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Selected Slither Link Variants are NP-complete
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Abstract: In a Slither Link puzzle, the player must draw a cycle in a planar graph, such that the number of edges
incident to a set of clue faces equals the set of given clue values. We show that for a number of commonly played
graph classes, the Slither Link puzzle is NP-complete.

Keywords: puzzles, combinatorics, computational complexity, NP-completeness

1. Introduction and Definitions

Slither Link is a popular puzzle, published both in book
form [4], as online static games [2] and as downloadable appli-
cations [6]. In its most general form, the rules can be formalized
as follows.

Let G = (V, E) be a plane graph *1 and Fc a set of faces in G,
the clues, and let v: Fc → N be a function giving the clue values.
The Slither Link decision problem is this: decide whether there
is a set of edges C ⊆ E such that C is a cycle and such that for all
faces F ∈ Fc the number of edges in C incident to F equals v(F).

The original and most popular form of this puzzle is where V

is a rectagular subset of Z2, e.g., V = {1, . . . , w} × {1, . . . , h}, and
E is the set of vertex pairs with Euclidean distance 1. This was
shown to be NP-complete in Ref. [8]; a proof is readily available
online in Ref. [7]. We show that for a small handful of other graph
classesG, the Slither Link decision problem restricted toG is also
NP-complete.

For two of the graph classes, the triangular and hexagonal
graphs, the NP-completeness is already known [5]. In fact, the
authors show the problem to be ASP-complete on those graphs:
given a solution, it is NP-hard to find another solution. These so-
lution and hardness concepts are studied in Ref. [7]. One benefit
of our reductions on those same graphs are their simplicity, which
they achieve by relying on a result published after Ref. [5].

2. Membership of NP

First, we want to show that in the general form, i.e., for the
class of all planar graphs (given as adjacency lists with clue faces
and values given as edge lists and binary integers), the Slither
Link decision problem is in NP. The argument is simple. Let C

be given and consider the graph G′ = (VC ,C) where VC is the
set of endpoints of edges in C. It can easily be checked that each
vertex v has degree 2 in G′ and that G′ is connected, and therefore
a cycle. Checking that the number of edges incident to a face F

of G equals v(F) is likewise easy: compute a planar embedding in
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*1 A planar graph which not only can be but also is embedded in the plane.

linear time [1]; for each given clue, check that the given edge list
actually is the boundary of a face, and that C overlaps that face F

at exactly v(F) edges.
For more specific Slither Link decision problems, i.e., for nar-

rower graph classes G, their NP-membership can be seen by the
above proof and that testing membership of G is easy, if this is
indeed the case. We will typically represent members of G not
by an adjacency list but by parameters (similar to how w and h

characterise rectangular grid graphs) from which an adjacency
list can efficiently be computed. Then membership of G is given
by construction and the above proof still applies.

3. The General Approach to Proving Hardness

It is known that the Hamiltonian Cycle problem is NP-
complete on hexagon grids [3]: that is, given a set of points P

on a hexagonal grid with a set of edges induced by unit Euclidean
distances, the problem of determining whether a cycle exists that
goes through every point exactly once is NP-complete. This is
true even if the largest Euclidean distance between two points is
required to be polynomial in the number of vertices in the graph;
this is readily apparent from the proof in the citation. Thus, we
can take the coordinates of hex grid points to be given in unary.

We will reduce this problem (Unary Hex Grid Hamiltonian
Cycle) to each of our concrete Slither Link variants by showing
how to construct vertex and non-vertex gadgets corresponding to
points in P and not in P, respectively, and how edge gadgets are
formed when vertex gadgets are combined. Lastly, we’ll prove
that this construction actually captures the behavior of vertices
and edges in a hex grid Hamiltonian cycle problem, such that
local solutions produce global solutions to Slither Link, which
match Hamiltonian cycle solutions.

Let us be specific about hexagon grid graphs: let x = (1, 0) ∈
R

2 and w = (cos 120◦, sin 120◦) ∈ R2, and let T = {ax + bw |
a, b ∈ Z} be the triangle grid or lattice formed by integer combi-
nations. The reader may recognize this as the Eisenstein integers.
A triangle grid graph is a graph where V is a finite subset of T and
E is those vertex pairs with Euclidean distance 1. The hexagon

grid is the set Th = {ax+bw ∈ T | a+b � 0 (mod 3)}. Note that
(x, w) is a basis for R2 so (a, b) is uniquely determined for every
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point in T , and so any property of e.g., a + b is a well-defined
property of points in T . If one draws line segments between ad-
jacent points in Th, one will have drawn a hexagon tesselation of
the plane. A hexagon grid graph is a graph induced by a finite set
V ⊆ Th and unit distance edges.

