the input to the decoder is de-
rived from the reconstructed image of the barcode, it is im-
portant to observe the quality of image reconstruction. To
statistically measure quality of image reconstruction, we cal-
culate the PSNR. First, the mean squared error (MSE), a
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Fig. 2 Example of a symbol containing inter-pixel leakage and non-uniform printing of rows.

statistical measure of error used to compare two m × n im-
ages, is computed. Given the image of data cells (channel
input) and their corresponding scanned images (channel out-
put), the MSE of data cell c ∈ C is computed as the squared
difference of the expected value val(c) of the cell and each
pixel of the sampling cell imgc; specifically, MSE is com-
puted as

MS E(c) =
1

mn

m−1∑
i=0

n−1∑
j=0

[val(c) − imgc(i, j)]2 (1)

Given the MSE of all data cells in a symbol, the PSNR of the
symbol is computed as

PS NR = 20 · log10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
MAXimg√∑|C|
i=0 MS E(i)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

where MAXimg = 1.0, the maximum value of ratio r.
( 2 ) The bit error rate is a direct measure of the quality of data

transmission, but we need to remark that the decoding algo-
rithm of LDPC code must be provided with the statistics of
the communication channel, which is needed in the internal
belief-propagation decoding. Through preliminary experi-
ments, we found that the communication channel defined as
above can be modeled as an additive white Gaussian noise
(AWGN) channel, and the variance of the Gaussian distribu-
tion can be determined heuristically from the result of the
preliminary experiments. In the preliminary experiments,
we know the input and the output of the channel. We can
collect samples Oblack of ratios which corresponds to black
cells and samples Owhite of ratios which corresponds to white
cells. The variance of each set is then calculated as

σ2 =

∫
P(x)(x − μ)2 dx (3)

where x is either Oblack or Owhite, P(x) is the probability dis-
tribution of x, and μ is the population mean of x.

2.1 Sources of Errors
We review the phenomena and factors which can cause prob-

lems in realizing a high-density barcode scheme. The factors can
be classified into two types: device-oriented factors and exter-

nal factors. Device-oriented factors are mainly caused by in-
accuracies during printing and scanning barcodes using regular

office equipment. These inaccuracies are not noticeable in reg-
ular use, but are significant if these devices are utilized to its
performance limit. One such factor is called inter-pixel leak-

age. Data cells in high-density barcodes are printed in small sizes
(less than 0.3 × 0.3 mm2). As a result, the laser printer toner used
to draw black cells splatter uncontrollably and blot neighboring
white cells, thus becoming a major source of noise in the channel.

Another factor is called non-uniform printing, where cells
along the same row were printed with similar heights, but cells
in other rows were printed with different heights. This factor was
also observed for the widths of columns. It is conjectured that
this phenomenon is introduced by the mechanical constraints of
the printer or scanner, and are not avoidable unless we use pro-
fessional quality image setter. In the usual home and office envi-
ronment, we need to expect that a printed barcode image is not as
precise and uniform as stated in the specifications of the devices.
Figure 2 shows an example of both factors.

External factors are caused by the environment where 2D bar-
codes are placed. Harsh conditions can introduce physical de-
fects on printed symbols. For example, an ink blot or stain on the
symbol affects a continuous sequence of data cells in neighbor-
ing rows and columns. Thus, if data is also stored in a sequential
manner (e.g., left-to-right, top-to-bottom), a defect can introduce
a consecutive stream of erroneous bits (known as a burst error).
External factors are a problem for regular-sized barcode schemes,
and it becomes more problematic if a scheme relies on higher res-
olutions of a scanned barcode image.

To mitigate these factors, we design a symbology that employs
several error control techniques. Device-oriented factors are ad-
dressed using a margin factor parameter and a tweaked design of
the timing pattern which surrounds data area. To cope with exter-
nal factors, we developed a strategy for interleaving which stores
data in a non-contiguous way. This creates a more uniform dis-
tribution of errors across codewords when a symbol is partially
damaged. Details of these techniques are discussed in the next
section.

Despite these countermeasures, it is still difficult to accurately
determine whether a scanned data cell is black or white. To be
able to maximize the robustness of a symbol, we investigate the
use of powerful LDPC codes with soft-decision decoding, instead
of the conventional RS codes with hard-decision decoding.
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3. Encoding and Printing

Conventional 2D barcodes employ symbologies which are
good for fast reading. In this paper, however, we pursue a sym-
bology which increases data density; that is, to safely accommo-
date as many data cells as possible in a given area. The following
subsections describe the encoding and printing steps to create a
symbol.

