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Abstract: To date, enormous studies have been devoted to investigate biochemical functions of receptors, which have
crucial roles for signal processing in organisms. Ligands are key tools in experiments since receptor specificity with
respect to them enables us to control activity of receptors. However, finding ligands is difficult; choosing ligand candi-
dates relies on expert knowledge of biologists and conducting test experiments in vivo or in vitro has a high cost. Here
we investigate the ligand finding problem with a machine learning approach by formalizing the problem as multi-label
classification mainly discussed in the area of preference learning. We develop in this paper a new algorithm LIFT
(Ligand FInding via Formal ConcepT Analysis) for multi-label classification, which can treat ligand data in databases
in a semi-supervised manner. The key to LIFT is to achieve clustering by putting an original dataset on lattices using
the data analysis technique of Formal Concept Analysis (FCA), followed by obtaining the preference for each label
using the lattice structure. Experiments using real data of ligands and receptors in the IUPHAR database show that
LIFT effectively solves the task compared to other machine learning algorithms.
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1. Introduction

A receptor is a protein molecule located at the surface of a cell,
which receives chemical signals from outside of the cell. Since
receptors have crucial roles for signal processing in organisms,
to date, enormous studies have been devoted to investigate their
biochemical functions. The key approach in an experiment is to
use receptor specificity with respect to a ligand, which triggers a
cellular response by binding to a receptor, for controlling the re-
ceptor actions (Fig. 1). However, finding new convenient ligands
is difficult; choosing ligand candidates relies on expert knowl-
edge of biologists and conducting experiments to test whether or
not candidates work in vivo or in vitro has a high cost in terms
of time and money. Thus an in silico approach is required for
helping biologists.

In this paper, we adopt a machine learning, or knowledge dis-
covery and data mining, approach to find candidates of ligands.
Specifically, we formulate the problem of ligand finding as multi-

label classification recently discussed in the field of preference

learning [9], where each training datum used for learning is as-
sociated with not a single class label but a set of possible labels.
Here, for each ligand, receptors to which it binds correspond to
class labels of the ligand, and our goal is to predict labels (i.e.,
receptors) of ligands from databases of receptors and ligands. A
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ligand can often bind to more than two receptors; this is why
our problem is not traditional single-label but multi-label classi-
fication. Moreover, we try to predict labels in a semi-supervised

manner [3], [31]. Semi-supervised learning is a special form of
classification, where a learning algorithm uses both labeled and
unlabeled data in training. Commonly, only few labeled data are
assumed to be available since the labeling task has a high cost
in a real situation. Semi-supervised learning therefore fits to our
goal since, in our problem, only few ligands for each receptor
have been discovered yet lots of ligands for other receptors are
available.

Formally, the problem of semi-supervised multi-label classifi-
cation is stated as follows: Given a sequence X = x1, x2, . . . , xn,
where each xi is a tuple, or a feature vector, and a domain of la-
bels L. Each tuple xi is associated with a set of labels Li ⊆ L.
Since we consider semi-supervised learning, Li = ∅ is allowed.
The goal is, for any tuple (test datum) y, to predict the preference

of labels with respect to y, and we can decide whether or not y is
associated with a label λ for each λ ∈ L.

Fig. 1 A ligand-gated ion channel, which is a typical receptor.
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Information about receptors and ligands is donated to vari-
ous databases, such as KEGG*1, and in this paper we use the
IUPHAR database [25]*2. In the database, every ligand is charac-
terized by seven features as follows: hydrogen bond acceptors,
hydrogen bond donors, rotatable bonds, topological polar sur-
face area, molecular weight, XLogP, and number of Lipinski’s
rules broken. We abbreviate them in this paper HBA, HBD,
RB, TPS, MW, XLogP, and NLR, respectively. Here, TPS, MW,
and XLogP take continuous (real-valued) values while the oth-
ers, HBA, HBD, RB, and NLR, take discrete values. Thus to
design an effective classifier for the IUPHAR database, we have
to appropriately treat mixed-type data including both discrete and
continuous variables.