Let Gr = (T, E1) be an infinite grid graph, e.g., T or Th,
and G = (P, E) be a finite graph on this grid, i.e., P ⊆ T and
E = (P × P) ∩ E1. Then we define Neigh(P) := {v ∈ T | ∃v′ ∈
P: (v, v′) ∈ E1} and Rim(P) = Neigh(P) \P. Note that P∪Rim(P)
has height and width only O(1) larger than P, and can easily be
computed.

The motivation for this definition is that if non-vertex gadgets
are placed in a Slither Link graph, corresponding to points in
Rim(P), any candidate solution C which is partially contained
in P will be unable to cross Rim(P) and so will be completely
confined to P: it can’t be on the outside as long as vertex gadgets
contain a clue face with a positive value, because then C wouldn’t
satisfy that clue.

4. The Dodecahedron Graph Class is Hard

The dodecahedron grid *2 looks like this: draw the hex grid
and replace each vertex with an equilaretal triangle, turning each
hexagon into a regular dodecahedron. Equivalently, draw a row
of dodecahedrons next to one another with overlapping vertical
edges; then, at each edge at five-o’-clock, draw a dodecahedron
with the same edge in the eleven-o’-clock position. If the first row
is w dodecahedrons wide and this row pair is repeated h

2 times ver-
tically translated (plus a copy of the top row if h is odd), this is
the dodecahedron grid graph *3. See also Fig. 1. They are repre-
sented by a pair (w, h) in unary, plus a clue/value list.

The Dodecahedronal Slither Link decision problem is the
Slither Link decision problem, limited to this class of graphs.
Now, let us consider a reduction from Unary Hex Grid Hamil-
tonian Cycle to Dodecahedronal Slither Link.

Let a Unary Hex Grid Hamiltonian Cycle problem G = (P, E)
be given. Note that we can biject the vertices in P onto triangular
faces Fs on the dodecahedronal grid such that (s, t) ∈ E if and
only if Fs and Ft have an edge between them (i.e., between a cor-
ner in Fs and one in Ft). Let v(Fs) = 1 for s ∈ P and v(Fs) = 0
for s ∈ Rim(P), and undefined elsewhere (i.e., the set of clues is
P ∪ Rim(P)). With the hex grid coordinates in P given in unary,
we can output w and h within polynomial time if we just choose
them no larger than necessary to contain all the faces in this bi-

Fig. 1 2 by 2 dodecahedron grid, showing two vertex gadgets.

*2 More commonly known as the truncated hexagonal tiling; we hope the
reader will accept our idiosyncratic terminology.

*3 We focus on tesselations of the plane by dodecahedrons and triangles in
this particular grid structure, because this is the kind of graph produced
by at least one popular Slither Link implementation.

jection, which is easy to do. If G has only a single vertex, we
don’t do the above. Instead, we output a particular yes-instance,
the w = h = 1 puzzle with a single face, containing the clue 12.

The triangular faces with clue value 1 are the vertex gadgets;
those with clue value 0 are the non-vertex gadgets, and their con-
necting edges are edge gadgets.
Theorem 1. The Dodecahedronal Slither Link decision problem

is NP-complete.

Proof. The problem is clearly in NP—checking dodecahedron
class membership is done by construction, so the previous proof
applies. Thus, we only need to show that the reduction works.

If G has only a single vertex, it has a hamiltonian cycle and
clearly the reduction outputs a yes-instance, so assume that G has
multiple vertices.

The local solution to a vertex gadget is that C contains one
edge of the triangular face and two edge gadgets adjacent to that
face. Each face has three solutions, rotationally symmetric, cor-
responding to each choice of edge pairs.

If there is a hamiltonian cycle H in G, for every edge e ∈ H,
include its corresponding edge gadget in C. This is consistent
with exactly one local solution to every vertex gadget. Include
the edges from the local solutions to vertex gadgets in C as well,
and no more edges. Then C is a cycle because H is, and C satis-
fies all clue value constraints by construction.