3.1 Encoding
First, the input data to be stored in a barcode symbol is encoded

using error-correcting codes. Most 2D barcodes use RS codes for
error correction, which is a conventional technique and thus de-
tails are not discussed in this paper. For an in-depth discussion of
encoding using RS codes, see Wicker and Bhargava [14].

This study investigates the usage of LDPC codes, specifically
the family of codes designed for the IEEE 802.16e standard (also
known as mobile WiMAX). Using these codes is advantageous
since they have smaller complexity for encoding, compared to
other classes of LDPC codes. In general, the encoding opera-
tion of an LDPC code requires quadratic-order complexity in the
code length; however, the IEEE codes defined in the standard are
designed so that they have quasi-cyclic structure, which enables
the realization a linear-order encoding algorithm. Another advan-
tage of these codes is that the code parameters can be changed in
a flexible manner. The standard defines several classes of LDPC
codes with code rates 1/2, 2/3, 3/4 and 5/6, and code length ranges
from 576 to 2,304 bits. These parameters have a strong relation to
the efficiency and the error-correcting capability of the code [9].
We note however that we do not have to restrict ourselves to this
family of LDPC codes. The techniques developed in this paper
can be used for any LDPC codes.

3.2 Data Cells and Data Area
A monochrome *1 2D barcode stores codewords in data cells

arranged inside a 25.4 × 25.4 mm2 space or data area. We can
consider larger data area spaces, though we fix the size in this
study to make the following discussion simple and clear. Data
cells inside the data area are arranged in a dim×dim matrix, where
dim is an integer called the dimension parameter. Increasing the
dimension parameter of a fixed-size data area has two effects on
the symbol:
( 1 ) Data capacity and density: The number of data cells avail-

able in the data area *2 is increased. This is computed as
slightly less than dim2 because of the overhead introduced
by the symbology. Because the size of the data area is fixed,
data capacity can be regarded as the density of data: dim2

cells per inch or (dim2/25.4)2 cells per mm.
( 2 ) Cell size or printing size: The cell size of a data cell must be

reduced in order to increase the data density of the symbol.

*1 The term “monochrome” means that barcodes are printed and scanned as
black-and-white images. Although grayscale images contain more infor-
mation that may assist in barcode detection, producing small data cells
in grayscale generate too much noise in the channel.

*2 This definition does not take into account other techniques which would
increase the total data capacity of a barcode symbol (such as data com-
pression).

Table 1 Data capacity, density, and printing size of a cell for a symbol with
dimension dim.

dim
Capacity (no. of
cells)

Density (cells/
mm2)

Cell size (mm2)

57 3,053 127.9 0.446
67 4,293 127.9 0.379
77 5,733 176.3 0.330
87 7,373 233.4 0.292
97 9,213 304.9 0.262
107 11,253 378.1 0.237
117 13,493 450.7 0.217

(a) Data cells without adjustments (m f = 1.0)

(b) Data cells with margin factor (m f = 0.6)

Fig. 3 Effect of inter-pixel leakage on 0.237 × 0.237 mm2 data cells.

Cell size is computed (25.4/dim) × (25.4/dim) mm2.
Table 1 lists the relation of dimension, data capacity and density,
and cell size.

To cope with inter-pixel leakage, the printing size of black cells
are reduced by a certain margin factor relative to the size of the
data cell. Figure 3 shows data areas printed with a margin factor
value of m f = 1.0 and m f = 0.6. Notice how black cells printed
with m f = 0.6 contain a white border which acts as a buffer for
inter-pixel leakage. The white cells in this case have less noise
generated by adjacent black cells. Thus, the data area is more
distinguishable than the data area printed with m f = 1.0. The
optimum choice of margin factor depends on the size of the cells
and the resolution of the printer. It is expected that the optimum
margin factor is determined in advance for the environment where
barcode images are produced.

3.3 Finder and Timing Patterns
A set of finder patterns is used to isolate the barcode symbol

from a scanned image, and a set of timing patterns is used to es-
timate the size and location of data cells. Figure 4 (a) shows the
individual design elements of the high-density symbology.

Finder patterns are placed on the four corners of the data area.
It consists of three black rings co-centric to the corner of the data
area, marking the corner with a single black cell. A quiet zone

of white cells is placed underneath the finder pattern to improve
detection accuracy.

The timing pattern is a consecutive series of modules located
around the four edges of the data area. A timing pattern connects
two finder patterns, with each module alternating between white
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(a) Finder pattern, quiet zone and two timing patterns. (b) Example of a symbol with a data area.

Fig. 4 Design elements and a complete symbol generated by the symbology.

