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Abstract: We consider so-called “squaring the square” puzzles where a given square (or rectangle) should be dis-
sected into smaller squares. For a specific instance of such problems we demonstrate that a mathematically rigorous
solution can be quite involved. As an alternative to exhaustive enumeration using tailored algorithms we describe the
general approach of formulating the problem as an integer linear program.
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1. Introduction

Consider a floor tiler with the task of tiling a rectangular room
using square tiles from a given set only. Questions arising are
whether it is possible at all and if so to ask for minimum cost so-
lutions given a target function such as the number of used tiles or
the sum of the actual buying prices for each tile.

Even without this economic interpretation the underlying geo-
metric idea of dissecting a rectangle into smaller squares was the
source for many classical geometric puzzles such as the following
“Problem 173” in Ref. [5]:

“For Christmas, Mrs. Potipher Perkins received a very
pretty patchwork quilt constructed of 169 square pieces
of silk material. The puzzle is to find the smallest num-
ber of square portions of which the quilt could be com-
posed and show how they might be joined together.
Or, to put it the reverse way, divide the quilt into as
few square portions as possible by merely cutting the
stitches.”

More formally, the generalized version of this problem can be
stated as follows: For a given integer n, determine the minimum
number s(n) of squares in a tiling of an n × n-square using i × i-
squares with 1 ≤ i ≤ n − 1, i.e. using only other integral squares.

Provided by Martin Gardner this puzzle first appeared in a puz-
zle magazine edited by Sam Loyd in 1907 and later on in the
famous “Sam Loyd’s Cyclopedia of 5,000 Puzzles, Tricks, and
Conundrums”, see www.mathpuzzle.com/loyd for an on-line ver-
sion. We give the minimal solution consisting of 11 squares in
Fig. 1 and remark that it is unique up to rotations and reflec-
tions. For an overview on the (scattered) literature concerning
these questions we refer to “Problem C2” in Ref. [4].

Once you have found a solution using few squares, by a heuris-
tic search or simply by trial and error, it is easy to verify the va-
lidity. Even in the case where the sizes of the squares are omitted
one can easily recover them by solving a linear equation system.
Using the variables from Fig. 2 in our example this equation sys-
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Fig. 1 Solution of the patch quilt puzzle.

Fig. 2 Unknown sizes of the squares.

tem is given by:

x1 + x2 = 13

x3 + x4 + x5 + x2 = 13

x3 + x4 + x6 + x7 = 13

x8 + x4 + x6 + x7 = 13

x8 + x9 + x10 + x7 = 13

x11 + x10 + x7 = 13

x1 + x3 + x8 + x11 = 13

x1 + x4 + x9 + x11 = 13

x1 + x4 + x10 = 13

x1 + x5 + x6 + x10 = 13

x2 + x6 + x10 = 13

x2 + x7 = 13

As in most puzzles, asking for a minimal solution in some
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sense, the most difficult part is verifying that a given solution is
the minimum solution. This part is addressed by simply stating
the smallest known solution. Rigorous mathematical proofs are
explicitly given in only a few cases and even then are found only
in personal communications, see e.g. mathworld.wolfram.com/
MrsPerkinssQuilt.html.

If the puzzle can be formulated as a finite search space, one can
in principle apply exhaustive enumeration. This is the case in the
framework of the “squaring the square” context. However, this
yields a drawback: sophisticated custom enumeration algorithms
have to be developed and implemented in order to obtain results
in a reasonable amount of time.

The purpose of this article is to demonstrate that it is not that
hard to formulate such puzzles as integer linear programs. Stan-
dard software can be used in order to exactly solve these problems
without the need for implementing new algorithms. The big ad-
vantage of such an approach is that it can be easily adapted to
different variants of the puzzle, which we will demonstrate in the
following.

1.1 Outline of the Paper
In Section 2 we give a puzzle from a mathematical competition

for 14–16 year old pupils and outline a rigorous mathematical so-
lution. The known results on the determination of the minimal
number of squares s(n) are outlined in Section 3. The under-
lying theory for these classes of puzzles is briefly addressed in
Section 4. In contrast to this exhaustive enumeration approach
we describe the modeling process as an integer linear program in
Section 5 and end with a conclusion in Section 6.

