## Regular Paper

# Meta-envy-free Cake-cutting and Pie-cutting Protocols 

Yoshifumi Manabe ${ }^{1, \mathrm{a})}$ Tatsuaki Окамотo ${ }^{2, \mathrm{~b})}$

Received: August 23, 2011, Accepted: March 2, 2012


#### Abstract

This paper discusses cake-cutting protocols when the cake is a heterogeneous good, represented by an interval on the real line. We propose a new desirable property, the meta-envy-freeness of cake-cutting, which has not been formally considered before. Meta-envy-free means there is no envy on role assignments, that is, no party wants to exchange his/her role in the protocol with the one of any other party. If there is an envy on role assignments, the protocol cannot be actually executed because there is no settlement on which party plays which role in the protocol. A similar definition, envy-freeness, is widely discussed. Envy-free means that no player wants to exchange his/her part of the cake with that of any other player's. Though envy-freeness was considered to be one of the most important desirable properties, envy-freeness does not prevent envy about role assignment in the protocols. We define meta-envy-freeness to formalize this kind of envy. We propose that simultaneously achieving meta-envy-free and envy-free is desirable in cake-cutting. We show that current envy-free cake-cutting protocols do not satisfy meta-envy-freeness. Formerly proposed properties such as strong envy-free, exact, and equitable do not directly consider this type of envy and these properties are very difficult to realize. This paper then shows cake-cutting protocols for two and three party cases that simultaneously achieves envy-free and meta-envy-free. Last, we show meta-envy-free pie-cutting protocols.


Keywords: game theory, cake-cutting, pie-cutting, envy-free, meta-envy-free

## 1. Introduction

Cake-cutting is an old problem in game theory [9], [16]. It can be employed for such purposes as dividing territory on a conquered island or assigning jobs to members of a group. This paper discusses the cake-cutting problem when the cake is a heterogeneous good that is represented by an interval $[0,1]$ on the real line. The most famous cake-cutting protocol is 'divide-andchoose' for two players. Player 1 (Divider) cuts the cake into two equal size pieces. Player 2 (Chooser) takes the piece that she prefers. The Divider takes the remaining piece. This protocol is proved to be envy-free. Envy-freeness is defined as: after the assignment is finished, no player wants to exchange his/her part with that of another player's. The Divider must cut the cake into two equal size pieces (using the Divider's utility function), otherwise the Chooser might take the larger piece and the Divider will obtain less than half. Since the Divider cuts the cake into equal size pieces, she never envies the Chooser regardless of which piece the Chooser selects. The Chooser never envies the Divider because she chooses first.

Although it appears that the 'divide-and-choose' protocol is perfect, actually it is not, because it is not a complete protocol. When Alice and Bob execute this protocol, they must first decide who will be the Divider and the Chooser. The Chooser is the better choice, as mentioned in several papers [5], [13]. If the utility functions of Alice and Bob are the same, the Divider and the Chooser obtain exactly half of the cake by using their utility func-

[^0]tion. Next we consider a case where the utility functions of Alice and Bob differ. Let us assume that Bob is the Divider. Let us also assume that by using Bob's utility function, $[0,1 / 4]$ and $[1 / 4,1]$ is an exact division, because the cake is chocolate coated near 0 and Bob likes chocolate. Alice does not have such a preference, thus by choosing $[1 / 4,1]$, Alice's utility is $3 / 4$. If Alice is the Divider, she cuts to $[0,1 / 2]$ and $[1 / 2,1]$. Then Bob chooses $[0,1 / 2]$ and obtains more than half by his utility. Therefore, the Chooser is never worse off than the Divider, and the Chooser is better than the Divider if their utility functions differ. If both Alice and Bob know this fact, they both want to be the Chooser. Therefore, they must employ a method such as coin-flipping to decide who will be the Divider. If Alice is assigned the role of the Divider, she definitely envies Bob who is the Chooser. There is an envy on the assignment of roles in this protocol. Envy-freeness considers the assignment of cake, thus we need a new definition which deals the envy of roles in cake-cutting protocols. Although this type of envy is known, it has not been formally defined. We propose a new desirable property, the meta-envy-freeness of cake-cutting, which has not been formally considered before. Meta-envy-free means there is no envy on role assignments, that is, no party wants to exchange his/her role in the protocol with the one of any other party. If there is an envy on role assignments, the protocol cannot be actually executed because there is no settlement on which party plays which role in the protocol. Thus, we propose that simultaneously achieving meta-envy-free and envy-free is desirable in cake-cutting. This paper then proposes new protocols that simultaneously achieve meta-envy-free and envy-free for the twoparty case and the three-party case.

Some readers might think that coin-flipping will result in a fair role assignment between Alice and Bob, and so it is not a prob-
lem. If this supposition is accepted, the following protocol must be accepted as an envy-free protocol: 'Flip a coin and the winner takes the whole cake and the loser gets nothing.' This protocol is obviously unacceptable if we want to eliminate envy on the obtained portion of the cake. If we want to eliminate envy on role assignment, we must not accept such an envy role assignment using fair coin-flipping.

Previous studies defined stronger properties for the obtained portion such as strong envy-free, super envy-free, exact, and equitable [9], [16]. These properties, defined in Section 3, are hard to realize and do not directly consider this type of envy. We can obtain a three-party meta-envy-free and envy-free protocol by modifying a three player envy-free protocol.

Note that we do not eliminate every coin-flip. For the above example of 'divide-and-choose', if Alice and Bob's utility functions are exactly the same, their cutting points are the same. Thus, both Alice and Bob think that the values of the two pieces are the same. To complete the protocol, we must assign each party either piece. Coin-flipping can be used for such a case, but can only be allowed if its result causes no envy.

As an extension of the cake-cutting problem, a pie-cutting problem has been considered [12]. When the endpoints of a cake is connected to form a circle, it becomes a pie. All cuts are made between the center and a point on the circumference, so that each cut runs along a radius of the disk. We show a meta-envy-free piecutting protocol exists if a meta-envy-free cake-cutting protocol exists for any number of parties.

## 2. Preliminaries

Throughout this paper, the cake is a heterogeneous good that is represented by an interval $[0,1]$ on the real line. Each party $P_{i}$ has a utility function $\mu_{i}$ that has the following three properties, which is the same as the definition of a measure. (1) For any $X \subseteq[0,1]$ whose size is non-zero, $\mu_{i}(X)>0$. (2) For any $X_{1}$ and $X_{2}$ such that $X_{1} \cap X_{2}=\emptyset, \mu_{i}\left(X_{1} \cup X_{2}\right)=\mu_{i}\left(X_{1}\right)+\mu_{i}\left(X_{2}\right)$. (3) $\mu_{i}([0,1])=1$. The tuple of $P_{i}(i=1, \ldots, n)$ 's utility function is denoted by $\left(\mu_{1}, \ldots, \mu_{n}\right)$. Utility functions might differ among parties. No party has knowledge of the other parties' utility functions.

In this paper, 'party' indicates a person such as Alice, Bob, etc. and is denoted by $P$. 'Player' is a role in a protocol and is denoted by $p$. We sometimes state that 'party $X$ is assigned to player $y$ ' if a person $X$ executes the role of player $y$ in the protocol.

An $n$-player cake-cutting protocol $f$ assigns several portions of $[0,1]$ to the players such that every portion of $[0,1]$ is assigned to one player. We denote $f_{i}\left(\mu_{1}, \ldots, \mu_{n}\right)$ as the set of portions assigned to player $p_{i}$ by $f$, when party $P_{i}(i=1, \ldots, n)$ is assigned to player $p_{i}(i=1, \ldots, n)$ in $f$. When $f$ is a randomized algorithm, let us denote $f_{i}\left(\mu_{1}, \ldots, \mu_{n} ; r\right)$ as the assignment to $p_{i}$ when the sequence of random values used in $f$ is $r$.

All parties are risk averse, namely they avoid gambling. They try to maximize the worst case utility they can obtain.