Fig. 5 Example of interleaving using interleave level lvl = 3.

and black cells. To increase the detection reliability, each tim-
ing pattern module is made up of three connected black or white
cells. Timing patterns are also printed on the same row or col-
umn as data cells. Because of this, timing pattern modules are
also subject to non-uniform printing. This is advantageous be-
cause the separation of data cells (indicated by the blue lines in
Fig. 2) also adjusts to the non-uniform printing size of the rows
and columns, and thus aiding the detection of data cells.

3.4 Interleaving
Finally, before a symbol is printed on a sheet of paper, the data

cells inside the data area are interleaved. The interleaving tech-
nique designed for this symbology is illustrated in Fig. 5. Given
the interleave level (denoted as lvl) of the symbol, the data area is
first partitioned into lvl2 sub-divisions or zones. These zones con-
tain an equal number of data cells except for zones which overlap
quiet zones. The cell ci, which represents the i-th bit of data, is
then written in the (i mod lvl2) + 1 zone. In other words, data
cells are placed into zones one by one, starting from zone 1 to
lvl2. This process repeats until all data cells have been stored.

When data cells are inserted into zones, the interleave level
affects the distance between the cells. When there is no inter-
leaving, the distance between two cells is 1 since they are stored
sequentially. For symbols with interleaving, data cells are stored
apart from each other with a computed distance

dist(dim, lvl) = �dim/lvl� (4)

4. Scanning and Decoding

4.1 Symbol Processing
When data is needed from a barcode, the sheet of paper is

scanned using a flatbed scanner and codewords are read from the
symbol. We refer to this process as symbol processing, which
involves the following steps:
( 1 ) Barcode symbols (if any) are searched in the scanned image.

The finder patterns of a symbol are located using a basic
template matching algorithm [12]. The centers of all finder
patterns are then computed.

( 2 ) Lines connecting the centers of adjacent finder patterns are
connected, and the resulting closed rectangle is masked.
This enhances the detection of timing patterns in the follow-
ing step.

( 3 ) The lines connecting adjacent finder patterns are scanned
through pixel by pixel. The path each line passes through
is also the location of a timing pattern. When the value of
the pixel changes from white to black, this pixel is marked
as a transition point.

( 4 ) Transition points from opposite timing patterns are con-
nected, forming a grid of sampling cells.

( 5 ) The ratio r of black pixels in each cell is determined. From
the grid of sampling cells computed in ( 4 ), we can deter-
mine the set P of pixels which are used to represent one par-
ticular cell. The ratio r of this cell is simply the number of
black pixels in P over the total number of pixels in P.

( 6 ) The ratio r obtained from each sampling cell is mapped to a
soft value using the function f (r) = −(2r − 1). Soft values
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are de-interleaved and grouped into codewords.
Steps 1 to 4 constitute the “image reconstruction” process in

Fig. 1, while steps 5 and 6 constitute the “symbol estimation”.

4.2 Decoding
Codewords obtained from symbol processing are then passed

to a decoder program. If the data is encoded with RS codes, the
soft values obtained from Step 6 of symbol processing are quan-
tized into two level by straight-forward thresholding (e.g., ‘0’
for soft values greater than 0, ‘1’ otherwise). Afterwards, hard-
decision decoding for RS codes [14] is performed on the discrete
values.

If the data is encoded with LDPC codes, decoding is performed
by using a belief-propagation algorithm [10]. In this algorithm,
we consider representing the mathematical structure of the code
with a bipartite graph whose incident matrix coincides with the
check matrix of the code. The nodes of the bipartite graph are
grouped to variable nodes and check nodes. A variable node re-
ceives information (the soft value) from neighbor check nodes,
and it attempts to estimate which symbol (‘0’ or ‘1’ bit) has
been transmitted. During the estimation, the statistical infor-
mation of the communication channel, such as the variance of
the Gaussian channel, is considered to derive various probabili-
ties. A check node receives the estimated symbols from neigh-
bor variable nodes, monitors parity constraints, and gives check
nodes suggestions for the transmitted symbol. The accuracy of
the estimation improves as nodes exchange messages iteratively.
Refer to literature [10] for the detailed description of the belief-
propagation decoding algorithm.

5. Evaluation and Results

The following experiments were designed to determine the ef-
fects of data density on the channel, and evaluate the perfor-
mance of the error control mechanisms in the symbology. All
experiments used the same office equipment and symbol process-
ing steps for testing. In both the printing and scanning process,
monochrome color settings were used. The general steps for ex-
periments are as follows:
( 1 ) First, input data and parameters were passed to the ECC en-

coder followed by the image construction process, both writ-
ten in the C programming language. The program then gen-
erated a sample set of symbols.