2. A puzzle from a Mathematical Competition
and a Rigorous Solution

In a mathematical team competition for 14–16 year pupils we
have proposed the following task: Tile a 13× 13 room using i× i-
squares where i = 1, 2, . . . , 12.
( 1 ) Determine the minimum number of tiles using at least one

12 × 12-square.
( 2 ) Determine the minimum number of tiles using at least one

11 × 11-square.
( 3 ) Determine the minimum number of tiles using at least one

10 × 10-square.
According to comments from the participants, finding the an-
swers 26, 16, and 13 is not very difficult. For the first two
questions possible tilings achieving these numbers are drawn in
Figs. 3 and 4. Proving that there are no solutions using fewer
squares turned out to be a much harder task for the participants.

To demonstrate the arising difficulties in proving the minimal-
ity of the stated tilings, we outline rigorous proofs for the first two
cases and leave the third case to the interested reader. We assume
that all squares are arranged on an integer grid.

2.1 Case 1.
Using a 12× 12-square inside a 13× 13-square leaves only the

possibility to fill the remaining gaps with 1 × 1 squares. Since
132 − 122 = 25 at least 1 + 25 = 26 tiles are required.

Fig. 3 Optimal solution using a 12 × 12-square.

Fig. 4 Optimal solution using a 11 × 11-square.

2.2 Case 2.
If no corner of the inner 11×11-square coincides with a corner

of the outer 13 × 13-square, then at least 132 − 112 = 48 addi-
tional squares are required. Thus we can assume without loss of
generality that the lower left corners coincide, as in Fig. 4. As
the largest possible side length of the additional squares is 2 we
can deduce that at least

⌈
132−112

22

⌉
= 12 of them are needed. Since

the upper 2 × 13-strip can not be covered using non-overlapping
2 × 2-squares only the number n2 of used 2 × 2-squares is at
most 11 and thus the number n1 of used 1 × 1-squares is given
by n1 = 132 − 112 − 4n2 ≥ 4. Thus we need at least

1 + n2 + n1 = 49 − 3n2 ≥ 49 − 3 · 11 = 16

squares in total.
These ad hoc proofs can be replaced by using a slightly modi-

fied version of the integer linear program presented in Section 5.
We remark that our proof for the third question is already twice
as long as the one stated for case 2.

3. Squaring the Square Using as Few Squares
as Possible

Our benchmark example for this article asks for the minimum
number s(n) of squares needed to tile an n × n-square using i × i-
squares with 1 ≤ i ≤ n − 1 only.

Since we can enlarge a given tiling of an n× n-square we obvi-
ously have s(n1 ·n2) ≤ min(s(n1), s(n2)) for all n1, n2 ∈ N≥2. Thus
it is very likely that we need to determine s(n) for primes only to
obtain the minimum values.

In Table 1 we list the minimum values s(p) and counts of the
used squares for the first primes. These values were computed
by solving the integer linear programing formulation from Sec-
tion 5 with the Gurobi solver. Exhaustive enumerations of sev-
eral kinds of squared squares are known up to n = 29, see e.g.,
www.squaring.net and several papers by A.J.W. Duijvestijn such
as Ref. [7]. Heuristically found configurations, meeting our exact
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Table 1 Minimal numbers s(p) to tile a p × p-square.

p s(p) used squares
2 4 14

3 6 1521

5 8 142331

7 9 13233241

11 11 1421335261

13 11 122332416271

17 12 12233142518291

19 13 113442536191101

23 13 122331416271102131

29 14 113242536271132161

31 15 13234383152161

37 15 2233435192111172201

41 15 122232415171112121182231

43 16 1244516272111131192241

47 16 113361729392101222251

53 16 113242526271132161242291

59 17 1221426181102111121141161181191291301

61 17 3244628192111151171292321

Fig. 5 An optimal tiling for a 31 × 31-square.

bounds, can be found in many places.
The encoding ab1

1 ab2
2 . . . a

br
r , in Table 1, means that exactly bi

squares of type ai × ai are used.
Looking at s(p) for primes of the form p = 2r − 1 reveals an

interesting pattern: 132343 · · ·
(
2i
)3 · · ·

(
2r−2
)3 (

2r−1 − 1
)2 (

2r−1
)1

.
In Fig. 5 we have depicted the construction for p = 25 − 1 = 31
which can be easily generalized, so that we have

s(2r − 1) ≤ 3r

for all r ≥ 2.
Trustrum [12] gave a set of general constructions showing

s(n) ≤ 6 log2(3n − 1) − 10 < 6 log2(n).

For the other direction Conway [3] has proven

s(p) ≥ log2(p)

for primes p.

4. Squared Rectangles from Electrical Net-
works

A correspondence between a certain class of planar electrical
networks and squared rectangles was observed by Brooks, Smith,
Stone and Tutte [2]. Here we give a brief sketch of the approach
and refer the interested reader to the expositions Refs. [7], [9] and

Fig. 6 Network corresponding to Fig. 1.

the historical review Ref. [8]. Extensive information on the topic
can also be found at www.squaring.net.

