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Abstract: Alternative splicing plays an important role in eukaryotic gene expression by producing diverse proteins
from a single gene. Predicting how genes are transcribed is of great biological interest. To this end, massively parallel
whole transcriptome sequencing, often referred to as RNA-Seq, is becoming widely used and is revolutionizing the
cataloging isoforms using a vast number of short mRNA fragments called reads. Conventional RNA-Seq analysis
methods typically align reads onto a reference genome (mapping) in order to capture the form of isoforms that each
gene yields and how much of every isoform is expressed from an RNA-Seq dataset. However, a considerable number of
reads cannot be mapped uniquely. Those so-called multireads that are mapped onto multiple locations due to short read
length and analogous sequences inflate the uncertainty as to how genes are transcribed. This causes inaccurate gene
expression estimations and leads to incorrect isoform prediction. To cope with this problem, we propose a method for
isoform prediction by iterative mapping. The positions from which multireads originate can be estimated based on the
information of expression levels, whereas quantification of isoform-level expression requires accurate mapping. These
procedures are mutually dependent, and therefore remapping reads is essential. By iterating this cycle, our method
estimates gene expression levels more precisely and hence improves predictions of alternative splicing. Our method
simultaneously estimates isoform-level expressions by computing how many reads originate from each candidate iso-
form using an EM algorithm within a gene. To validate the effectiveness of the proposed method, we compared its
performance with conventional methods using an RNA-Seq dataset derived from a human brain. The proposed method
had a precision of 66.7% and outperformed conventional methods in terms of the isoform detection rate.
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1. Introduction
There have recently been tremendous strides in transcrip-

tomics. Revealing the alternative splicing by which multiple iso-
forms are produced from a single gene in eukaryotes is great
biological interest since it contributes to the elucidation of spe-
cific biological functions. An isoform is defined as an alterna-
tively spliced transcript. A survey has estimated that the average
number of exons within a human gene is eight [1], and up to 92–
94% of all human genes yield multiple isoforms [2]. Other work
reveals that the vast majority of alternative splicing in the hu-
man genome results in changes in encoded proteins [3]. Together
with the high frequency of alternative exonic events, the diver-
sity in proteins is brought by the abundance of exonic combina-
tions. Meanwhile, splicing errors are relevant to many diseases,
including cancers [4], [5]. It has been reported that 15–60% of
known disease-causing mutations affect splicing [6]. A compre-
hensive understanding of alternative splicing is therefore essential
for medical and pharmaceutical studies.

Applying massively parallel sequencing technology to tran-
scriptomic analyses has been widely used due to its high through-
put and cost-effectiveness [7], [8], [9], [10], [11]. So-called next-
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generation sequencers provide a large number of short mRNA se-
quence tags (reads), ranging from several dozens to hundreds of
bases in sequence length depending on the platform [12], [13],
[14], [15], [16]. Computational predictions of alternative iso-
forms is highly desired since it can contribute to the advancement
of transcriptomics [10].

Transcriptome assembly approaches using RNA-Seq data are
categorized three ways: reference-based strategies, de novo
strategies, and combined strategies [17]. Reference-based strate-
gies generally take a mapping-first approach in which genome-
guided transcript reconstruction is performed. Reads are
aligned on a reference genome and piled up into transcripts.
Cufflinks [18] and Scripture [19] are representative of this class.
Another way to reconstruct a transcriptome is de novo assem-
bly as represented in Trans-ABySS [20] and Trinity [21]. This
approach aims to find overlaps between the reads and assemble
them into longer contigs, followed by traversing the de Bruijn
graphs in order to reconstruct transcripts. Although many as-
semblers have been developed, de novo short read assembly still
remains challenging due to insufficient read length and com-
binatorial explosion, and such methods may eventually incur
wrongly assembled contigs [22], [23]. The de novo assembly
of higher eukaryotic transcriptomes is considerably more com-
plicated than revealing bacterial, archaeal, and lower eukaryotic
transcriptomes, not only because of the larger data set sizes,
but also because of the difficulties involved in identifying alter-
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natively spliced variants. For a more comprehensive transcrip-
tome, there is an alternative way that combines the two strate-
gies above. The combined assembly strategy can be carried out
by either an align-then-assemble or an assemble-then-align ap-
proach. Reference-based assembly and de novo assembly need to
be brought together in a sophisticated manner so that they com-
pensate for the disadvantages of each other, but the respective ap-
proaches incorporate challenges that should be independently re-
solved. At this moment, no automated combined assemblers have
yet been implemented [17]. To take full advantage of information
concerning coverage and depth, we focused on a reference-based
strategy.