( 2 ) The sample set was printed on a sheet of plain white bond
paper using a Canon LBP3410 laser printer with the default
settings.

( 3 ) The sheet of paper was scanned using an Epson GT-F720
flatbed scanner at 720 dpi with monochrome settings.

( 4 ) Finally, the scanned image was passed to the image recon-
struction process and subsequent modules, which are also
written in C.

In the image reconstruction, we used conventional algorithms
for image processing. Refinement of the image processing algo-
rithms can improve the results, but this is not investigated in this
study currently.

Table 2 Input parameters used for Test 1.

Parameter Value
Dimension dim 57, 67, 77, 87, 97, 107, 117
Margin factor m f 0.6, 0.7, 0.8, 0.9, 1.0
Encoding None
Interleave level lvl 1

5.1 Test 1: Effect of Data Density on Channel
As noted earlier, the accuracy of estimating cell values is de-

pendent on the data density of the barcode. To test this, 35 sets
of symbols with different symbology parameters were processed.
Each sample set consisted of five barcode symbols with random
data cell values. The set was then printed with a combination
of dimension and margin factor values listed in Table 2. After
symbol processing, the PSNR of each combination of symbology
parameters was graphed and analyzed to determine the overall
accuracy of cell value estimations.

The PSNR results of the test are presented in Fig. 6. PSNR
values for m f = 0.8, 0.9 and 1.0 showed a decreasing trend as
data density increased. This is in line with the fact that as data
cells are printed closer to each other, inter-pixel leakage of black
cells affect neighboring white cells and leads to reduced channel
quality.

For data cells with lower data densities and m f = 0.6 or 0.7, the
printing size of black cells were small compared to the actual cell
size (e.g., 0.268 mm2 and 0.446 mm2, respectively for dim = 57,
m f = 0.6). Hence, the effects of inter-pixel leakage were not
enough to compensate for the remaining space in the data cell.
This led to lower soft values for black cells and lower PSNR val-
ues overall. The PSNR values improved when data density was
increased, since sampling cells were more densely packed. In this
case, the soft values stabilized and became proportional relative
to the expected values. PSNR values for densities beyond 370.4
showed a decreasing trend, due to the increased leakage of black
cells on neighboring white cells.

5.2 Test 2: Performance of RS Codes and LDPC Codes
The second experiment evaluates the error correction perfor-

mance of RS and LDPC codes in the symbology. To measure
error correction performance, the BER of each sample set was
analyzed, where

BER =
Number of erroneous bits after decoding

Total number of bits of input data
(5)

BER results for each sample set were then gathered and analyzed.
Note that RS and LDPC decoder programs were modified to re-
turn the final state of the data word, whether or not the the re-
ceived codeword was decoded correctly. This modification allows
for an accurate BER calculation.

To conduct the experiment, 10 sets of symbols were generated
using parameters listed in Table 3. Each set contained 24 barcode
symbols with data obtained from an input file. The RS encoder
used a (255, 211) code, while the LDPC encoder used a (6, 5)
code. In this test, symbols were not subjected to physical damage
in order to assess performance against errors caused by device-
oriented factors only.

The preliminary investigation also shows that symbol process-
ing fails for parameter choices above dim = 127 and m f = 0.6,
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Fig. 6 Peak signal-to-noise ratio of symbols using parameters listed in Table 2.

Table 3 Input parameters used for Test 2.

Parameter Value
Dimension dim 97, 107
Margin factor m f 0.6, 0.7, 0.8, 0.9, 1.0
Encoding RS, LDPC
Interleave level lvl 1

Table 4 BER analysis of symbols using parameters listed in Table 3.

m f
dim = 97 dim = 107

RS LDPC RS LDPC
0.6 0.013% 0.000% 0.094% 0.000%
0.7 0.017% 0.000% 0.069% 0.084%
0.8 0.750% 0.000% 2.447% 1.792%
0.9 4.086% 1.513% 5.021% 4.658%
1.0 6.280% 6.916% 10.549% 11.188%

and this seems to be the performance limit of the considered sym-
bology. At these limit parameters, the noise of our channel is
well approximated as the AWGN channel with the variance value
σ2 = 0.05637. The variance can become slightly smaller for
smaller choices of dimension values, because the channel distur-
bance is mild if the dimension is small. It is ideal if we could
estimate the variance from the scanned image in an adaptive man-
ner, though, that kind of channel estimation is another challeng-
ing task. To get around this issue, we used the constant variance
σ2 = 0.05637 for all the evaluations in Test 2 and 3, because the
barcode image can be subjected to external damages as investi-
gated in Test 3. Thus, assuming a worse channel model (with
higher variance) than expected seems to be a reasonable direction
to mitigate unpredictable external factors.