Recently, semi-supervised learning is one of active research
fields in machine learning and knowledge discovery, and now
various semi-supervised learning algorithms have already been
developed [3], [31]. However, most of them are designed for
real-valued variables and cannot be applied to mixed-type data
directly and, moreover, they do not treat multi-label classifica-
tion. Therefore, in this paper, we construct a new learning algo-
rithm, called LIFT (Ligand FInding via Formal ConcepT Anal-
ysis), which is designed for semi-supervised multi-label classifi-
cation of mixed-type data and hence it solves the ligand finding
problem from the IUPHAR database. The basic strategy of LIFT
is similar to the learning method SELF [27], proposed by two of
the authors, which directly handles mixed-type data in the semi-
supervised manner. Since SELF cannot treat multi-label classi-
fication, we redesign the essential algorithm of SELF to fit to
multi-label classification.

LIFT uses “label propagation,” or cluster-and-label, which is a
typical approach in semi-supervised learning [5], [8]. This means
that it first makes clusters without label information, followed
by giving preferences of class labels for each cluster. In LIFT,
the clustering process is performed by Formal Concept Analysis

(FCA) [7], [11], which is a mathematical data analysis technique
originally proposed by Wille [29]. One of successful applications
of FCA in data mining is for frequent pattern and association rule
mining proposed by Pasquier et al. [22], where closed patterns
(itemsets) obtained by FCA is used as condensed “lossless” rep-
resentations of original patterns. Using FCA, informally, we can
introduce a lattice structure, called a concept lattice or a closed

set lattice, which is a partially ordered set of data clusters with
respect to subset inclusion, into original data. Many studies used
FCA for machine learning and knowledge discovery, such as clas-
sification [10], clustering [30], and bioinformatics [2], [17], [19],
but ligand finding presented in this paper is a novel application of
FCA.

To date, no study treats machine learning for ligand finding
in the (multi-class) classification point of view. Recently, to the
best of our knowledge, there exists only one related study by
Ballester and Mitchell [1], which investigated a machine learn-
ing approach to predict the affinity of ligands, the strength of
docking. Another approach was performed by King et al. [18]
for modeling structure-activity relationships (SAR), which can

*1 http://www.genome.jp/kegg/
*2 http://www.iuphar-db.org/index.jsp

be applied to ligand finding. However, their goal is to under-
stand the chemical model by describing relations using inductive
logic programming (ILP), thus their approach is different from
ours. On the other hand, most in silico studies about receptors
and ligands tried to construct predictive models using domain-
specific knowledge, such as the potential energy of a complex,
the two-dimensional co-ordinates, and the free energy of bind-
ing [14], [21], and lots of scoring methods were proposed; e.g.,
AMBER [4], AutoDock [15], and DrugScore [12]. However, to
use such a method, some domain-specific background knowledge
is required and results strongly depend on them. In contrast, our
approach relies on only databases, thereby the user does not need
any background knowledge and can easily use and understand re-
sults.

This paper is organized as follows: Section 2 presents the LIFT
algorithm. Section 3 gives experimental results with methodolo-
gies and discussion. Finally we summarize our results and discuss
our future work in Section 4.

2. LIFT Algorithm

We present the algorithm, LIFT (LIgand Finding via Formal
ConcepT Analysis), which is the main part of the paper. Nota-
tions used in this paper are summarized in Table 1.

2.1 Database Formalization
We treat a ligand database using the notion of a relational

database [6], [26]. A set of ligands is treated as a table, or re-

lation, τ which is a pair (H, X) of a header H and a body X. A
header H is a finite set of feature*3 names, where each h ∈ H is
referred to as the domain of h, denoted by Dom(h); a body X is
a sequence of tuples x1, x2, . . . , xn, where each tuple xi is defined
as a total function from H to Dom(H) = {Dom(h) | h ∈ H} such
that xi(h) ∈ Dom(h) for all h ∈ H. We denote the number of
tuples, the table size, n by |τ|. When we treat the body X as a
set, we denote it by set(X), that is, set(X) = {x1, x2, . . . , xn}. This
means that we do not take the order and multiplicity into account
in set(X).