In reference-based transcriptome assembly, as mentioned
above, reads are first mapped onto a reference genome to ex-
amine where each read originated in order to reconstruct a tran-
scriptome from an RNA-Seq dataset and the reference genome
of the sample species. A considerable number of short reads are
aligned to a reference genome [24], [25]. Several implementa-
tions have been proposed to detect splice junctions by mapping
divided reads [26], [27]. Once mapping is completed, transcript
graphs are generated based on the spliced reads mapped onto re-
spective junctions, and thus isoforms are predicted. Isoform-level
expressions are obtained by estimating the quantity of reads orig-
inating from each variant. Therefore, the accuracy of mapping
critically affects transcriptomic analyses because inaccurate map-
ping may lead to errors in the prediction of isoforms. However,
the existence of multireads is an obstacle to accurate estimation of
expression levels [28]. Multireads are reads that are mapped onto
multiple locations due to the short length of the reads, the pres-
ence of repeated sequences, individual differences between the
reference and the sample genomes, and possibly sequencing er-
rors. Discarding multireads critically affects the subsequent quan-
tification of expression levels, and diminishes the power to detect
differential gene expression [29].

Given accurate mapping of multireads, inferring isoform-level
expression still remains challenging [30]. In order to estimate the
expression levels of isoforms using RNA-Seq data, many meth-
ods, including those of Li et al. [31], Nicolae et al. [32], and
Richard et al. [33] have been proposed to distribute reads onto
each isoform within a gene location using EM algorithms. While
these methods are heuristic in nature, Pasaniuc et al. [34] they use
a generative model and take into account gene variation between
the reference genome sequence and the sequence of the studied
sample in order to improve accuracy in estimating expression lev-
els. The methods mentioned above assume that complete lists
of isoforms are already known. This assumption suggests that
novel isoforms cannot be detected. Compared to these methods,
Trapnell et al. [18] proposed Cufflinks, which analyzes transcrip-
tomes by applying Bayesian Network modeling to an RNA-Seq
dataset.

In this paper, we propose a method to predict isoforms using
RNA-Seq data by iterative mapping. Our method potentially pos-
sesses the capability to predict novel isoforms by creating lists of
isoforms from the results of mapping and gene locations referred
to from a database. An important feature of our work is iterative
mapping in which multireads are repeatedly allocated based on

estimated expression levels to improve the accuracy in predict-
ing isoforms and estimating isoform-level expression by an EM
algorithm.

2. Method
We propose a method to predict isoforms from an RNA-Seq

dataset. Additionally, isoform-level expressions can be obtained
by this method. This section provides an overview of the pro-
posed method followed by details.

2.1 Overview
The existence of multireads is an obstacle to estimating accu-

rate expression levels. The differences between actual expression
levels and estimations must be reduced in order to improve the
performance of isoform prediction. Our approach to resolving
this problem is iterative mapping. The abundance of uniquely
mapped reads at a certain position can be a clue to reducing es-
timation errors of the proportion. The differences are expected
to diminish by remapping multireads based on the abundance.
Since the remapping can result in changes in the predicted iso-
forms, quantification of expressions must be repeated. Once post-
remapping expressions are obtained, remapping should be done
again based on the modified proportion. By repeating this cy-
cle, isoforms can be precisely predicted. Simultaneously, the es-
timated expression levels of the isoforms converge to the actual
values.

