
Electronic Preprint for Journal of Information Processing Vol.20 No.3

Regular Paper

Rogo, a TSP-based Paper Puzzle:
Optimization Approaches

Shane Dye1,a) NicolaWard Petty1,b)

Received: June 24, 2011, Accepted: March 2, 2012

Abstract: Rogo R© is a new type of mathematical puzzle, invented in 2009. Rogo is a prize-collecting subset-selection
TSP on a grid. Grid squares can be blank, forbidden, or show a reward value. The object is to accumulate the biggest
score using a given number of steps in a loop around the grid. This paper introduces Rogo as a discrete optimisa-
tion problem. An IP formulation is given for the problem with two alternative sets of subtour elimination constraints.
Enumeration-based algorithms are also proposed based on properties of solutions and Rogo instances. Some results of
computational experiments are reported.

Keywords: combinatorial optimzation, puzzles, enumeration algorithms

1. Introduction

Rogo R© is an entirely new type of puzzle, played on rectangu-
lar grids. Grid squares can be blank, forbidden (black), or show
a reward value. The object is to accumulate the biggest reward
score using a given number of steps in a loop around the grid.
The loop must return to the starting square and may not revisit
a square. The best possible score for a puzzle is given with it,
providing a fast check for puzzle solvers that they have the solu-
tion. Rogo puzzles can include forbidden squares (black), which
must be avoided in the loop. Figure 1 shows a simple Rogo and
its best loop, which accumulates a score of 8. The ‘good’ score
indicates an intermediate, but sub-optimal, level of attainment. A
well designed Rogo will only have one subset of rewards leading
to the best score. The nature of the grid means that there may be
alternative routes through the blank squares to collect the same
set of rewards.

The focus of this paper is to propose algorithms to find the best
(optimal) loop for a given Rogo grid and a given loop length. A
version giving an upper bound on the loop length is also investi-
gated. A typical Rogo puzzle for amusement has a 12, 16 or 20
length loop with grid sizes from 4 × 5 to 10 × 14.

The following notation is used. Define grid Gm×n = {(i, j) :
1 ≤ i ≤ m, 1 ≤ j ≤ n}. Let R ⊆ Gm×n be a set of reward locations
with each (i, j) ∈ R having reward value ri j. For convenience,
ri j = 0 for (i, j) � R. Let F ⊆ Gm×n be the set of forbidden
squares. Two grid locations (i1, j1) and (i2, j2) are adjacent if
i1 = i2 and | j1 − j2| = 1 or j1 = j2 and |i1 − i2| = 1.

Definition 1: A loop, �, of length L is an ordered sequence of
unique locations in Gm×n, [(i1, j1), (i2, j2), . . . , (iL, jL)], such that

1 University of Canterbury, Christchurch, New Zealand
a) shane.dye@canterbury.ac.nz
b) nicola.petty@canterbury.ac.nz

(ik, jk) is adjacent to (ik+1, jk+1) for each k = 1, . . . , L − 1 and
(iL, jL) is adjacent to (i1, j1).

An instance of Rogo can be mathematically defined as follows.

Instance: Non-empty grid size m × n, (even) loop length L > 0,
non-empty reward set R ⊆ Gm×n, with positive reward values
ri j > ∀(i, j) ∈ R, and, a possibly empty, forbidden square set
F ⊆ Gm×n, with R ∩ F = ∅.
Solution: A subset of reward locations S ⊆ R of maximum score,∑

(i, j)∈S
ri j, such that there exists a loop, �, of length L such that

� ∩ R = S and � ∩ F = ∅.

Rogo was invented by the authors in 2009. In 2010 Rogo
puzzles were published in a local newspaper, The (Christchurch)
Press, and it was released as an iPhone app the same year. With
the release of the app, Rogo was the subject of Michael Trick’s
Operations Research Blog [7], where he suggested that it was an
interesting OR problem. Rogo was also the subject of another OR
related blog [3], which presents a constraint programming formu-
lation and some preliminary computational results.