A desirable property for cake-cutting protocols is strategyproofness (or truthfulness) [9]. A protocol is strategy-proof if there is no incentive for any player to lie about his utility function. A protocol defines what to do for each player $p_{i}$ according
to its utility function $\mu_{i}$. Since $\mu_{i}$ is unknown to any other player, $p_{i}$ can execute some action that differs from the protocol's definition (by pretending that $p_{i}^{\prime}$ 's utility function is $\mu_{i}^{\prime}\left(\neq \mu_{i}\right)$ ). If $p_{i}$ obtains more utility by lying about his utility function, the protocol is not strategy-proof. If a protocol is not strategy-proof, each player has to consider what to do and the result might differ from the intended result. If a protocol is strategy-proof, the best policy for each player is to simply observe the rule of the protocol. Thus strategy-proofness is very important. As for 'divide-and-choose', the protocol requires the Divider to cut the cake in half by using the Divider's true utility function. The Divider can cut the cake other than in half. However, if the Divider does so, the Chooser might take the larger portion and the Divider might obtain less than half. Thus a risk averse party honestly executes the protocol, and 'divide-and-choose' is strategy-proof.

## 3. Meta-envy-freeness

This section provides the definition of meta-envy-freeness. We offer two definitions and show that they are equivalent.
Definition 1. A cake-cutting protocol $f$ is meta-envy-free if for any $\left(\mu_{1}, \ldots, \mu_{n}\right), i, j$, and $r$,

$$
\begin{align*}
& \mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{n} ; r\right)\right) \\
& \quad \geq \mu_{i}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{j}, \ldots, \mu_{i}, \ldots, \mu_{n} ; r\right)\right) \tag{1}
\end{align*}
$$

From the symmetry of Definition 1, the following lemma is obviously derived.
Lemma 1. If a cake-cutting protocol is meta-envy-free, then for any $\left(\mu_{1}, \ldots, \mu_{n}\right), i, j$, and $r$,

$$
\begin{align*}
& \mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{n} ; r\right)\right) \\
& \quad=\mu_{i}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{j}, \ldots, \mu_{i}, \ldots, \mu_{n} ; r\right)\right) \tag{2}
\end{align*}
$$

Proof. Suppose that $f$ satisfies the condition of Definition 1 and for some $\left(\mu_{1}, \ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{n}\right), i, j$, and $r$,

$$
\begin{align*}
& \mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{n} ; r\right)\right) \\
& \quad>\mu_{i}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{j}, \ldots, \mu_{i}, \ldots, \mu_{n} ; r\right)\right) \tag{3}
\end{align*}
$$

is satisfied. Then consider another execution of $f$ with $\left(\mu_{1}, \ldots, \mu_{j}, \ldots, \mu_{i}, \ldots, \mu_{n}\right)$, that is, $P_{i}$ 's utility function is $\mu_{j}$ and $P_{j}$ 's utility function is $\mu_{i}$. Since the condition of Definition 1 is satisfied, swapping the roles of $P_{i}$ and $P_{j}$ does not increase $P_{j}$ 's utility, that is,

$$
\begin{align*}
& \mu_{i}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{j}, \ldots, \mu_{i}, \ldots, \mu_{n} ; r\right)\right) \\
& \quad \geq \mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{n} ; r\right)\right) \tag{4}
\end{align*}
$$

This contradicts Eq. (3). Thus, for any ( $\mu_{1}, \ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{n}$ ), $i, j$, and $r$,

$$
\begin{align*}
& \mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{n} ; r\right)\right) \\
& \quad=\mu_{i}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{j}, \ldots, \mu_{i}, \ldots, \mu_{n} ; r\right)\right) \tag{5}
\end{align*}
$$

is satisfied.
This definition considers the following two executions of $f$. (A) Party $P_{i}$ (whose utility function is $\mu_{i}$ ) plays the role of player $p_{i}$ and party $P_{j}$ (whose utility function is $\mu_{j}$ ) plays the role of
player $p_{j}$ in $f$ and random value $r$ is used. (B) Party $P_{i}$ plays the role of player $p_{j}$ and party $P_{j}$ plays the role of player $p_{i}$ in $f$ with the same random value $r$, that is, $P_{i}$ and $P_{j}$ swap role assignments.
The intuitive explanation of this definition is as follows. After $f$ is executed with random value $r, P_{i}$ thinks that the role of player $p_{j}$ was better than $p_{i}$ in $f$ with the current random value $r$ (that is, $p_{j}$ obtained extra benefit from $f$ with current random value $r$ ). Then $P_{i}$ can execute $f$ again with the same random value $r$ when $P_{i}$ plays the role of $p_{j}$ and $P_{j}$ plays the role of $p_{i}$. If $P_{i}$ cannot obtain more utility with the latter execution, $P_{i}$ does not want to exchange the roles of $f$, that is, $P_{i}$ has no envy in terms of role assignment.
For the example of 'Divide-and-Choose,' assume that the role of the Divider/Chooser is decided by coin-flipping and $P_{2}$ becomes the Chooser when the random value is $r_{0} . P_{1}$ swaps roles with $P_{2}$, uses the same $r_{0}$, and obtains more utility by becoming the Chooser. Such a protocol is not meta-envy-free according to the definition.

Let us consider another example. There are two pieces of the cake, $X_{1}, X_{2}$ that satisfy $\mu_{1}\left(X_{1}\right)=\mu_{2}\left(X_{1}\right)=\mu_{1}\left(X_{2}\right)=\mu_{2}\left(X_{2}\right)$. Coin-flipping is used to assign one piece of $X_{1}, X_{2}$ to each of $p_{1}, p_{2}$. Now $P_{1}$ plays the role of $p_{1}$ and $P_{2}$ plays the role of $p_{2}$. Assume that $X_{1}$ is assigned to $p_{1}$ and $X_{2}$ is assigned to $p_{2}$ when the random value is $r_{0}$. In this case, swapping roles with $P_{2}$ and using the same random value $r_{0}$ results in assigning $X_{2}$ to $P_{1}$, but this does not change the utility of $P_{1}$. Thus $P_{1}$ does not want to swap roles in this example.
Though it might be natural to consider distribution of obtained utilities for randomized algorithms, we do not discuss distribution in our definition. Consideration of the distribution hides the effect of unfair role assignments. For the above 'Divide-and-Choose with the the Divider/Chooser role assignment by coin-flipping' protocol, each player becomes the Divider with probability $1 / 2$, thus both players' distributions are the same. However, the protocol has an envy on role assignment for each random value $r$. Thus we do not consider the distribution according to the definition of meta-envy-free.

Note that meta-envy-freeness is independent of envy-freeness. There can be meta-envy-free protocols that are not envy-free. Let us consider the following artificial protocol $f$. Protocol $f$ assigns the whole cake to the party whose utility of $[0,0.1]$ is the largest among the parties. The result does not change even if some parties exchange their roles in the protocol, thus $f$ is meta-envyfree. The party whose utility of $[0,0.1]$ is not the largest envies the party who obtains the whole cake. We propose that simultaneously achieving meta-envy-free and envy-free is necessary in cake-cutting protocols.
Next we show a stronger definition of meta-envy-freeness.
Definition 2. A cake-cutting protocol $f$ is meta-envy-free if for any $\left(\mu_{1}, \ldots, \mu_{n}\right)$, permutation $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$, $i$, and $r$,

$$
\begin{equation*}
\mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{n} ; r\right)\right)=\mu_{i}\left(f_{\pi^{-1}(i)}\left(\mu_{\pi(1)}, \ldots, \mu_{\pi(n)} ; r\right)\right) \tag{6}
\end{equation*}
$$

This definition allows any permutation of the role assignment, which includes the case where $P_{i}$ 's role is unchanged.
Theorem 1. Definition 1 and Definition 2 are equivalent.

Proof. If the condition of Definition 2 is satisfied, the condition of Definition 1 is obviously satisfied. Thus we prove the opposite direction.

Any permutation $\pi$ can be realized by a sequence in which two elements are swapped. From Lemma $1, P_{i}$ 's utility is unchanged when the swap involves $P_{i}$. Thus we discuss $P_{i}$ 's utility when there is a swap between the other parties. Consider two utilities $\mu_{i}\left(f_{i}\left(\ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{k}, \ldots ; r\right)\right)$ and $\mu_{i}\left(f_{i}\left(\ldots, \mu_{i}, \ldots, \mu_{k}, \ldots, \mu_{j}, \ldots ; r\right)\right)$.

The roles of $P_{j}$ and $P_{k}$ can be swapped by the sequence of (S1) swapping $P_{i}$ and $P_{j}$, (S2) swapping $P_{i}$ (current role is $p_{j}$ ) and $P_{k}$, and (S3) swapping $P_{i}$ (current role is $p_{k}$ ) and $P_{j}$ (current role is $p_{i}$ ).