The conceptual flow of the proposed method is depicted in
Fig. 1. It consists of five steps. The arrows in Fig. 1 indicate the
respective operations. Reads are mapped over a genome in Step
1 and splicing junctions are detected in Step 2. Step 3 constructs
tentative gene models and generates candidate isoforms on each
locus. Expression levels of the candidate isoforms are estimated
in Step 4. Multireads are remapped in Step 5 to reduce the dif-
ferences between actual expression levels and estimated ones. By
iterating Steps 3, 4, and 5, final candidates are output as predicted
isoforms when this loop terminates.

2.2 Details
The details of the steps are described as follows.

2.2.1 Step 1: Mapping
Map reads onto a reference genome sequence under a certain

condition, e.g., up to two mismatches. Here, we use the Bowtie
program that enables fast genome-wide mapping [24]. In or-
der to reduce computational time, Bowtie employs the Burrows-
Wheeler Transform instead of naive BLAST-like alignment al-
gorithms [25]. In the resultant alignment, reads can be classified
into three categories: uniquely mapped reads, multireads, and un-
mapped reads. Multireads are set aside for later steps.
2.2.2 Step 2: Junction Detection

Detect splicing junctions as well using unmapped reads
(Fig. 2). Unmapped reads potentially originate from splicing
junctions. To specify where splicing junctions are located,
several methods, including TopHat [26], MapSplice [27], and
HMMSplicer [35] have been proposed. We use the SpliceMap
aligner [36]. This software first performs half-read mapping to
take advantage of reasonably long reads offered by the newest

2

IPSJ SIG Technical Report

ⓒ 2012 Information Processing Society of Japan

Vol.2012-BIO-29 No.13
2012/6/28



Fig. 1 Flow of the proposed method.

Fig. 2 Detection of splicing junctions.

models of second-generation sequencers. Reads are halved and
one end is aligned against the reference genome. The mapped
hits of the half-reads are extended base by base to find the splic-
ing points until the sequences GT or AG are detected. These se-
quences are well-known as a significant splicing signal that ap-
pears in 98% of splicing sites of human transcriptomes [37]. This
principle, that almost all introns begin with GT and end with AG,
is often referred to as the GT-AG rule [38], [39]. The partner half-
reads are subsequently aligned within a specific distance. Several
mismatches are allowed so that homologous sequences can be de-
tected. The resultant regions are reported as candidate junctions.
2.2.3 Step 3: Generation of Isoform Candidates

Once the result of mapping is obtained, isoform candidates are
generated using a reference database for transcriptional sites. For
a simpler explanation of notation, the approach is described for a
certain gene g, but this model can be applied to all genes so that
the whole transcriptome of the target sample can be analyzed.
The first task in this step is the construction of a tentative gene

Fig. 3 Estimated gene model.

model as depicted in Fig. 3.
Using the information of junctions obtained in Step 2, g is sep-

arated into a set of (possible) exons. Provided the number of the
potential exons within g is Ng, we denote the expression value of
each exon as eg, k where k is an integer from 1 to Ng. Suppose yk

is the number of reads mapped onto exon k, and let e(n)
g, k denote the

normalized expression of exon k in the n-th iteration. Note that
yk may change after remapping in Step 5. At the moment when
the initial mapping in Step 1 and the junction-aware alignment
in Step 2 are completed, yk represents the number of uniquely
mapped reads. Initialization and normalization is computed as
yk/lk. This expression level is a temporary estimate and will be
updated by means of iterative mapping.