Table 4 shows the results of BER analysis. Overall, the BER
of symbols for dim = 97 were lower than for dim = 107. This
was expected, since the PSNR values for dim = 107 were lower.
Furthermore, the BER values exhibited the same trend as PSNR
values with respect to the margin factor. This can be attributed to
the decreased channel quality when margin factors are increased,
as observed in Test 1.

Even though values in Table 4 are not very accurate due to

Table 5 Input parameters used for Test 3.

Parameter Value
Dimension dim 97
Margin factor m f 0.6, 0.7, 0.8, 0.9, 1.0
Encoding LDPC
Interleave level lvl 1, 3, 5

limited number of samples, LDPC codes generally yielded lower
error rates than RS codes in both dimensions. This is because
the accuracy of the estimated data cell value deteriorated when
thresholded from a soft value into a discrete value; thus RS
codes were not able to perform as well as LDPC codes. LDPC
codes reported low BER (less than 0.05%) when PSNR values
were greater than 11.176 dB. Both coding schemes performed
poorly (BER > 5.0%) when symbols had a PSNR value less than
9.158 dB.

5.3 Test 3: Performance of Interleaving
To evaluate the symbology’s robustness against burst errors, 15

sets of symbols with different symbology parameters listed in Ta-
ble 5 were printed. Interleave levels were varied to lvl = 1 (no
interleaving), lvl = 3 and lvl = 5, while the dimension parameter
was kept constant. Each symbol in a set was then subjected to
one of three types of physical damage which normally occur to
a sheet of paper in home and office environments, as shown in
Fig. 7. After symbol processing, the BER results were obtained
and conclusions were derived from the results.

The BER analysis for damaged symbols are shown in Table 6.
Overall, the number of errors detected in this test were higher
than in Test 2 because of the introduction of burst errors. Also,
the trend of BER for all interleave levels performed similar to
the results in Test 2, where increasing the margin factor (hence,
decreasing PSNR) had a negative effect on the performance.

For comparison, consider symbols which did not use interleav-
ing (i.e., lvl = 1) as a benchmark of performance. Based on
this, the BER results improved when the interleave level was in-
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(a) Folding/Crumpling (b) Markings (c) Tearing

Fig. 7 Types of damage to a symbol.

Table 6 BER analysis of damaged symbols using parameters listed in Ta-
ble 5 with varying interleave levels.

m f
Interleave level lvl

1 3 5
0.6 1.070% 0.344% 3.736%
0.7 3.238% 1.673% 1.681%
0.8 4.382% 3.397% 4.093%
0.9 8.298% 6.147% 8.128%
1.0 11.845% 11.988% 14.594%

creased to lvl = 3. In these symbols, data was stored in a non-
contiguous way and therefore the burst errors due to damage was
decreased. Intuitively, the performance should further increase
when the interleave level is also increased, but the BER results
for lvl = 5 show that this is not the case. This is because the
distance between cells was decreased from dist(97, 3) = 32 to
dist(97, 5) = 19 (Eq. (4)). If the distance between two sequential
data cells is lower, there is a higher chance that physical damage
affects more sequential data cells.

Finally, note that this test focuses on the robustness of the high-
density channel, hence physical damage was inflicted on the data
area only and not to the finder pattern and timing patterns of the
symbol. This is due to the fact that the current version of the
symbology implements error correction mechanisms for the data
cells only. Therefore, finder and timing patterns are sensitive to
damage.

6. Conclusion and Future Work

In this paper, we investigated techniques for error control in a
high-density 2D monochrome barcode. A high-density symbol-
ogy was defined, and its communication channel was modelled.
The performance of error correction mechanisms were then tested
with different symbology parameters.

The study showed that some characteristics of laser printing
technology introduce inaccuracies to high-density barcodes. The
communication channel of the symbology is an AWGN channel,
where the channel quality of a symbol can be evaluated based on
its PSNR value. Some symbology elements such as margin fac-
tor and timing pattern design are effective for controlling errors.
Also, LDPC codes show a better error correction performance
compared to Reed-Solomon codes. Finally, the interleaving strat-
egy of the symbology is a useful technique to mitigate burst errors
caused by physical damage.

Future work for this study includes improving of the robustness
of finder patterns and timing patterns, and the dynamic computa-
tion of AWGN variance for LDPC decoding; that is, the variance
of a symbol is computed upon scanning the symbol - thereby tak-

ing into account the physical condition of the symbol - to improve
decoding performance.
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