For each swap, Eq. (2) must be satisfied. From these equalities, we obtain

$$
\begin{aligned}
& \mu_{i}\left(f_{i}\left(\ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{k}, \ldots ; r\right)\right) \\
& \quad=\mu_{i}\left(f_{j}\left(\ldots, \mu_{j}, \ldots, \mu_{i}, \ldots, \mu_{k}, \ldots ; r\right)\right) \\
& \mu_{i}\left(f_{j}\left(\ldots, \mu_{j}, \ldots, \mu_{i}, \ldots, \mu_{k}, \ldots ; r\right)\right) \\
& \quad=\mu_{i}\left(f_{k}\left(\ldots, \mu_{j}, \ldots, \mu_{k}, \ldots, \mu_{i}, \ldots ; r\right)\right) \\
& \mu_{i}\left(f_{k}\left(\ldots, \mu_{j}, \ldots, \mu_{k}, \ldots, \mu_{i}, \ldots ; r\right)\right) \\
& \quad=\mu_{i}\left(f_{i}\left(\ldots, \mu_{i}, \ldots, \mu_{k}, \ldots, \mu_{j}, \ldots ; r\right)\right) .
\end{aligned}
$$

From these equalities, we obtain

$$
\begin{aligned}
& \mu_{i}\left(f_{i}\left(\ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{k}, \ldots ; r\right)\right) \\
& \quad=\mu_{i}\left(f_{i}\left(\ldots, \mu_{i}, \ldots, \mu_{k}, \ldots, \mu_{j}, \ldots ; r\right)\right) .
\end{aligned}
$$

Since this equality holds for any single swap, the equality holds for any permutation $\pi$.

Several desirable properties have been defined as shown below [9], [16], but these definitions do not take role assignment into consideration.
Simple fair For any $i, \mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{n}\right)\right) \geq 1 / n$.
Strong fair For any $i, \mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)>1 / n$.
Envy-free For any $i, j(i \neq j), \mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{n}\right)\right) \geq$ $\mu_{i}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)$.
Strong envy-free For any $i, j(i \neq j), \mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)>$ $\mu_{i}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)$.
Super envy-free For any $i, j(i \neq j), \mu_{i}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)<1 / n$.
Exact For any $i, j, \mu_{i}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)=1 / n$.
Equitable For any $i, j, \mu_{i}\left(f_{i}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)=\mu_{j}\left(f_{j}\left(\mu_{1}, \ldots, \mu_{n}\right)\right)$.
Simple fair division can be achieved for any number of players by using the moving-knife protocol [11]. Strong fair division cannot be achieved if every player has an identical utility function $\mu$. Woodall [18] proposed an algorithm for achieving strong fair division provided that there is a portion $X \subset[0,1]$ such that $\mu_{1}(X) \neq \mu_{2}(X)$, when $n=2$. The algorithm for obtaining such a portion $X$ is an open problem. Envy-free division can be achieved for any number of players [8], however the protocol is very complicated.

Regarding strong envy-free cake-cutting, the lower bound of the number of cuts has already been shown [14]. Super envyfree division can be achieved if the utility functions $\mu_{1}, \ldots, \mu_{n}$ are linearly independent. However the algorithm for obtaining an
actual assignment has not been shown [2]. An exact division algorithm has been reported for two players using a moving knife method [1]. An equitable division algorithm between two players has been also described [13]. The case where $n \geq 3$ remains an open problem.

As shown above, stronger properties than envy-free such as strong-envy-free, super-envy-free, exact, and equitable are very hard to realize.

A definition, similar to ours, called 'anonymous,' is provided in Ref.[15]. A cake-cutting protocol is anonymous if for any $\left(\mu_{1}, \ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{n}\right), i$, and $j$,

$$
f_{i}\left(\mu_{1}, \ldots, \mu_{i}, \ldots, \mu_{j}, \ldots, \mu_{n}\right)=f_{j}\left(\mu_{1}, \ldots, \mu_{j}, \ldots, \mu_{i}, \ldots, \mu_{n}\right)
$$

holds. This is a severe definition that requires the assigned portion to be identical for any role swapping. For $n=2$, an anonymous single-cut cake-cutting is obtained [15]. In meta-envy-freeness, the assigned portions need not be identical but their utilities must be identical for any role swapping. In addition, randomization is not explicitly considered in the definition of anonymity.

Equitability does not imply meta-envy-freeness. There can be an (artificial) protocol that is equitable but not meta-envy-free. Party $P_{1}$ 's utility $\mu_{1}$ satisfies $\mu_{1}([0,1 / 4])=0.3, \mu_{1}([1 / 4,1 / 2])=$ $0.3, \mu_{1}([1 / 2,3 / 4])=0.2$, and $\mu_{1}([3 / 4,1])=0.2$. Party $P_{2}$ 's utility $\mu_{2}$ satisfies $\mu_{2}([0,1 / 4])=0.2, \mu_{2}([1 / 4,1 / 2])=0.2$, $\mu_{2}([1 / 2,3 / 4])=0.3$, and $\mu_{2}([3 / 4,1])=0.3$. A protocol $f$ initially assigns $[0,1 / 4]$ to the first player and $[3 / 4,1]$ to the second player. The result of $f\left(\mu_{1}, \mu_{2}\right)$ is $f_{1}\left(\mu_{1}, \mu_{2}\right)=[0,1 / 2]$ and $f_{2}\left(\mu_{1}, \mu_{2}\right)=[1 / 2,1]$ and the utilities are 0.6 for both parties. On the other hand, $f\left(\mu_{2}, \mu_{1}\right)$ might result in $f_{1}\left(\mu_{2}, \mu_{1}\right)=([0,1 / 4]$, $[1 / 2,3 / 4])$ and $f_{2}\left(\mu_{2}, \mu_{1}\right)=([3 / 4,1],[1 / 4,1 / 2])$, thus the utilities are 0.5 for both parties. Therefore this (artificial) protocol is equitable, but not meta-envy-free, since $P_{1}$ prefers the first player. On the other hand, the meta-envy-free protocols shown in the next section are not equitable.

As shown in the introduction, the following holds.
Observation 1. The 'divide-and-choose' protocol is not meta-envy-free.

Next, we consider the envy-free cake-cutting protocol for three players, found independently by Selfridge and Conway (introduced in Ref. [9]), and shown in Fig. 1.

Note that without loss of envy-freeness, we assume that when a player cuts $L$ from $X_{1}=\left[x_{1}, x_{2}\right], L$ must be cut as $\left[x_{1}, x_{3}\right]$ for some $x_{3}$.
Instead of showing that the protocol in Fig. 1 is not meta-envyfree, we show a stronger statement that any party prefers the role of player $p_{3}$ to that of $p_{2}$ in this protocol. The statement shows that this protocol has a serious envy on role assignment.
Theorem 2. Any party prefers the role of player $p_{3}$ to that of $p_{2}$ in the protocol of Fig. 1.

Proof. Let there be three parties $P_{x}, P_{y}$, and $P_{z}$ whose utility functions are $\mu_{x}, \mu_{y}$, and $\mu_{z}$, respectively. We show that $P_{y}$ prefers the role of $p_{3}$ to that of $p_{2}$.

Let us consider the following two executions:
(Ex1) $\left(p_{1}, p_{2}, p_{3}\right)=\left(P_{z}, P_{y}, P_{x}\right)$,
(Ex2) $\left(p_{1}, p_{2}, p_{3}\right)=\left(P_{z}, P_{x}, P_{y}\right)$.

```
begin
\(p_{1}\) cuts into three pieces (so that \(p_{1}\) considers their sizes are the same)
Let \(X_{1}, X_{2}, X_{3}\) be the pieces where \(X_{1}\) is the largest and \(X_{3}\) is the smallest
for \(p_{2}\).
if \(X_{1}\) is strictly larger than \(X_{2}\) for \(p_{2}\) then
    \(p_{2}\) cuts \(L\) from \(X_{1}\) so that \(X_{1}^{\prime}=X_{1}-L\) is the same as \(X_{2}\) for \(p_{2}\).
else
    /* Do nothing. Let \(L\) be empty and \(X_{1}^{\prime}=X_{1} . * /\)
\(p_{3}\) selects the largest (for \(p_{3}\) ) among \(X_{1}^{\prime}, X_{2}\), and \(X_{3}\).
if \(X_{1}^{\prime}\) remains then
    begin
        \(p_{2}\) must select \(X_{1}^{\prime}\).
        Let \(\left(p_{a}, p_{b}\right)\) be \(\left(p_{3}, p_{2}\right)\).
        end
else
        begin
        \(p_{2}\) selects \(X_{2}\) (the largest for \(p_{2}\) among \(X_{2}\) and \(X_{3}\) ).
        Let \(\left(p_{a}, p_{b}\right)\) be \(\left(p_{2}, p_{3}\right)\).
        end
    \(p_{1}\) obtains the remaining piece among \(X_{2}\) and \(X_{3}\).
    if \(L\) is not empty then
        \(p_{a}\) cuts \(L\) into three pieces (such that \(p_{a}\) considers their sizes are the
    same) and \(p_{b}, p_{1}\), and \(p_{a}\) selects one piece in this order.
end.
```

Fig. 1 Three-player envy-free protocol.