As Rogo is new there is, so far, little about it in the literature.
Petty et al. [6] described a pilot study to look at which aspects
of Rogo puzzles might affect the degree of difficulty for human
solvers. The results indicated that there was an element of univer-
sality in puzzle difficulty. As yet, no clear puzzle structures have
been identified that can be used to gauge difficulty.

In this paper we investigate properties of Rogo and propose
different formulations and optimisation algorithms.

2. Rogo Difficulty and its Relationship with
Other Problems

Rogo is strongly related to the travelling salesperson problem
(TSP) see, for instance, Ref. [4]. The main differences are that not
all reward squares need to be visited, that loop paths cannot cross

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.3

Fig. 1 A simple Rogo (left) and its ‘best’ (optimal) solution (right).

and that travel is on a grid. One question of interest is how these
differences affect the difficulty of Rogo instances compared to
TSP instances. Research into a variant of TSP has provided some
insight. Laporte and Martello [5] looked at a subset-selection,
prize-collecting TSP and found that solution times became sig-
nificantly faster for enumerative-based algorithms as the maxi-
mum travel distance decreased with respect to the optimal TSP
tour length.

Rogo instances can be characterised by the following param-
eters: grid size (m by n), the loop length L, and the number of
reward squares, Q. In general Rogo is NP-hard, as shown in the
appendix. Here, we focus on parameter restrictions which lead
to classes of Rogo instances which will (or might) be solvable in
time polynomial in the unrestricted parameters. The purpose of
exploring such instance classes is to motivate possible solution
approaches.

If the loop size is restricted to a given value L, there are a fi-
nite number of valid loops, N(L). With L fixed, N(L) is constant
with respect to the other instance data and any Rogo instance can
be solved in O(nm) time by checking each loop using each grid-
square, in turn, as the starting point. It is easy to show that N(L)
is bounded below and above by a function exponential in L. In
particular, N(L) ≤ 3L and a lower bound can be found by con-
structing a structured family of loops. The subclass of instances
with L bounded to be O(ln(nm)) can be solved in O(n2m2) time
using the upper bound on N(L) and the previously suggested al-
gorithm. Tight values of N(L) for L ≤ 24 are given in Section 4.

If the grid width and height are bounded by a fixed maximum
value M, the loop length is bounded by M2 and the above logic
implies Rogo may be solved by a constant time algorithm.

When the maximum number of reward squares is bounded by
a given constant Q, the number of ordered reward subsets is fi-
nite: Q! or fewer. Assuming it is possible, in polynomial time,
to test whether a given sequence of squares can be visited in or-
der by a valid loop of length L, such instances could be solved in
time polynomial in the characteristic parameters. We leave this
question open.

Some of these cases provide ideas for algorithms for solving
Rogo. We first look at IP formulations and then at enumeration
based algorithms.

3. IP Formulations

Define two sets of binary variables: xi j indicates whether the
grid-square (i, j) is visited in the loop, and ydi j indicates whether
edge (d, i, j) is used for the loop. Index d indicates whether an
edge is horizontal, d = h, or vertical, d = v. Edge (h, i, j) corre-
sponds to the edge between grid-squares (i, j) and (i, j + 1) while
edge (v, i, j) corresponds to the edge between grid-squares (i, j)
and (i + 1, j).

Two formulations are given with the same base formulation but
different sets of valid-loop constraints. The base formulation is as
follows.

maximise
∑

(i, j)∈R
ri jxi j (1)

s.t.
m∑

i=1

n∑

j=1

xi j = L (2)

yvi j + yv,i−1, j + yh,i, j + yh,i, j−1 = 2xi j

i = 1, . . . ,m, j = 1, . . . , n. (3)

+ Valid-loop constraints

xi j ∈ {0, 1}, ydi j ∈ {0, 1}
d ∈ {v, h}, i = 1, . . . ,m, j = 1, . . . , n.

Objective function Eq. (1) and maximum loop length constraint
Eq. (2) are obvious. Constraint Eq. (3) ensures exactly two edges
are incident to a visited grid-square and no edges are incident to
one not visited. For grid-squares on the sides of the grid, indicator
variables for nonexistent edges do not appear in the constraint.