On the other hand, any solution C will have to go through the
gadget of every vertex in P (or it would violate a clue), and each
vertex gadget will have two adjacent edge gadgets contained in
C. This corresponds exactly to a hamiltonian cycle in G.

The result of the reduction is polynomial in size—the input
has unary coordinates—and is easily (polynomial time) com-
putable. �

5. The Triangular Graph Class is Hard

Recall the above definition of triangular grid graphs. We want
to focus on a subset of these which has a very regular row/column
structure. A row of length w is 2w triangles, alternating between
pointing down and up, overlapping in the non-horizontal edges.
In a graph with h rows, h > 1, each row is the horizontal mirror
image of its predecessor. See Fig. 2 for a w = h = 6 graph. We
represent these graphs by unary encodings of w and h, as before,
plus clue faces and values. We want to reduce Unary Hex Grid
Hamiltonian Cycle to Triangular Slither Link.

Vertex gadgets look as in Fig. 2, or as in Fig. 3 when partially
solved—light grey edges are not a part of any solution, black
edges are part of all solutions, and yellow edges are ambiguous.

Note that the displayed gadget corresponds to a hex grid vertex
with edges going west, northeast and southeast. Mirror images
of this gadget do the opposite. Non-vertex gadgets are as ver-
tex gadgets except with all 1-valued clues replaced by 0-valued
clues. Vertex gadgets are joined together as in Fig. 5. Note how
the partial (and full) solutions are mirror images of one another.

To reduce a Unary Hex Grid Hamiltonian Cycle instance G =

(P, E) to Triangular Slither Link, put a vertex gadget in a triangle
grid for each v ∈ P and a non-vertex gadget for each u ∈ Rim(P),
joined as shown. Put these with as small coordinates as possible,
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Fig. 2 Triangular vertex gadget.

Fig. 3 Partially solved vertex gadget.

Fig. 4 Completely solved vertex gadget.

Fig. 5 Combined triangular vertex gadgets.

so as to minimise w and h.
Theorem 2. The Triangular Slither Link decision problem is NP-

complete.

Proof. We can establish NP-membership by the above observa-
tion: checking the graph in adjacency list form is easy, and it’s
easy to create that representation. Any pair of (w, h) is a member
of our special class of triangle grid graphs.

Clearly the reduction is polynomial time: the gadgets are small
and easily manipulable, and w + h is small even in unary.

The local solution to a vertex gadget is shown in Fig. 4; this
solution has two rotationally symmetric variants not shown, and
each of the three corresponds to a choice of two selected edges in-
cident to the gadget’s corresponding vertex. There is also a fourth
solution, a closed hexagonal loop, which corresponds to no edges
being chosen. The local solution to a non-vertex gadget is one
with no edges in the cycle.

If |P| = 1, then G has a trivial hamiltonian cycle, and the closed
loop local solution is also a global solution.

If |P| > 1 then the fourth solution can’t occur as part of any
(global) solution: let C4 be the edges in the hexagonal loop of a
particular vertex v. Then any superset of C4 can’t be a cycle, and
C4 fails to satisfy the clues in the gadgets of v′ ∈ P, v′ � v.

Let a cycle H in G be given. Construct a solution C to the
Triangular Slither Link instance by choosing local solutions to
vertex gadgets corresponding to the choice of incident edges in
H. This violates no clue, and the local solutions are consistent in
their overlap (i.e., no edge is both a member and non-member of
C) by construction. Globally, C is guaranteed to be a cycle (and
not a multi-cycle cover) because H is a cycle.

Now, let a solution C to the Triangular Slither Link instance be
given. Since the vertex gadgets only have local solutions corre-
sponding to consistent choices of edges, and these edges globally

Fig. 6 Hexagonal vertex gadget.

Fig. 7 Partially solved vertex gadget.

Fig. 8 Completely solved vertex gadget.

Fig. 9 Combined hexagonal vertex gadgets.

form a cycle, we can produce a cycle H in G. �

6. The Hexagonal Graph Class is Hard

Recall the definition of the hexagonal grid. Again we look at
a particular shape: we have w columns of h hexagons, each col-
umn’s starting hexagon alternatingly to the southeast or northeast
of its left hand neighbour. See Fig. 7 for an example with w = 6
and h = 5. We want to show that the Hexagonal Slither Link
problem is NP-complete.