The result of the initial cut by $P_{z}$ at line 2 is the same in (Ex1) and (Ex2). Let the three pieces be $Z_{1}, Z_{2}$, and $Z_{3}$. Without loss of generality, the $Z$ 's are ordered from the largest to the smallest for $P_{y}$. All possible cases are categorized as follows.
(Case 1) $\quad P_{y}$ does not cut $L$ in (Ex1).
(Case 1-1) $\quad P_{x}$ cuts $L^{\prime}$ from some piece $Z$ in (Ex2).
(Case 1-2) $\quad P_{x}$ does not cut $L$ in (Ex2).
(Case 2) $\quad P_{y}$ cuts $L$ from $Z_{1}$ in (Ex1).
(Case 2-1) $\quad P_{x}$ also cuts $L^{\prime}$ from $Z_{1}$ in (Ex2).
(Case 2-1-1) $L^{\prime}$ is larger ${ }^{* 1}$ than $L$.
(Case 2-1-2) $\quad L^{\prime}$ is smaller than $L$.
(Case 2-1-3) $\quad L^{\prime}=L$.
(Case 2-2) $\quad P_{x}$ cuts $L^{\prime}$ from another piece $Z$ in (Ex2).
(Case 2-3) $\quad P_{x}$ does not cut $L^{\prime}$ in (Ex2).
(Case 1-1) Let the largest piece for $P_{x}$ be $Z_{1}^{\prime} . P_{x}$ selects $Z_{1}^{\prime}$ at line 8 during (Ex1) and obtains utility $\mu_{x}\left(Z_{1}^{\prime}\right)$. In contrast, at lines 9-18 during (Ex2), $P_{x}$ obtains a piece whose utility equals $\mu_{x}\left(Z_{1}^{\prime}-L^{\prime}\right)$, because there are two pieces with utility $\mu_{x}\left(Z_{1}^{\prime}-L^{\prime}\right)$ after cutting $L^{\prime}$. At line 21 during (Ex2), $P_{x}$ obtains a cut of $L^{\prime}$ whose utility is smaller than $\mu_{x}\left(L^{\prime}\right)$. Thus, the total utility of $P_{x}$ is smaller than $\mu_{x}\left(Z_{1}^{\prime}\right)$. Therefore, (Ex1) is better for $P_{x}$.
(Case 1-2) There are at least two largest pieces for $P_{x}$ among $Z_{1}, Z_{2}$, and $Z_{3}$. $P_{x}$ selects the largest piece at line 8 during (Ex1). In contrast, after $P_{y}$ has selected $Z_{1}$ at line 8 during (Ex2), $P_{x}$ can select one of the largest pieces at lines $9-18$. Thus $P_{x}$ obtains the same utility in (Ex1) and (Ex2).
(Case 2-1-1) At line 8 during (Ex1), the largest piece for $P_{x}$ is $Z_{1}-L$, since $L^{\prime}$ is larger than $L$. At line $21, P_{x}$ obtains at least $\mu_{x}(L) / 3$. Thus, $P_{x}$ obtains at least $\mu_{x}\left(Z_{1}\right)-2 \mu_{x}(L) / 3$ in total. In contrast, $P_{y}$ selects $Z_{2}$, which is larger than $Z_{1}-L^{\prime}$, at line 8 dur-

[^1]ing (Ex2). Thus $P_{x}$ selects $Z_{1}-L^{\prime}$ at line 11. In addition, $P_{x}$ obtains at least $\mu_{x}\left(L^{\prime}\right) / 3$. $P_{x}$ obtains at least $\mu_{x}\left(Z_{1}\right)-2 \mu_{x}\left(L^{\prime}\right) / 3$ in total. Thus, (Ex1) is better for risk averse party $P_{x}$.
(Case 2-1-2) At line 8 during (Ex1), $P_{x}$ does not select $Z_{1}-L$, since it is not greater than the second largest piece, whose utility is $\mu_{x}\left(Z_{1}-L^{\prime}\right)$, for $P_{x} . P_{x}$ chooses the piece and obtains $\mu_{x}\left(Z_{1}-L^{\prime}\right)$. In addition, at line $21, P_{x}$ obtains $\mu_{x}(L) / 3$ because $P_{x}$ cuts $L$. $P_{x}$ obtains $\mu_{x}\left(Z_{1}\right)-\mu_{x}\left(L^{\prime}\right)+\mu_{x}(L) / 3$ in total. In contrast, at line 8 during (Ex2), $P_{y}$ selects $Z_{1}-L^{\prime}$, which is the largest for $P_{y}$. Thus $P_{x}$ selects $Z_{2}$ or $Z_{3}$ whose utility is $\mu_{x}\left(Z_{1}-L^{\prime}\right)$. $P_{x}$ then obtains $\mu_{x}\left(L^{\prime}\right) / 3$ at line 21 because $P_{x}$ cuts $L^{\prime} . P_{x}$ obtains $\mu_{x}\left(Z_{1}\right)-2 \mu_{x}\left(L^{\prime}\right) / 3$ in total, which is smaller than that in (Ex1), since $L^{\prime}$ is smaller than $L$.
(Case 2-1-3) In both (Ex1) and (Ex2), $P_{x}$ obtains a piece whose utility is $\mu_{x}\left(Z_{1}-L\right)$. The only difference is who cuts $L$. As shown in the proof of 'divide-and-choose', being the Chooser is the better than being the Divider at line 21. In (Ex1), $P_{x}$ can select $Z_{1}-L$ and become the Chooser. In (Ex2), if $P_{y}$ selects $Z_{1}-L, P_{x}$ must become the Divider. Thus (Ex1) is better than (Ex2).
(Case 2-2) In (Ex1), $P_{x}$ selects the largest piece, which is not $Z_{1}-L$, at line 8 and obtains $\mu_{x}(Z)$. At line 21, $P_{x}$ obtains at least $\mu_{x}(L) / 3$. In (Ex2), $P_{y}$ selects $Z_{1}$ not $Z-L^{\prime}$ at line 8. Thus $P_{x}$ obtains $\mu_{x}(Z)-\mu_{x}\left(L^{\prime}\right)$ at line 11. At line $21, P_{x}$ obtains less than $\mu_{x}\left(L^{\prime}\right) . P_{x}$ obtains less than $\mu_{x}(Z)$ in total, which is worse than in (Ex1).
(Case 2-3) There are at least two largest pieces among $Z_{1}, Z_{2}$, and $Z_{3}$ for $P_{x}$. Let $\mu_{x}(Z)$ be the utility of the largest piece. In (Ex1), $P_{x}$ can obtain $\mu_{x}(Z)$ at line 8. In addition, $P_{x}$ obtains $\mu_{x}(L) / 3$ at line 21. In contrast, in (Ex2), $P_{x}$ obtains $\mu_{x}(Z)$. Thus (Ex1) is better than (Ex2) for $P_{x}$.