The first set of valid-loop constraints use edge-sets of loops
with q squares for particular values of q. They require that not
all edges of such a loop are used. This eliminates all subtours of
length q. If subtours are present in a solution, at least one sub-
tour must have length L/2 or less. Let P(q, i, j) be the collection
of edge sets of all loops using q squares starting at location (i, j).
These valid-loop constraints are:
∑

(d,i, j)∈c
ydi j ≤ q − 1

4 ≤ q ≤ L/2, 1 ≤ i ≤ m, 1 ≤ j ≤ n, c ∈ P(q, i, j) (4)

These valid-loop constraints parallel the standard subtour elimi-
nation constraints for TSP [4]. This set of valid-loop constraints
can be implemented using loop patterns separated from the start-

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.3

ing points. For 4, 6, 8 and 10 square loops there are 1, 2, 7 and
28 loop patterns, respectively (loops must use even numbers of
squares). These numbers are small enough to make including all
subtour elimination constraints potentially viable for loop lengths
L = 22 or less. This set of valid-loop constraints is not valid when
constraint Eq. (2) is relaxed to allow shorter loop lengths, since
the optimal loop’s length may be L/2 or less. Figure 2 shows an
example of such an instance.

The second set of valid-loop constraints uses collections,
C(i1, j1, i2, j2), which contain all cuts separating (i1, j1) and
(i2, j2): these are minimal edge sets which separate the grid into
exactly two connected components, one holding (i1, j1) and the
other holding (i2, j2). These constraints are:
∑

(d,i, j)∈c
ydi j ≥ 2xi1 j1 + 2xi2 j2 − 2

(i1, j1) � (i2, j2) ∈ R, c ∈ C(i1, j1, i2, j2) (5)

They ensure that at least two arcs cross each cut separating (i1, j1)
and (i2, j2) when both squares are visited. These constraints are
a direct parallel of the standard connectivity constraints for the
TSP [4]. This set of valid-loop constraints could be implemented
by initially relaxing them all, adding violated constraints sequen-
tially until a feasible solution is obtained. This set of valid-loop
constraints remains valid when constraint Eq. (2) is relaxed to al-
low loop lengths of less than L.

Fig. 2 Rogo with best solution for a loop of length four better than that with
a loop of length eight.

Fig. 3 Pattern Testing algorithm which tests loops from a given set of all possible loop patterns.

4. A Loop Pattern Testing Algorithm

One potential solution method involves enumerating all possi-
ble loop shapes using L squares, then testing these loops for all
possible starting points. By pre-processing generation of all valid
loop patterns off-line, running time of the algorithm is O(NmnL)
where N is the number of loops to test. Algorithm speed can
be improved by only checking non-forbidden squares as starting
points and not allowing starting points which would cause part of
the loop to fall outside of the grid boundary. This algorithm is
labelled Pattern Testing.

An implementation of Pattern Testing is shown in Fig. 3. The
set of loop patterns, P, includes all possible loop shapes for loops
of length L. Each pattern is stored as a list of L offsets, cor-
responding to squares visited relative to a reference square. The
offsets measure the number of columns to the right of the leftmost
column (labelled 0) and the number of rows below the uppermost
row (labelled 0). The width of a loop pattern, w(�), is the max-
imum column offset and the height, h(�), is the maximum row
offset.

The algorithm can be adapted to the situation where loop length
is bounded by L by including all loop patterns of length L or less
in P.

Valid loops can be generated by enumeration, starting with the
square in the top corner on the leftmost boundary of the loop and
generating the loop to the right (this avoids much duplication).
Figure 4 shows this corner for a 16 square loop.

The remainder of the loop is sequentially extended by adding
each of the three possibly valid edges in turn, repeating the pro-
cess for each partially completed loop generated. Edges are
skipped if the loop returns to a previously used square or it returns
to the beginning too soon. The following properties can be used

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.3

Table 1 Number of loop patterns for various loop lengths.

Fig. 4 The top corner on the leftmost edge of a 16 square loop.

to reduce running time. A valid loop must have as many leftwards
edges as rightwards, and as many upwards edges as downwards.
A square can only be visited if there are sufficient steps remaining
to return to the starting square.