Given a dissection D of a rectangle into squares we can build
up a network G as follows. Dropping the vertical lines of the
constituent squares leaves unions of horizontal lines at the same
height, which we call (horizontal) dissectors. The upper and the
lower side of the outer rectangle are examples of such dissec-
tors. As vertices of G we choose the horizontal dissectors of the
squares and as edges the squares itself. Two vertices are joined by
an edge if the corresponding two horizontal dissectors contain the
lower and upper horizontal side of the corresponding square. We
call the vertex corresponding to the upper side of the outer rect-
angle the positive pole and the vertex corresponding to the lower
side the negative pole of the network.

The network corresponding to the squared 13 × 13-square in
Fig. 1 is drawn in Fig. 6.

Given a dissection of a rectangle into squares such a network
is uniquely defined (if the graph is drawn in a certain way) and
it can be shown to be planar. Depending on the properties of the
dissection more graph theoretic restrictions can be deduced. E.g.,
if all squares have different sizes the graph G complemented by
the edge connecting the positive and the negative pole is a three-
connected planar graph with out multiple edges. If squares of the
same size are allowed, the augmented network remains at least
two-connected but may contain multiple edges.

The base for an exhaustive enumeration algorithm for squared
rectangles is that from each planar network we can compute the
side lengths of the squares using Kirchhoff’s rules. The first law
states that the sum of currents in a network meeting at a point is
zero. In our example of Fig. 6 this yields:

x1 = x3 + x4 + x5

x3 = x8

x2 + x5 = x6 + x7

x4 + x6 = x9 + x10

x8 + x9 = x11

The second law states that the directed sum of the electrical poten-
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tial differences in any sub-circuit is zero. Assuming unit resistors
this gives:

x1 + x5 − x2 = 0

x5 + x6 − x4 = 0

x6 + x10 − x7 = 0

x9 + x11 − x10 = 0

x3 + x8 − x9 − x4 = 0

In general it can be proven that the solution space of the com-
bined equation system is one-dimensional so that one can choose
the unique minimal integer solution. For our example we obtain,
of course, multiples of the solution given in Fig. 6.

So by exhaustively generating the planar graphs and determin-
ing the corresponding dissection of a rectangle, one can system-
atically explore the search space for squared rectangles. This ap-
proach is limited to rectangles with a small number of squares.
Unless one can exploit strong restrictions on the graph parame-
ters enumerations for side lengths n with s(n) ≥ 40 seem to be
out of reach, see Ref. [1]. As already mentioned in Section 3, the
author is not aware of any exhaustive enumerations of squared
squares with more than 29 squares. A relatively early work using
computers is Ref. [6].

5. An Integer Linear Programming Formula-
tion

In this section we want to demonstrate that one can develop
an integer linear programming formulation for the “squaring the
square” puzzle quite naturally. Once we have such a formulation
at hand we can apply standard software tools to compute the so-
lution. Only minor changes are necessary to adapt the model to
variants of the problem.

To figure out how to model a problem it is useful to ask some
basic questions: What can we decide? In our context the answer
is easy – the positions of the squares. How can we represent or
encode our decisions? Drawing a geometric figure may be suit-
able for explanations to humans, but when talking to a computer
we need something different. We may represent the chosen tiling
of Fig. 1 by a table:

Using this representation the task is to write integers from 1 to
n − 1 into the cells of a n × n-grid forming squares for n = 13. If
we have decided where to place the upper left corner of a 7 × 7-
square, then the remaining 48 cell entries follow directly. So we
restrict ourselves to printing the positions of the upper left cor-
ners:

In many cases binary decision variables are well suited to rep-
resent decisions. Therefore we introduce the binary variables xi, j,h

having value 1 if and only if we write integer h in cell (i, j).
How do we evaluate different decisions? Here our criterion is

the number of used squares which can be counted by

n∑

i=1

n∑

j=1

n−1∑

h=1

xi, j,h.

What are the constraints restricting our decisions? Here we
have to guarantee that each cell of the n × n-grid is covered ex-
actly by one square and that the squares completely lie inside.
The first condition can be written as

n−1∑

h=1

min(i−1,h−1)∑

a=0

min( j−1,h−1)∑

b=0

xi−a, j−b,h = 1

for all 1 ≤ i, j ≤ n. Understanding this constraint is facilitated by
asking the following question: Under what condition is a h × h-
square with left upper corner at position (i − a, j − b) covering
cell (i, j)? The second condition can be written as xi, j,h = 0
∀1 ≤ i, j ≤ n: i + h > n + 1 ∨ j + h > n + 1.