Envy-free protocol for any number of players is shown in Ref. [8]. The outline of their protocol is shown in Fig. 2. We denote that " $p_{i}$ has IA (irrevocable advantage) over $p_{j}$ " when $p_{i}$

```
begin
L\leftarrow[0,1].
Let }N\mathrm{ be the least common multiple of {2,3,_.,n}.
p
The players are divided into two groups A and D.
A: The player feels that the values of all N pieces are the same.
D: The player feels some of the values are not the same.
: if a pair ( }\mp@subsup{p}{i}{},\mp@subsup{p}{j}{})\mathrm{ exists such that }\mp@subsup{p}{i}{}\inA,\mp@subsup{p}{j}{}\inD\mathrm{ and }\mp@subsup{p}{j}{}\mathrm{ does not have IA
    over pit then
        begin
        Execute IA-Subgame(L, pi, p
        L\leftarrow\mp@subsup{L}{}{\prime}
        Goto line 4
        end
        else /* D=\emptyset or every }\mp@subsup{p}{j}{}\inD\mathrm{ has IA over every }\mp@subsup{p}{i}{}\inA.*
        N pieces are divided by the members of A (Each member of A gets
    the same number of pieces).
end.
18: Procedure IA-Subgame( }L,\mp@subsup{p}{i}{},\mp@subsup{p}{j}{}
19:/* Assign some part of L envy-free among all players. */
:/* L'}\leftarrow\mathrm{ the remaining cake after the assignment. */
21:/* After the assignment, pi has IA over p}\mp@subsup{p}{j}{}\mathrm{ and p}\mp@subsup{p}{j}{}\mathrm{ has IA over }\mp@subsup{p}{i}{}.*
```

17:

Fig. 2 Envy-free protocol for any number of players.
thinks $p_{i}$ gets a larger piece than $p_{j}$ even if $p_{j}$ obtains all of the rest of the cake $L$.

Since the protocol is very complicated and the detail of the protocol is unnecessary to show meta-envy, we do not state the detail of subroutine "IA-Subgame." IA-Subgame increases the pair of players that have IA over each other. Thus, after a finite number of rounds, any player has IA over any other player. Thus eventually, the "else" condition at line 14 is satisfied and the algorithm terminates.
Theorem 3. The protocol in Fig. 2 is not meta-envy-free.
Proof. Let us consider the case $n=4$. The cases when $n>4$ can be similarly considered. In this case, $N=12$. Let us assume $P_{i}$ 's utility function $\mu_{i}$ is as follows. Utility $\mu_{i}(i=1,2,3)$ are uniform, that is, for any $[a, b], \mu_{i}([a, b])=b-a$. Utility $\mu_{4}$ satisfies the following. $\mu_{4}([j / 12,(j+1) / 12])=1 / 12(j=0, \ldots, 9)$, $\mu_{4}([10 / 12,21 / 24])=1 / 24-\epsilon, \mu_{4}([21 / 24,11 / 12])=1 / 24+\epsilon$, $\mu_{4}([11 / 12,23 / 24])=1 / 24-\epsilon$, and $\mu_{4}([23 / 24,1])=1 / 24+\epsilon$ $\left(\right.$ thus, $\left.\mu_{4}([10 / 12,11 / 12])=\mu_{4}([11 / 12,1])=1 / 12\right)$.

Consider the following two executions, (A) $\left(P_{1}, P_{2}, P_{3}, P_{4}\right)=$ $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ and (B) $\left(P_{1}, P_{2}, P_{3}, P_{4}\right)=\left(p_{2}, p_{1}, p_{3}, p_{4}\right)$.

The execution of (A) is as follows. Party $P_{1}$ can arbitrarily cut the cake into $N=12$ pieces of the same size (for $P_{1}$ ). $P_{1}$ cuts the cake into $([j / 12,(j+1) / 12])(j=0, \ldots, 11) . A=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$. Thus, the procedure ends with the division of the pieces among all players.

The execution of (B) is as follows. Party $P_{2}$ can arbitrarily cut the cake into $N$ pieces of the same size (for $P_{2}$ ). $P_{2}$ cuts the cake into $([j / 12,(j+1) / 12])(j=0, \ldots, 9),([10 / 12,21 / 24]$, [11/12, 23/24]), and ([21/24, 11/12], [23/24, 1]). Since the utilities of the last two pieces are not $1 / 12$ for $P_{4}, A=\left\{p_{1}, p_{2}, p_{3}\right\}$ and $D=\left\{p_{4}\right\}$.

Player $p_{4}$ does not have irrevocable advantage over $p_{1}$ thus IASubgame is executed. In the second round, $P_{2}$ cuts the rest of the cake $L^{\prime}$ and the protocol terminates after some number of rounds.
In execution (A), $P_{3}$ obtains $1 / 4$. In execution (B), $P_{3}$ might obtain more than $1 / 4$ by $P_{3}$ 's utility, because the protocol is envyfree.
$P_{3}$ 's obtained utility depends on the role assignment, thus the protocol is not meta-envy-free.

## 4. Meta-envy-free Protocols for Two and Three Parties

This section shows meta-envy-free and envy-free cake-cutting protocols for two and three parties. Note that the word 'party' is used in the descriptions in this section because every player's role is identical. When there are two parties, the protocol proposed in Ref. [6], shown in Fig. 3, is meta-envy-free.

The simultaneous declaration of values by multiple parties can be realized in several ways, (1) Trusted third party (TTP): $P_{i}$ sends $c_{i}$ to the TTP. After the TTP receives all the values, he broadcasts them to all parties. (2) Commitment scheme [10]: $P_{i}$ first sends $\operatorname{com}_{i}\left(c_{i}\right)$, which is a commitment of $c_{i}$. The other parties cannot obtain the value $c_{i}$ from $\operatorname{com}_{i}\left(c_{i}\right)$. After $P_{i}$ has obtained the other parties' committed values, $P_{i}$ opens its commitment (that is, sends $c_{i}$ and a proof that $\operatorname{com}_{i}\left(c_{i}\right)$ is really made

```
begin
P
if }\mp@subsup{c}{1}{}=\mp@subsup{c}{2}{}\mathrm{ then
    Cut at }\mp@subsup{c}{1}{}\mathrm{ , coin-flip and decide which party obtains [0, c, ] or [ cc, 1].
else
    Cut as [0,(c
    contains }\mp@subsup{c}{i}{
end.
```

Fig. 3 Two-party meta-envy-free protocol.
by $\left.c_{i}\right) . P_{i}$ cannot provide a false proof that $\operatorname{com}_{i}\left(c_{i}\right)$ is made by $c_{i}^{\prime}\left(\neq c_{i}\right)$.
Theorem 4. The protocol in Fig. 3 is meta-envy-free, envy-free, and strategy-proof.

Proof. The cut point depends only on the parties' declared values. The result is independent of the role assignment or the order of declaration. Thus the protocol is meta-envy-free. The protocol is envy-free because both parties obtain at least half evaluated by their respective utility functions. The protocol is strategy-proof since if $P_{1}$ declares a false cut point $c_{1}^{\prime}, P_{2}$ 's true cut point $c_{2}$ might satisfy $c_{2}=c_{1}^{\prime}$ and $P_{1}$ might obtain less than half by coinflipping. Thus, risk adverse parties obey the rule and declare their true cut points.

There is another method for assigning portions when the declared values differ. Without loss of generality, assume that $c_{1}<c_{2}$. Assign [ $0, c_{1}$ ] to $P_{1},\left[c_{2}, 1\right]$ to $P_{2}$, and execute the same protocol again for the remaining piece $\left[c_{1}, c_{2}\right]$. Although this method might need an infinite number of declaration rounds and each party might obtain multiple fragments of the cake, the assignment guarantees $\mu_{1}\left(f_{1}\left(\mu_{1}, \mu_{2}\right)\right)=\mu_{2}\left(f_{2}\left(\mu_{1}, \mu_{2}\right)\right)$.

Avoiding multiple declaration is possible if $P_{i}$ simultaneously declares the utility density function $u_{i}$. Utility density function $u_{i}$ satisfies $u_{i}(z)>0$ for $[0,1]$ and $\int_{0}^{1} u_{i}(z) d z=1$.
When the remaining piece is $\left[l^{(j)}, r^{(j)}\right]$ at round $j\left(l^{(1)}=0\right.$ and $r^{(1)}=1$ ), the cut point declaration at round $j$ is the point $c_{i}^{(j)}$ that satisfies

$$
\begin{equation*}
\int_{l^{(j)}}^{c_{i}^{(j)}} u_{i}(z) d z=\int_{c_{i}^{(j)}}^{r^{(j)}} u_{i}(z) d z \tag{7}
\end{equation*}
$$