The performance of Pattern Testing will depend on N, the num-
ber of loops tested. Running a pre-processing algorithm based on
the above gave values for N as shown in Table 1. Loop pattern
storage requirements could be reduced by applying rotational and
reflective transformations to loop patterns in the solution algo-
rithm and removing duplicating patterns.

The running time should be relatively independent of the den-
sity of reward squares but decrease as the number of forbidden
squares increases. The number of valid starting points is propor-
tional to the number of non-forbidden squares. In addition, the
average time to test loops would be reduced as the number of for-
bidden squares increases since loop testing can be abbreviated as
soon as a forbidden square is encountered.

5. A Loop Enumeration Algorithm

An alternative to pre-processing the generation of loop patterns
is to construct loops sequentially within the solution algorithm.
During loop construction, the local pattern of reward and forbid-
den squares would be used to limit the shape of the loop. This
reduces the total number of loops that need to be considered.

In the algorithm developed, loop construction is broken into
two phases. The first phase generates potential reward sets and
the order they are visited, ignoring forbidden squares. The sec-
ond phase attempts to create a feasible loop visiting the set of
rewards in the order given from the first phase. The loop must
avoid forbidden squares, not revisit squares, and use the correct
number of steps. Since any feasible loop which visits all of this
set of rewards will suffice, the first such loop found is used.

The first phase is implemented by constructing visit-orders
of reward squares. A visit-order is a finite sequence of reward
squares in the order they will be visited by a loop.

Definition 2: A visit-order, v = [(i1, j1), (i2, j2), . . . , (iK , jK)], is
an ordered array of unique reward squares, (ik, jk) ∈ R.

Visit-orders are enumerated by adding a new reward square to
the end of an existing visit-order. The following notation is used:

v ∪ (i, j) = [(i1, j1), (i2, j2), . . . , (iK , jK), (i, j)] where v = [(i1, j1),
(i2, j2), . . . , (iK , jK)].

Distances are measured as rectilinear distances, steps over the
grid. These are used to eliminate visit-orders which would be im-
possible to visit using a loop of the correct length, even without
the presence of forbidden squares.

Definition 3: Define the following distance measures:
(a) The distance between squares (i1, j1) and (i2, j2) is

d((i1, j1), (i2, j2)) = |i2 − i1| + | j2 − j1|,
(b) The path length of visit-order, v = [(i1, j1), (i2, j2), . . . ,

(iK , jK)], is d(v) =
K−1∑

k=1

d((ik, jk), (ik+1, jk+1)),

(c) The distance from visit-order v = [(i1, j1), (i2, j2), . . . ,
(iK , jK)] to grid-square (i, j) is
d(v, (i, j)) = d((iK , jK), (i, j)),

(d) The distance to visit-order v = [(i1, j1), (i2, j2), . . . ,
(iK , jK)] from grid-square (i, j) is
d((i, j), v) = d((i, j), (i1, j1)),

We introduce the concept of a neighbour of a visit-order to be any
reward square not in the visit-order which is close enough to it to
allow the square to be visited within the loop length bound.

Definition 4: The neighbourhood of visit-order v = [(i1, j1),
(i2, j2), . . . , (iK , jK)] selected from a subset of reward squares S is
defined as: T (v, S) = {(i, j) ∈ S \v : d(v)+ d(v, (i, j))+ d((i, j), v) ≤
L}.

The triangle inequality holds for the distance measures defined
above, leading to the result that the neighbourhood contracts as
reward squares are added to visit-orders.

Lemma 1: For visit-order v, subset of reward squares S and any
reward square (i, j) ∈ T (v, S) we have T (v ∪ (i, j), S) ⊂ T (v, S).

The algorithm in Fig. 5 uses subroutine GetLoop(v) to attempt
to construct a loop visiting all rewards squares of visit-order v in
order. Further details of this subroutine are given below.