The vertex gadgets look like in Fig. 6 and its counterpart in
Fig. 9. The non-vertex gadgets are the same, except with all clue
values replaced by 0. The gadgets join as in Fig. 9. The reduction
is as previous: put vertex gadgets at P-members and non-vertex
gadgets at Rim(P), making w and h as small as possible. Note
though, that we have to rotate our input graph 90◦, essentially
flipping the two axis, as our gadgets have edge gadgets going
north/south rather than east/west.
Theorem 3. The Hexagonal Slither Link decision problem is NP-

complete.

Proof. Just like previously, the gadgets are small and easily ma-
nipulable, so the reduction is polynomial time.

The local solution is as in Fig. 8, with three rotations in to-
tal, allowing each choice of two out of three edges, and a fourth
solution—a loop around a cluster of three hexagons—which is
only valid for one-vertex graphs, in which case it’s again a global
solution. And again, the local non-vertex solution allows no
edges. Each (global) solution is consistent with a hamiltonian
cycle of the given Unary Hex Grid Hamiltonian Cycle problem,
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Fig. 10 Dual grid vertex gadget.

Fig. 11 Partially solved vertex gadget.

Fig. 12 Completely solved vertex gadget.

Fig. 13 Combined dual vertex gadgets.

and corresponding to each hamiltonian cycle is a solution to the
Slither Link problem. �

7. The Dual Graph Class is Hard

The triangular and hexagonal grids are each others’ planar du-
als. The dual graph class *4 arises from superimposing them on
one another; that is, by adding vertices in the center of hexagons
and connecting them to the centers of neighbouring hexagons,
also adding a vertex when the connecting line intersects the edge
between the connected hexagons. If we scale the unit down by
2, the hexagon centers have edges to all vertices in distance 2,
while all other vertices have only unit distance edges. The par-
ticular structure we look at is a grid of h rows, each containing w
hexagons—similar to the hexagonal grid, but rotated 90◦.

The vertex gadget looks as in Fig. 10 *5. If we make all pos-
sible local deductions, we arrive at Fig. 11. Non-vertex gadgets
are vertex gadgets with all clues replaced by 0. Once again, put
vertex gadgets at P and non-vertex gadgets at Rim(P), packed
together to make w and h as small as possible; the combination
looks as in Fig. 13.
Theorem 4. The Dual Slither Link decision problem is NP-

complete.

Proof. Like above: the local solutions (Fig. 12) combine into a
global solution, which matches hamiltonian cycles. Again, the
single-vertex case has a special fourth local solution to vertex
gadgets which is a hexagonal loop. This local solution is for-
bidden in global solutions to problems which the reduction yields
on multi-vertex graphs. �

*4 More commonly known as the deltoidal trihexagonal tiling; again we
hope the reader will accept our idiosyncracy.

*5 The two leftmost empty hexagons are not part of the gadget proper, but
an artifact of the software used to generate the illustration.

8. Conclusion and discussion

We have shown how four Slither Link variants on particular
graph classes are NP-complete. Note also that the reductions are
all parsimonious—the number of solutions is preserved. This im-
plies that the Slither Link variants are not only #P-complete if
Unary Hex Grid Hamiltonian Cycle is, but also ASP-complete.
To establish that Unary Hex Grid Hamiltonian Cycle is ASP-
complete, one could try to find a chain of parsimonious reduc-
tions from one of the ASP-complete problems given in Ref. [7],
for instance a SAT variety. The chain of known reductions show-
ing the NP-completeness of Unary Hex Grid Hamiltonian Cycle
might be parsimonious at all steps.

If one defines the Hamiltonian Cycle problem such that single-
vertex graphs are no-instances, one can modify the presented re-
ductions so they test for this and output a no-instance (for in-
stance, give a face a positive clue value and all its neighbours the
clue value 0).

Clearly Slither Link isn’t difficult for all graph classes—it’s
rather easy to determine if G has a clue-satisfying cycle if G is
a cycle. If one wants a deeper understanding of the hardness of
Slither Link than we provide, one might try to find graph classes
with non-obvious hardness characteristics.
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