If $c_{1}^{(j)} \neq c_{2}^{(j)}$, let $l^{(j+1)}=\min \left(c_{1}^{(j)}, c_{2}^{(j)}\right), r^{(j+1)}=\max \left(c_{1}^{(j)}, c_{2}^{(j)}\right)$, and execute the next round.
A protocol that uses a utility density function is also proposed in Ref. [5]. Here the cake is cut into two pieces. However, the protocol has the disadvantage that it is not strategic-proof, that is, a party can obtain more utility by declaring a false utility density function.
Next we show a protocol for a three-party case in Fig. 4.
The protocol is outlined as follows. First, each party $P_{i}$ simultaneously declares the cut point $l_{i}$ such that $\left[0, l_{i}\right]$ is $1 / 3$ for $P_{i}$. Cases are switched according to how many of $l_{1}, l_{2}$, and $l_{3}$ are the same. If at least two of them are the same, the parties with the same value simultaneously declare cut point $r_{i}$ such that $\left[r_{i}, 1\right]$ is $1 / 3$ for $P_{i}$. Envy-free assignment can be easily obtained using the declared values when at least two of $l_{1}, l_{2}$, and $l_{3}$ are the same. The remaining case is when $l_{1}, l_{2}$, and $l_{3}$ are all different (without loss of generality, assume that $l_{1}<l_{2}<l_{3}$ ). Here, we execute the

```
Each party }\mp@subsup{P}{i}{}\mathrm{ simultaneously declares }\mp@subsup{l}{i}{}\mathrm{ such that [0, li ] is 1/3 for }\mp@subsup{P}{i}{}\mathrm{ .
if }\mp@subsup{l}{1}{}=\mp@subsup{l}{2}{}=\mp@subsup{l}{3}{}\mathrm{ then
    begin
    Each party Pi simultaneously declares }\mp@subsup{r}{i}{}\mathrm{ such that [ [ri,1] is 1/3 for }\mp@subsup{P}{i}{}\mathrm{ .
    if }\mp@subsup{r}{1}{}=\mp@subsup{r}{2}{}=\mp@subsup{r}{3}{}\mathrm{ then
        begin
        Cut at }\mp@subsup{l}{1}{}\mathrm{ and }\mp@subsup{r}{1}{}\mathrm{ .
        Coin-flip and assign [0, l_ ],[l, , r1],[r},1] to the parties.
        end
    else
        if two of }\mp@subsup{r}{1}{},\mp@subsup{r}{2}{},\mp@subsup{r}{3}{}\mathrm{ are the same then
            begin /* Without loss of generality, let r}\mp@subsup{r}{1}{}=\mp@subsup{r}{2}{}. */
            Cut at l}\mp@subsup{l}{1}{}\mathrm{ and }\mp@subsup{r}{1}{}\mathrm{ .
            if }\mp@subsup{r}{3}{}>\mp@subsup{r}{1}{}\mathrm{ then Assign [r},1] to P P .
            else /* }\mp@subsup{r}{3}{}<\mp@subsup{r}{1}{*}*
                Assign [l, , r ] to P P
            Coin-flip and assign the remaining two pieces to }\mp@subsup{P}{1}{}\mathrm{ and }\mp@subsup{P}{2}{}\mathrm{ .
            end
            else/* Without loss of generality, let r}\mp@subsup{r}{1}{<}\mp@subsup{r}{2}{<<r3.*/
                begin
                Cut at l}\mp@subsup{l}{1}{}\mathrm{ and }\mp@subsup{r}{2}{}\mathrm{ .
                Assign [0, l_ ] to P}\mp@subsup{P}{2}{},[\mp@subsup{l}{1}{},\mp@subsup{r}{2}{}]\mathrm{ to }\mp@subsup{P}{1}{}\mathrm{ , and [r2,1] to }\mp@subsup{P}{3}{}\mathrm{ .
            end
    end/* end of case l}\mp@subsup{l}{1}{}=\mp@subsup{l}{2}{}=\mp@subsup{l}{3}{\prime.}*
else
    if two among l},\mp@subsup{l}{2}{}\mathrm{ , and l}\mp@subsup{l}{3}{}\mathrm{ are the same then
        begin /* Without loss of generality, let l}\mp@subsup{l}{1}{}=\mp@subsup{l}{2}{}.*
        P
        if }\mp@subsup{r}{1}{}=\mp@subsup{r}{2}{}\mathrm{ then
            begin
            Cut at l}\mp@subsup{l}{1}{}\mathrm{ and }\mp@subsup{r}{1}{}\mathrm{ .
            P3}\mathrm{ selects one piece among [0, ll], [l, , rl ], and [r},1]
            Coin-flip and assign the remaining two pieces to }\mp@subsup{P}{1}{}\mathrm{ and }\mp@subsup{P}{2}{}\mathrm{ .
            end
        else/* r}\mp@subsup{r}{1}{}\not=\mp@subsup{r}{2}{}.*
            begin/* Without loss of generality, let r}\mp@subsup{r}{1}{< r}2.*
            Cut at }\mp@subsup{l}{1}{},\mp@subsup{r}{1}{},\mp@subsup{r}{2}{}.L\leftarrow[\mp@subsup{r}{1}{},\mp@subsup{r}{2}{}]
            P3}\mathrm{ selects one piece among [0, l, ], [l, ,r1],[ [r2,1].
            if }\mp@subsup{P}{3}{}\mathrm{ selects [0, l}]\mathrm{ ] then
                begin
                Assign [l, r
                P
                P
                end
            else
                if }\mp@subsup{P}{3}{}\mathrm{ selects [l, r},\mp@subsup{r}{1}{}]\mathrm{ then
                    begin
                    Assign [0, ll] and [ rr, 1] to }\mp@subsup{P}{1}{}\mathrm{ and }\mp@subsup{P}{2}{}\mathrm{ , respectively.
                    P
                    P},\mp@subsup{P}{1}{},\mp@subsup{P}{3}{}\mathrm{ selects one piece in this order.
                    end
                else /* P}\mp@subsup{P}{3}{}\mathrm{ selects [r2,1]. */
                    begin
                    Assign [ }\mp@subsup{l}{1}{},\mp@subsup{r}{1}{}]\mathrm{ and [0, l, ] to }\mp@subsup{P}{1}{}\mathrm{ and }\mp@subsup{P}{2}{}\mathrm{ , respectively.
                    P
                    P},\mp@subsup{P}{2}{},\mp@subsup{P}{3}{}\mathrm{ selects one piece in this order.
                    end
            end /* end of the case r}\mp@subsup{r}{1}{}\not=\mp@subsup{r}{2}{}.*
    end /* end of the case when two among l}\mp@subsup{l}{1}{},\mp@subsup{l}{2}{}\mathrm{ , and }\mp@subsup{l}{3}{}\mathrm{ are the same */
    else/* lli}\mathrm{ are different. Without loss of generality, let ll < l2<l_ .*/
            Execute the algorithm in Fig. 1 with ( }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{},\mp@subsup{p}{3}{})=(\mp@subsup{P}{3}{},\mp@subsup{P}{2}{},\mp@subsup{P}{1}{})\mathrm{ and
l}\mp@subsup{l}{3}{}\mathrm{ is used as a cut.
```

Fig. 4 Three party meta-envy-free protocol.
three-player envy-free protocol in Fig. 1 with the role assignment $\left(p_{1}, p_{2}, p_{3}\right)=\left(P_{3}, P_{2}, P_{1}\right)$, that is, $P_{3}$ plays the role of $p_{1}$ in the protocol, and so on, with the restriction that $P_{3}$ must use $l_{3}$ as a cut. Note that this role assignment is executed by the declared value $l_{i}$, thus the protocol is meta-envy-free.

Although $\left(p_{1}, p_{2}, p_{3}\right)=\left(P_{3}, P_{2}, P_{1}\right)$ is not a unique acceptable role assignment, there are unacceptable role assignments. Let us consider the following role assignment: $\left(p_{1}, p_{2}, p_{3}\right)=$ $\left(P_{2}, P_{1}, P_{3}\right)$, namely, the cake is cut at $l_{2}, r_{2}$ and $P_{1}$ cuts $L$ from the largest piece. Suppose that $\left[0, l_{2}\right]$ is the largest for $P_{1} . P_{1}$ cuts $L$ from $\left[0, l_{2}\right]$. In this case, $\left[0, l_{2}\right]$ is less than $1 / 3$ for $P_{3}$ because $l_{3}>l_{2}$. After $P_{1}$ cuts $L$ from $\left[0, l_{2}\right], P_{3}$ will never select $\left[0, l_{2}\right]-L$ as the largest piece for $P_{3} . P_{1}$ knows this fact from $l_{3}>l_{2}$, thus $P_{1}$ will not cut $L$ honestly from [0, $\left.l_{2}\right]$. In this case, $P_{3}$ will select some piece other than $\left[0, l_{2}\right] . P_{1}$ then selects $\left[0, l_{2}\right]$ and obtains more utility than when honestly cutting $L$. Thus, the protocol is not strategy-proof.
Theorem 5. The protocol in Fig. 4 is meta-envy-free, envy-free, and strategy-proof.