The algorithm implementation requires the reward squares to
be provided as an ordered array of grid-square indices R =

[(i1, j1), (i2, j2), . . . , (iQ, jQ)]. These are sequentially used as the
start of a loop. As the algorithm progresses, reward squares previ-
ously used as the start of a loop no longer need to be considered.
This is because any loop containing that reward square must have
been generated previously. At each iteration, a visit-order is se-
lected and independently extended by each of its neighbours. Any
newly created visit-order with total reward of more than the best
loop found so far is tested to see whether it defines a valid loop –
to become the current best loop. In the algorithm, the total reward
of a visit-order is recorded as the lower bound (LB) for any pos-

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.3

Fig. 5 Loop Construction algorithm which enumerates loops by generating potentially viable visit-orders.

sible valid loop containing it. All newly created visit-orders with
non-empty neighbourhoods (and sufficient total reward over their
neighbourhood) are stored for later extension. In the algorithm,
the total reward over the visit-order and its neighbourhood pro-
vides an upper bound (UB) on any valid loop containing it. This
algorithm, labelled Loop Construction, is shown in Fig. 5.

Subroutine GetLoop(v) attempts to construct a loop of length
L on the grid visiting all reward squares of v in sequence and no
others, returning to the first reward square, and obeying all loop
requirements including avoiding forbidden squares. The subrou-
tine returns the first loop found if one exists, and an empty array
if not. The details of this subroutine are straightforward; loops
are constructed by sequentially trying each possible next square
in a usual enumeration framework.

The running time for Loop Construction would be expected to
be exponential in the loop length since this would increase the
number of reward squares in the neighbourhood of each possi-
ble starting square. A similar effect should be seen as the reward
density increases. However, the average running time of GetLoop
could be expected to decrease as more of the loop route is fixed.

Increasing the number of forbidden squares does not affect the
number of visit-orders but should change the average running
time of GetLoop. The size of the complete GetLoop enumer-
ation tree will be reduced, but so will the chance of finding a
valid loop quickly. This also reduces the number of visit-orders
defining valid loops which could increase the amount of the Loop

Construction enumeration tree explored.

6. Computational Results

Computational experiments using the IP formulation with the
first set of valid-loop constraints took some minutes to solve in-
stances of size 8 × 8 and smaller. Larger instances failed to solve
in a reasonable time, if at all. These results are similar to those
found for the selective TSP [5]. Solution times of over 10 seconds
were found on 8 × 8 instances using the second set of valid-loop
constraints with a naive implementation for adding violated con-
straints. Further computational experiments with IP-based solu-
tion methods were not pursued. The formulations and solution
methods were not optimised for speed.

The two algorithms, Pattern Testing and Loop Construction,
were compared on a set of randomly generated instances designed
to compare performance issues. We briefly describe the design
of the instances used before displaying and discussing results of
computational experiments. The test instances are available from
the authors. Loop lengths were required with equality in all tests.
Further testing showed that the solution times differed little when
the loop length constraint was relaxed to allow shorter loops.

Four aspects of Rogo instances were considered for computa-
tional testing. We were interested in understanding how the two
algorithms performed as instance size, loop length, reward den-
sity and forbidden density increased. Three sets of instances were
constructed; only square instances were used. All sets were con-

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.3

Table 2 Average solution times (seconds) for algorithms Pattern Testing (PT) and Loop Construction
(LC) by grid width and loop length with reward density 0.22.

structed by combining randomly selected 3 × 3 grid blocks. All
reward values were between one and nine, (uniformly) randomly
selected.

The first set of instances was constructed to test the effect of
instance size. They were constructed from large starting Rogos.
The starting Rogos were made up of 121 of the 3 × 3 blocks to
form 33×33 sized Rogos. The 3×3 blocks had at most one forbid-
den square, randomly selected, and one or two rewards squares,
selected so as not to be directly adjacent horizontally or vertically.
Smaller Rogos were constructed from the starting Rogos by alter-
nately removing the rightmost and bottom layers of 3 × 3 blocks,
then the leftmost and top. From each starting Rogo, nine Rogo
instances were created with sizes from 9 × 9 to 33 × 33. The ef-
fect was to make the smaller instances subgrids of the larger ones.
Five starting instances were created, to give 45 instances. Each
instance was tested with six loop lengths from 12 to 22 steps.