The subsequent operation in this step is to examine whether or
not alternative splicing occurs within g. To assess the possibil-
ity, we employed Richard et al.’s model [33] for the detection of
spliced exons, along with an estimation of expression levels (Step
4). Note that in contrast to Richard et al.’s method, which assumes
that a complete list of exons and introns is known, our method
constructs a set of candidate isoforms without known variant in-
formation. Due to the hypothesis that reads are positioned ran-
domly along every transcript, and suppose g is not alternatively
spliced, read counts are considered to obey a multinomial distri-
bution M((pk)k=1..n,T ), i.e.:
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eg, k =
T
lk
· (
∑

li)!
l1! · · · ln!

pl1
1 · · · pln

n (1)

where T is the total number of reads across g and pk is the prob-
ability that a read is mapped on exon k, which can be accounted
for by the following equation:

pk =
lk∑n
i=1 li

(2)

A chi-square test with freedom of degree (n − 1) is performed
under the null hypothesis that alternative splicing does not occur
in this gene. A small p-value implies that there are multiple iso-
forms. If the alternative hypothesis is adopted, Z-scores zk are
calculated on each exon by Eq. (3) in order to specify which ex-
ons are involved in alternative splicing.

zk =
Rk −median(R)

MAD(R)
(3)

where

Rk = log
yk

lk
= log eg, k (4)

and MAD represents the maximum absolute deviation which is
defined as max |Rk −median(R)| [33]. For robust estimates, we
used the median and MAD instead of mean and standard devia-
tion in order to avoid a bias for genes with few exons. Isoform
candidates are all the possible combination of exons whose Z-
scores exceed a significance level α. Thus, the most plausible set
of isoforms is chosen.
2.2.4 Step 4: Quantification of Expression Levels

This step estimates isoform-level expressions by evaluating the
proportions of each isoform. Given a binary matrix I, where
Ik, j = 1 if exon k is expressed in the isoform j, 0 otherwise, the
following equation describes the relationship:

yk =
∑

j∈isoforms

pk∑
i pi · Ii, j

· Ik, j · T j (5)

where T j is the number of reads that originate from isoform j, and
yk is the read count of exon k. In general, T j cannot be uniquely
determined. The expectation maximization (EM) algorithm is de-
ployed to optimize T j so that it coincides with the number of ob-
served reads mapped on the same exon as shown in Eq. (5). This
operation is equivalent to distributing mapped reads onto each
isoform within a genetic location.
2.2.5 Step 5: Remapping

Estimated expressions may be incorrect due to numerous mul-
tireads. Conceptually, the number of multireads depends on the
expression level at a position. To reduce the differences between
the estimated and actual values, multireads are remapped so that
the number of multireads is in proportion to Rk. This can be done
by replacing each column of Y into appropriate values so that the
number of multireads is in proportion of the estimated expres-
sion level calculated in Step 4. After Step 5, Steps 3 and 4 are
repeated. If changes in the result of remapping across the entire
genome are less than a threshold, i.e.
∑

g, k

∣∣∣∣e(n)
g,k − e(n−1)

g,k

∣∣∣∣ < ε (6)

where ε is also a given parameter, this routine is considered to

converge and is terminated. In case this loop may not converge
within a reasonable computational time, we set an upper limit for
the number of iterations. This loop is repeated n times, where n
is an integer given as a parameter upon execution.

3. Results and Discussions
We conducted an experiment to evaluate the effectiveness of

the proposed method.

3.1 Experimental Conditions
Our method was applied to an RNA-Seq dataset, Clontech

636530 [40], which is derived from an adult human brain. The
read length is 75 bases and the number of reads is 16,748,521.
The UCSC human genome sequence (hg19) was used as the ref-
erence genome sequence. We applied the proposed method and
validated its accuracy. We used the default parameters in mapping
reads with Bowtie except for the -p option. In searching junctions,
the maximum distance between exons was set to 400,000 bases
by default considering the intron length distribution conducted by
previous studies, but can be accordingly modified. We also com-
pared our method with Cufflinks [18]. The TopHat aligner was
used before predicting isoforms with Cufflinks. In both programs
parameters were set to default values.