Proof. The protocol is meta-envy-free because the role is decided solely by the declared values. Next, let us consider envyfreeness. All possible cases are categorized as follows.
(Case 1) $l_{1}=l_{2}=l_{3}$ and $r_{1}=r_{2}=r_{3}$.
(Case 2) $l_{1}=l_{2}=l_{3}, r_{1}=r_{2}$, and $r_{3}>r_{1}$.
(Case 3) $l_{1}=l_{2}=l_{3}, r_{1}=r_{2}$, and $r_{1}>r_{3}$.
(Case 4) $l_{1}=l_{2}=l_{3}$ and $r_{1}<r_{2}<r_{3}$.
(Case 5) $l_{1}=l_{2}\left(\neq l_{3}\right)$ and $r_{1}=r_{2}$.
(Case 6) $l_{1}=l_{2}\left(\neq l_{3}\right)$ and $r_{1}<r_{2}$.
(Case 7) $l_{1}<l_{2}<l_{3}$.
(Case 1) Since the utilities of $\left[0, l_{1}\right],\left[l_{1}, r_{1}\right]$, and $\left[r_{1}, 1\right]$ are $1 / 3$ for all parties, no assignment causes envy.
(Case 2) The utilities of $\left[0, l_{1}\right],\left[l_{1}, r_{1}\right]$, and $\left[r_{1}, 1\right]$ are the same for $P_{1}$ and $P_{2}$. [ $\left.r_{1}, 1\right]$ is the largest for $P_{3}$ since $r_{3}>r_{1}$ and $l_{3}=l_{1}$. Thus assigning $\left[r_{1}, 1\right]$ does not cause any party envy. Assigning the remaining pieces to $P_{1}$ and $P_{2}$ can be arbitrary.
(Case 3) The utilities of $\left[0, l_{1}\right],\left[l_{1}, r_{1}\right]$, and $\left[r_{1}, 1\right]$ are the same for $P_{1}$ and $P_{2}$. [ $\left.l_{1}, r_{1}\right]$ is the largest for $P_{3}$ since $r_{3}<r_{1}$ and $l_{3}=l_{1}$. Thus assigning $\left[l_{1}, r_{1}\right.$ ] does not cause any party envy. Assigning the remaining pieces to $P_{1}$ and $P_{2}$ can be arbitrary.
(Case 4) Among [ $\left.0, l_{1}\right],\left[l_{1}, r_{2}\right]$, and $\left[r_{2}, 1\right],\left[l_{1}, r_{2}\right]$ is the largest for $P_{1}$ since $r_{1}<r_{2}$. $\left[r_{2}, 1\right]$ is the largest for $P_{3}$ since $r_{2}<r_{3}$ and $l_{1}=l_{3} . P_{2}$ feels the three pieces are the same size, thus assigning [ $0, l_{1}$ ] to $P_{2}$ does not cause envy.
(Case 5) The utilities of $\left[0, l_{1}\right],\left[l_{1}, r_{1}\right]$, and $\left[r_{1}, 1\right]$ are the same for $P_{1}$ and $P_{2}$. Thus, $P_{3}$ 's selection from these pieces does not cause envy.
(Case 6) The utilities of $\left[0, l_{1}\right],\left[l_{1}, r_{1}\right]$, and $\left[r_{1}, 1\right]$ are the same for $P_{1}$. The utilities of $\left[0, l_{1}\right],\left[l_{1}, r_{2}\right]$, and $\left[r_{2}, 1\right]$ are the same for $P_{2}$. Cutting the cake into four pieces, $\left[0, l_{1}\right],\left[l_{1}, r_{1}\right],\left[r_{2}, 1\right]$, and $L=\left[r_{1}, r_{2}\right]$ is exactly the same situation as three-player envy-free cutting (Case 6-1) $P_{1}$ executes the initial cut ( $\left[0, l_{1}\right],\left[l_{1}, r_{1}\right]$, and $\left[r_{1}, 1\right]$ ) and $P_{2}$ cuts $L$ from the largest piece $\left[r_{1}, 1\right]$ so that its size becomes that of the second largest piece $\left[0, l_{1}\right]$ and (Case 6-2) $P_{2}$ executes the initial cut $\left(\left[0, l_{1}\right],\left[l_{1}, r_{2}\right]\right.$, and $\left.\left[r_{2}, 1\right]\right)$ and $P_{1}$ cuts $L$ from the largest piece $\left[l_{1}, r_{2}\right]$ so that its size becomes that of the
second largest piece $\left[0, l_{1}\right]$.
When $P_{3}$ selects $\left[0, l_{1}\right]$ from the three pieces, we can regard this as (Case 6-2) being executed. With the three-player envy-free protocol, $P_{1}$ next must select $\left[l_{1}, r_{1}\right]$ and $P_{2}$ selects the remaining piece $\left[r_{2}, 1\right] . P_{3}$ cuts $L$ into three pieces. $P_{1}, P_{2}$, and $P_{3}$ each select one piece in this order. Because of the envy-freeness of the three-player protocol, the result is envy-free.

When $P_{3}$ selects $\left[l_{1}, r_{1}\right]$ from the three pieces, we can regard this as (Case 6-1) being executed. With the three-player envy-free protocol, $P_{2}$ next must select $\left[r_{2}, 1\right]$ and $P_{1}$ selects the remaining piece $\left[0, l_{1}\right] . P_{3}$ cuts $L$ into three pieces. $P_{2}, P_{1}$, and $P_{3}$ each select one piece in this order. Because of the envy-freeness of the three-player protocol, the result is envy-free.

Lastly, when $P_{3}$ selects [ $\left.r_{2}, 1\right]$ from the three pieces, we can regard this as (Case 6-2) being executed. With the three-player envy-free protocol, $P_{1}$ next must select $\left[l_{1}, r_{1}\right]$ and $P_{2}$ selects the remaining piece $\left[0, l_{1}\right] . P_{3}$ cuts $L$ into three pieces. $P_{1}, P_{2}$, and $P_{3}$ each select one piece in this order. Because of the envy-freeness of the three-player protocol, the result is envy-free.
(Case 7) Since the players execute the three-player envy-free protocol, the result is envy-free.

Lastly, let us discuss strategy-proofness. When $P_{i}$ declares a cut point $l_{i}$ (or $r_{i}$ ) simultaneously with some other process $P_{j}$, declaring a false value $l_{i}^{\prime}$ (or $r_{i}^{\prime}$ ) might result in a worse utility, since $P_{j}$ 's true value $l_{j}$ (or $r_{j}$ ) might satisfy $l_{j}=l_{i}^{\prime}$ (or $r_{j}=r_{i}^{\prime}$ ) and $P_{i}$ might obtain a smaller piece by coin-flipping.

When $P_{3}$ selects one piece at line 38 of the protocol, a false selection results in a worse utility for $P_{3}$. Note that this selection does not affect who will be the divider of $L$.

Next, consider the execution of the three-player envy-free protocol with extra information $l_{1}<l_{2}<l_{3}$. Note that when $l_{i}$ are all different, declaration of $r_{i}$ is not executed, thus the extra apparent information in the three-player envy-free protocol is $l_{1}$ and $l_{2}$.

When $P_{3}$ cuts as $\left[0, l_{3}\right],\left[l_{3}, r_{3}\right]$, and $\left[r_{3}, 1\right]$, a false cut $r_{3}^{\prime}$ might result in $P_{3}$ obtaining less than $1 / 3$. When $P_{2}$ cuts $L$ from the largest piece, information of $l_{1}$ does not help $P_{2}$ to obtain greater utility with a false cut $L^{\prime}$ even if $P_{2}$ cuts $L$ from $\left[0, l_{3}\right]$. The reason is as follows. For any true cut $L$, either of the two cases can happen according to $P_{1}$ 's utility (that is unknown to $P_{2}$ ): (1) $\left[l_{3}, r_{3}\right]$ or $\left[r_{3}, 1\right]$ is the largest for $P_{1}$ or (2) $\left[0, l_{3}\right]-L$ is the largest for $P_{1}$. Thus, if $P_{2}$ cuts $L^{\prime}$ that is smaller than $L, P_{1}$ might select $\left[0, l_{3}\right]-L^{\prime}$ and $P_{2}$ 's utility might become worse. If $P_{2}$ cuts $L^{\prime \prime}$ that is larger than $L, P_{1}$ might select $\left[l_{3}, r_{3}\right]$ and $P_{2}$ 's utility might become worse. With respect to cutting $L$ into three pieces, the strategy-proofness is exactly the same as that of the original three-player envy-free protocol. Therefore, the protocol is strategy-proof.