Results for the two algorithms are shown in Table 2. The
times are in seconds, given to two significant figures and aver-
aged over five instances. The reward density of these instances
is about 0.22. At this density all solution times are less than one
minute with Loop Construction outperforming Pattern Testing by
approximately an order of magnitude.

The average solution times for loop length 20 are illustrated
in Fig. 6 plotted by the instance grid area (total number of grid
squares). From this we see that, as expected, the solution times
of the two algorithms increase roughly in proportion to the grid
area.

The second set of instances was constructed to test the effect
of reward density. Instances for this set were all 21 × 21. Base
instances were generated with one forbidden square and, at most,
one reward square in each 3 × 3 block, both randomly placed.
From each base instance, six more instances were generated in
sequence with an additional reward randomly placed in a non-
reward square for each 3 × 3 block. Five base instances were
created, to give 35 instances in total. Each instance was tested
with six loop lengths from 12 to 22 steps.

Results for the two algorithms are shown in Table 3. The times

Fig. 6 Average solution time by grid area for rogos with loop length 20
steps and reward density 0.22.

are in seconds, given to two significant figures averaged over five
instances. A maximum running time of 300 seconds was im-
posed. All instances use grids of size 21 × 21. Solution times
for Pattern Testing are largely unaffected by reward density while
times for Loop Construction appear to increase exponentially as
density increases. This is illustrated in Fig. 7, which shows the
average solution time by reward density for rogo instances of size
21 × 21 with loop length 18.

The computational results imply that the exponential increase
visit-orders dominants the reduction in GetLoop running time as
more parts of the loop are fixed. This might be explained by two
aspects of the algorithm which reduce the overall affect of Get-
Loop. GetLoop returns as soon as a valid loop is found and is
only called when the reward of the visit-order is better than the
current incumbent loop. Further analysis is needed to better un-
derstand this relationship and could provide insights to improve
algorithmic performance.

Figure 8 shows solution time as loop length increases, for rogo
instances of size 21×21 with reward density approximately 0.56.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.3

Table 3 Average solution times (seconds) for algorithms Pattern Testing (PT) and Loop Construction
(LC) by reward density and loop length on 21 × 21 grids.

Fig. 7 Average solution time by reward density for 21 × 21 rogos with loop
length 18 steps.

Fig. 8 Average solution time by loop length for 21 × 21 rogos with reward
density 0.56. Missing values included instances which took longer
than 300 seconds.

Solution times for both algorithms appear to increase exponen-
tially with loop length.

The third set of instances was constructed to test the effect of

Fig. 9 Average solution time by forbidden square density for 21 × 21 rogos
with loop length 18 and reward density 0.22.

forbidden density. Instances for this set were all 21 × 21. Base
instances were generated with no forbidden squares and two re-
ward squares in each 3×3 block, all randomly placed. From each
base instance, four more instances were generated in sequence
with an additional forbidden square added to each pair of 3 × 3
blocks. The final numbers of forbidden squares were 0, 24, 49,
73 and 98 respectively. Five base instances were created, to give
25 instances in total. Each instance was tested with a loop length
18 steps.

Figure 9 shows solution time as forbidden density increases.
The average solution time for Pattern Testing reduces as expected.
For Loop Construction the average solution time drops at first
then increases. The affect appears small. Further testing is needed
to better understand the impact of forbidden squares on this algo-
rithm.

From these results it would appear that typical Rogos designed
for human amusement can be quickly solved by either of these
two algorithms. Data requirements for Pattern Testing would sug-
gest that Loop Construction is more suitable for testing puzzles
created for amusement.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.3

7. Discussion and Future work

This paper looked at the new puzzle Rogo as an optimisation
problem to find the best accumulated reward score and a corre-
sponding loop. The two algorithms presented appear effective for
solving Rogos designed for human amusement. The computa-
tional experiments also go some way to providing understanding
about properties which make instances computationally difficult
for the two algorithms. It seems that loop length and reward den-
sity are the two main factors. Further investigation into this as-
pect of the algorithms’ performance would make interesting fu-
ture work.