Using a modeling language such as ZIMPL, see
zimpl.zib.de, one can write this in a very compact and
readable way:
param n:=13;

set A:={1 to n};

set B:={1 to n-1};

set S:=A cross A cross B;

var x[S] binary;

minimize target:

sum <i,j,h> in S: x[i,j,h];

subto packing:

forall <i,j> in A cross A:

sum <h> in B:

sum <a> in {0 to min(i-1,h-1)}:

sum <b> in {0 to min(j-1,h-1)}:

x[i-a,j-b,h]==1;

subto boundary:

forall <i,j,h> in S with

i+h>n+1 or j+h>n+1: x[i,j,h]==0;

ZIMPL produces an input file for an ILP solver like CPLEX
or Gurobi. In general one can often quite rapidly develop a
first working integer linear programming model using ZIMPL, see
Ref. [10].

In Table 2 we have listed the results for small values of n in-
cluding the running time and the number of branch&bound nodes.
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Table 2 Results and running times using Gurobi.

n s(n) seconds b&b-nodes
11 11 0.1 39
13 11 0.3 41
17 12 2 92
19 13 9 168
23 13 19 173
29 14 930 3,341
30 4 2 1
31 15 3,148 7,409
32 4 3 1
33 6 4 1
34 4 4 1
35 8 20 10
36 4 5 1
37 15 12,634 6,911
38 4 9 1
39 6 8 1
40 4 9 1
41 15 26,887 6,520

We have omitted all cases with n ≤ 41, where the problem was
solved in the root node, i.e., where we have exactly 1 b&b-node,
and the running time was less than one second. So without much
effort or theoretic insight, it was possible to exactly determine
the minimum number s(n) of squares to tile a n × n-square, com-
pare sequence A018835 in the on-line encyclopedia of integer
sequences at oeis.org.

We remark that by using this rather simple approach we could
verify the values of Table 1 and that s(n) = min(s(p) | p|n, p ≥ 2)
holds for all n ≤ 104.

5.1 Problem Variations
Taking the previous integer linear programming formulation

as a basic module we can formulate models for variations of the
“squaring the square” theme. By introducing the auxiliary vari-
ables yi, counting the number of used i × i-squares, we can ex-
press many constraints quite compactly. The relation between the
x- and the y-variables can be stated as

n∑

i=1

n∑

j=1

xi, j,h = yh

for all 1 ≤ h ≤ n − 1.
The three problems from Section 2 can in this way be solved

by requiring y12 = 1, y11 = 1, or y10 = 1, respectively.
Since we have observed that the known minimal values s(n)

of our benchmark problem from Section 3 arise from values s(p)
for primes p dividing n, the additional requirement that the great-
est common divisor of the side lengths has to be one was in-
troduced. This can be reformulated such that for each prime
2 ≤ p ≤ n − 1 the side length of the squares are not all divisi-
ble by p:

∑
1≤h≤n−1 : p�h

yh ≥ 1.

6. Conclusion

In this article we have considered a special and well known
class of geometric puzzles, where rectangles have to be dissected
into smaller squares. Arguing that a discovered solution is mini-
mal in some sense can be quite involved as exemplarily demon-
strated in Section 2. On the other hand performing a computer
based exhaustive search can be time consuming and often re-

quires the development of a customized algorithm and some the-
oretical insights in the specific problem. We have briefly outlined
the well-known theory for the problem in Section 4. Based on ex-
haustive generation using planar graphs going beyond 40 vertices,
which correspond to used squares, seems to be computationally
infeasible. But we have to admit that we are not aware of any
attempts to determine the exact values of s(n) with some kind of
restricted generation, i.e., where the search tree is pruned if one
can anticipate that the achievable side lengths n will be too large.

To obtain rigorous results quickly, modeling the problem as
an integer linear program and afterwards solving it with standard
software seems to be a viable approach. As demonstrated in Sec-
tion 5, the modeling process is more or less straightforward and
can be adjusted to different problem variations relatively easily.
Of course such a general approach has its computational limits
but the same holds for enumeration algorithms too (whenever the
search space grows exponentially, as it does in our context).

Without sophisticated methods, such as column generation, the
integer linear programming approach is currently not able to push
the actual computational frontiers, but seems to be an accessible
method for a broader audience of puzzlers. Its great benefit is
its simplicity, compared to the more involved direct method in
Section 4, and its very general applicability.

Another example where an integer linear programming formu-
lation is used to quickly solve mathematical puzzles is given in
Ref. [11].
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