## 5. Pie-cutting Problem

When the endpoints of a cake is connected to form a circle, it becomes a pie. In pie-cutting, all cuts are made between the center and a point on the circumference, so that each cut runs along a radius of the disk. Several results were shown about pie-cutting protocols that differ from cake-cutting protocols [3], [4], [7], [12], [17]. Pie-cutting is more difficult than

```
begin
Decide an initial diameter (northward, for example)
P}(1\leqi\leqn) randomly selects degree d from [0,360) and simultane-
ously declares di
4: Calculate }D=\mp@subsup{\sum}{i=1}{n}\mp@subsup{d}{i}{}\operatorname{mod}360
5: Cut the pie at degree }D\mathrm{ from the initial diameter.
6: /* Consider [D,D + 360 ] as [0,1] of a cake */
7: Execute meta-envy-free cake-cutting protocol for the pie [ }D,D+36\mp@subsup{0}{}{\circ}]
8: end.
```

Fig. 5 Meta-envy-free pie-cutting protocol.
cake-cutting because there is more flexibility in cutting than cakecutting.

One example of the difference is about the domination of assignments. An assignment is undominated if no other assignment gives each player at least as much value according to his or her measure as he or she had in the original assignment, and no single player has strictly more value. There is a tuple of utility functions $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ for a pie such that there is no assignment that satisfies envy-free and undominated and each player obtains one piece. On the other hand, for any tuple of utility functions, there is an envyfree and undominated assignment for three-player cake-cutting such that each player obtains one piece [4].
For meta-envy-free pie-cutting, the following theorem shows the existence of protocols.
Theorem 6. For any number of parties, there is a meta-envyfree pie-cutting protocol if there is a meta-envy-free cake-cutting protocol.

Figure 5 shows a meta-envy-free pie-cutting protocol using any meta-envy-free cake-cutting protocol. When a cut is made between the center and a point on the circumference, the pie becomes a cake. The cut must be made randomly.

Proof. Consider the case when party $P_{i}$ wants to set the cut diameter to some specific point $C$ (or any point in some specific set of points). Since the honest party $P_{j}$ randomly selects $d_{j}$, there is no way for $P_{i}$ to select his value $d_{i}$ to set $D=C$. Even if $P_{j}$ does not observe the rule and select some specific value $d_{j}^{\prime}$ by $P_{j}$ 's utility function, $d_{j}^{\prime}$ is just the same as a random value for $P_{i}$ since $P_{j}$ 's utility function is unknown to $P_{i}$. Thus, $D$ is random for all parties. The procedure of setting $D$ is obviously meta-envy-free. $\quad \square$

## 6. Conclusion

This paper proposed meta-envy-free cake-cutting and piecutting protocols. The remaining problem involves obtaining a meta-envy-free cake-cutting protocol for $n \geq 4$.
Acknowledgments We thank Dr. Hiro Ito and anonymous referees for their valuable comments.

## References

[1] Austin, A.: Sharing a Cake, The Mathematical Gazette, Vol.66, No.437, pp.212-215 (online), DOI: 10.2307/3616548 (1982).
[2] Barbanel, J.B.: Super Envy-Free Cake Division and Independence of Measures, Journal of Mathematical Analysis and Applications, Vol.197, No.1, pp.54-60 (online), DOI: 10.1006/S0022-247X(96)90006-2 (1996)
3] Barbanel, J.B. and Brams, S.J.: Two-person Pie-Cutting: The Fairest Cuts, The College Mathematics Journal, Vol.42, No.1, pp.25-32 (2011).
[4] Barbanel, J.B., Brams, S.J. and Stromquist, W.: Cutting a Pie is not
a Piece of Cake, American Mathematical Monthly, Vol.116, No.6, pp.496-514 (online), DOI: 10.4169/193009709X470407 (2009).
[5] Brams, S.J., Jones, M.A. and Klamler, C.: Better Ways to Cut a Cake, Notices of the AMS, Vol.53, No.11, pp.1314-1321 (2006).
[6] Brams, S.J., Jones, M.A. and Klamler, C.: Divide-and-Conquer: A Proportional, Minimal-Envy Cake-Cutting Procedure, Dagstuhl Seminars (2007).
[7] Brams, S.J., Jones, M.A. and Klamler, C.: Proportional Pie-Cutting, International Journal of Game Theory, Vol.36, pp.353-367 (online), DOI: 10.1007/s00182-007-0108-z (2008).
[8] Brams, S.J. and Taylor, A.D.: An Envy-Free Cake Division Protocol, The American Mathematical Monthly, Vol.102, No.1, pp.9-18 (online), DOI: 10.2307/2974850 (1995).
[9] Brams, S.J. and Taylor, A.D.: Fair Division: From Cake-Cutting to Dispute Resolution, Cambridge University Press (1996).
[10] Brassard, G., Chaum, D. and Crépeau, C.: Minimum Disclosure Proofs of Knowledge, J. Comput. Syst. Sci., Vol.37, pp.156-189 (online), DOI: 10.1016/0022-0000(88)90005-0 (1988).
[11] Dubins, L.E. and Spanier, E.H.: How to Cut a Cake Fairly, The American Mathematical Monthly, Vol.68, No.1, pp.1-17 (online), DOI: 10.2307/2311357 (1961).
[12] Gale, D.: Mathematical Entertainments, Mathematical Intelligencer, Vol.15, pp.48-52 (online), DOI: 10.1007/BF03025257 (1993).
[13] Jones, M.A.: Equitable, Envy-Free, and Efficient Cake Cutting for Two People and Its Application to Divisible Goods, Mathematics Magazine, Vol.75, No.4, pp.275-283 (online), DOI: 10.2307/3219163 (2002).
[14] Magdon-ismail, M., Busch, C. and Krishnamoorthy, M.S.: CakeCutting Is Not a Piece of Cake, Symposium on Theoretical Aspects of Computer Science, pp.596-607 (online), DOI: 10.1007/3-540-364943_52 (2003).
[15] Nicolò, A. and Yu, Y.: Strategic Divide and Choose, Games and Economic Behavior, Vol.64, pp.268-289 (online), DOI: 10.1016/ j.geb.2008.01.006 (2008).
[16] Robertson, J. and Webb, W.: Cake-Cutting Algorithms: Be Fair If You Can, Ak Peters Series, A.K. Peters (1998).
[17] Thomson, W.: Children Crying at Birthday Parties. Why?, Economic Theory, Vol.31, pp.501-521 (online), DOI: 10.1007/s00199-006-0109-3 (2007).
[18] Woodall, D.R.: A Note on the Cake-Division Problem, Journal of Combinatorial Theory, Vol.42, pp.300-301 (online), DOI: 10.1016/0097-3165(86)90101-9 (1986).


Yoshifumi Manabe was born in 1960. He received his B.E., M.E., and Dr.E. degrees from Osaka University, Osaka, Japan, in 1983, 1985, and 1993, respectively. In 1985, he joined Nippon Telegraph and Telephone Corporation. Currently, he is a senior research scientist, supervisor of NTT Communication Science Laboratories. His research interests include distributed algorithms, cryptography, game theory, and graph theory. He has been a guest associate professor of Kyoto University since 2001. He is a member of IEICE, JSIAM, ACM, and IEEE.


Tatsuaki Okamoto received his B.E., M.E., and Dr.E. degrees from the University of Tokyo, Tokyo, Japan, in 1976, 1978, and 1988, respectively. He is a Fellow of NTT Secure Platform Laboratories. He is presently engaged in research on cryptography and information security. Dr. Okamoto is a guest professor


[^0]:    NTT Communication Science Laboratories, Kyoto 619-0237, Japan NTT Secure Platform Laboratories, Musasino, Tokyo 180-8585, Japan manabe.yoshifumi@lab.ntt.co.jp
    okamoto.tatsuaki@lab.ntt.co.jp

[^1]:    *1 To compare the sizes of $L$ and $L^{\prime}$, they must be cut in a canonical way. Thus the additional rule for cutting $L$ is necessary.