Ensembl GRCh37.59 human genome annotations were used to
validate our method and Cufflinks [41]. Since Cufflinks does not
refer to any database except for a reference sequence to deter-
mine transcriptional locations, comparisons were limited to the
overlaps with Ensembl. Non-genetic regions (non-overlaps with
Ensembl) were eliminated from the Cufflinks output. We com-
pared the precision of these two methods. As the number of
known annotations is rapidly increasing and real negatives cannot
be identified, false negatives were ignored. Although next genera-
tion sequencing has the capability to analyze sequences in single-
nucleotide resolution, a very small variation in exon boundaries
was allowed using the Cuffcompare program, which yields still
useful information. In comparing isoforms that consist of multi-
ple exons, candidate isoforms were considered to be true positives
only if all the exons matched Ensembl entries.

3.2 Results
Table 1 shows a comparison of genome-wide analyses.
While Cufflinks obtained 40.7% in its precision, our method

outperformed it with 66.7%. The precision of exon and in-
tron prediction is shown in Table 2 and Table 3, respectively.
Ensembl GRCh37.59 includes 151,225 isoforms, which indi-
cates that the recall of our method and cufflinks were 9.43%
and 33.5%, respectively. Of the 124,411 isoforms predicted by
Cufflinks, 98,018 were single-exon transcripts, while the output
of our method contained 14,485 single exons. Simultaneously,
our method surpassed Cufflinks in accuracy, which is calculated
as the percentage of exons and introns that match Ensembl over

Table 1 Genome-wide isoform prediction.

TP+FP TP Precision (%)
Proposed method 21,393 14,269 66.7

Cufflinks 124,411 50,635 40.7
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Fig. 4 Results in ACTB.

Table 2 Precision of exon prediction.

(%) TP+FP TP Precision (%)
Proposed method 27,158 25,152 96.4

Cufflinks 320,788 141,133 43.9

Table 3 Precision of intron prediction.

(%) TP+FP TP Precision (%)
Proposed method 25,152 27,158 96.4

Cufflinks 81,087 77,068 95.0

the whole prediction.
Figure 4 shows an example of the result in a specific gene

called Actin, Beta (ACTB). There are 13 isoforms registered in
Ensembl. Cufflinks detected essentially only one isoform that
matches Ensembl. The other isoform predicted by Cufflinks was
the entire gene region. In other words, Cufflinks detected essen-
tially one isoform. On the other hand, our method successfully
predicted four isoforms, two of which are registered on Ensembl.
Another advantage of our method is that it is capable of estimat-
ing the relative expression levels of each isoform. Given the total
number of reads mapped on this gene, our method can calculate
the number of reads that originate from each isoform.

Table 4 Change of accuracy in each loop.

Loop 1st 2nd 3rd
% 38.7 62.3 66.7

Our method was successful in detecting isoforms in a human
transcriptome. We also investigated how effective our remapping
strategy was. Table 4 shows the change of performance in each
loop. Each figure represents the precision of isoforms. There was
a significant improvement in the accuracy from the first loop to
the second.

3.3 Discussions
From the comparison of isoform prediction between our

method and Cufflinks, our method showed a better precision rate.
Table 4 suggests that iterative mapping is effective in enhanc-
ing precision since the performance dramatically improved as
remapping was carried out. However, there is a significant dif-
ference in the number of isoforms predicted. This is potentially
caused by the abundant presence of single-exon transcripts in the
Cufflinks output. Cufflinks presented many false positive single-
exons, while in our method those false positives were eliminated
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by remapping. As a consequence our method represented remark-
ably better precisions in exon and intron predictions, suggesting
that our method may have the potential to detect novel isoforms.

Unlike most other iterative methods, our method does not use
random sampling. For initial values the result of read mapping
is used, and the iteration is done deterministically based on the
number of reads mapped. Therefore the proposed method is not
stochastic. This suggests that our method potentially has the ca-
pability of predicting isoforms from a variety of datasets.

4. Conclusions
We propose an analysis method for isoform prediction using

RNA-Seq data by the iterative mapping of reads. The proposed
method demonstrated improved performance.

Future work includes improvement on the quantification of ex-
pression. The prediction of transcriptional locations from the re-
sults of mapping is another challenge. This method can enhance
the detection of novel isoforms and hence enhance the applica-
tions of RNA-Seq analyses.
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