While this paper makes a contribution to the computational dif-
ficulty of Rogo instances, another interesting question is what as-
pects of a Rogo puzzle makes it difficult (or easy) to solve with
pen and paper, without computers. Here the set of Rogo instances
drawn from will need to be better defined: those interesting for
a human to solve with pen and paper. (Clearly a Rogo with a
million grid squares and rewards in each non-forbidden square
taking values less than one thousand would be difficult, but not
interesting.) As well as those aspects which make Rogo compu-
tationally difficult, there are likely to be other aspects which make
Rogos difficult for pen and paper solution. For instance, it is not
clear that pen and paper difficulty is intransient under rotation and
reflection of the Rogo grid. Petty et al. [6] takes an initial look at
this.

Another direction for future work is the development of auto-
mated processes for generating Rogos for human amusement.

Acknowledgments The authors would like to thank the re-
viewers for their thoughtful suggestions which have greatly im-
proved this paper. In particular, the NP-hardness proof was sug-
gested by one of the reviewers.

References

[1] Garey, M.R. and Johnson, D.S.: Computers and Intractability, W.H.
Freeman (1979).

[2] Kant, G.: Drawing planar graphs using the canonical ordering, Algo-
rithmica, Vol.16, pp.4–32 (1996).

[3] Khellerstrand, H.: Rogo grid puzzle in Answer Set Programming
(Clingo) and MiniZinc, My Constraint Programming Blog, available
from 〈http://www.hakank.org/constraint programming blog/2011/01/
rogo grid puzzle in answer set programming clingo and
minizinc 1.html〉 (accessed 2011-02-03).

[4] Laporte, G.: A concise guide to the Traveling Salesman Problem,
Journal of the Operational Research Society, Vol.61, pp.35–40 (2010).

[5] Laporte, G. and Matrello, S.: The selective travelling salesman prob-
lem, Discrete Applied Mathematics, Vol.26, pp.193–207 (1990).

[6] Petty, N.W. and Dye, S.: Determining degree of difficulty in Rogo, a
TSP-based paper puzzle, Proc. 45th Annual Conference of the ORSNZ,
pp.345–350 (2010).

[7] Trick, M.: Operations Research, Sudoko, Rogo, and Puz-
zles, Michael Trick’s Operations Research Blog, available from
〈http://mat.tepper.cmu.edu/blog/?p=1302〉 (accessed 2011-02-03).

Appendix
This NP-hardness proof is thanks to one of the anonymous re-

viewers. We gratefully acknowledge the contribution. The proof
uses a reduction from the NP-hard Hamiltonian circuit problem
for planar cubic graphs, see problem [GT37] in Ref. [1].

Given any planar cubic graph G = (V ,E) an instance of Rogo
is constructed by representing each vertex v as a reward square

with reward value 1. Using one of the main results from Ref. [2],
these can be embedded in a grid with edges represented by non-
overlapping paths of empty grid squares. The embedding runs in
polynomial time and the grid width and height are linear in |V |.
The remaining squares are forbidden. With L sufficiently large,
the inequality Rogo instance has maximum collected reward of
|V | if, and only if, there exists a Hamiltonian circuit. For the
equality version, all loop lengths up to the total grid area can be
tested sequentially, solving polynomially many Rogo instances.

Shane Dye obtained his Ph.D. at Massey
University. He researches decision-
making under uncertainty within the
telecommunications, water-resource and
electricity industries. He received the
Harold W. Kuhn Award and is co-inventor
of Rogo, an operations research inspired
puzzle. Currently, he lectures operations

research at University of Canterbury.

Nicola Ward Petty is a Senior Lecturer
in the Department of Management, Uni-
versity of Canterbury and has a Ph.D. in
Operations Research. She is a director
of Creative Heuristics Ltd, and co-
inventor of Rogo. Nicola’s research
is mainly teaching related as is her
blog:

www.learnandteachstatistics.wordpress.com

c© 2012 Information Processing Society of Japan