In the IUPHAR database, the header H is always the set {HBA,
HBD, RB, TPS, MW, XLogP, NLR}, and

Dom(HBA) = Dom(HBD) = Dom(RB) = Dom(NLR) = IN,

Dom(TPS) = Dom(MW) = Dom(XLogP) = IR,

where IN and IR denote the set of natural numbers and real num-
bers, respectively.

Let J be a subset of the header H. For each tuple x, the pro-

jection of x on J, denoted by x|J , is exactly the same as the re-
striction of x to J, which is the function from J to Dom(H) such
that x|J(h) = x(h) for all h ∈ J. For a table τ = (H, X), the pro-
jection of τ is the table τ|J = (J, X|J), where X|J is defined by
X|J := x1|J , x2|J , . . . , xn|J .

2.2 Data Preprocessing for FCA
First LIFT performs data preprocessing to construct a (formal)

*3 It is usually called an attribute, but we use the word feature to avoid
confusion with an attribute of a context in FCA.
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Table 1 Notation.

τ = (H, X) Table, which is pair of header H and body X
set(X) The set of tuples of body X
h Feature (element in H)
x, y tuple
x|J Projection of x on J ⊆ H
|τ| Number of tuples
Dom(h) Domain of feature h
G The set of objects
M The set of attributes
I Binary relation between G and M
(G, M, I) Context
B(G, M, I) Concept lattice (the set of concepts) of context (G, M, I)
k Discretization level
G(τ) The set of objects generated from τ
Mk(τ) The set of attributes generated from τ at discretization level k
Ik(τ) Binary relation generated from τ at discretization level k
g Object
m Attribute
h.m Qualified attribute generated from feature h
′′ Closure operator
B(τ) Concept lattice generated from table τ
kmax Maximum level
Λ(x) Set of labels associated with tuple x
λ Label
L The domain of labels
ψk
y(λ|τ) Preference of label λ at level k for tuple y with respect to τ
ψy(λ|τ) Preference of label λ for tuple y with respect to τ

(abbreviated as ψy(λ) if τ is understood from context)

Algorithm 1: Data preprocessing for making context
Input: Table τ = (H, X) and discretization level k
Output: Context (G(τ), Mk(τ), Ik(τ))

function Context(τ, k)
1: G← set(X)
2: for each feature h ∈ H
3: if Dom(h) = IN then (Mh, Ih)← ContextD(X, h)
4: else if Dom(h) = IR then (Mh, Ih)← ContextC(X, h, k)
5: end if
6: combine (MHBA, IHBA), (MHBD, IHBD), . . . , (MNLR, INLR) into (Mk(τ), Ik(τ))
7: return (G(τ), Mk(τ), Ik(τ))

function ContextD(X, h)
1: M ← {h.m | m ∈ x(h) such that x ∈ set(X)}
2: I ← {(x, h.m) | x ∈ set(X) and x(h) = m}
3: return (M, I)

function ContextC(X, h, k)
1: M ← {1, 2, . . . , 2k}, I ← ∅
2: Normalize the set {x(h) | x ∈ set(X)}
3: for each x ∈ set(X)
4: if x(h) = 0 then I ← I ∪ {(x, h.1)}
5: else if x(h) � 0 then
6: I ← I ∪ {(x, h.a)}, where (a − 1) · 2−k < x(h) ≤ a · 2−k

7: end if
8: end for
9: return (M, I)

context, a binary matrix specifying a set of objects and their at-
tributes, to apply FCA to training data. As described in the previ-
ous subsection, a ligand database is represented by a sequence of
tuples with seven features including both discrete and continuous
variables, and LIFT applies a different preprocess to each feature
type.

FCA is a mathematical data analysis technique [7], [11], which
is applied to a triplet (G, M, I), called a (formal) context, where
G and M are sets and I ⊆ G × M is a binary relation between G

and M. The elements in G are called objects, and those in M are
called attributes. In this paper, we identify a tuple with an object,

hence the set of objects G is always set(X) = {x1, x2, . . . , xn}.
From a given table (dataset), LIFT independently constructs

seven pairs of attributes and binary relations (MHBA, IHBA),
(MHBD, IHBD), . . ., (MNLR, INLR) for each feature in the header H

and combines them into a context (G, M, I). For this process, we
always qualify attributes to be disjoint by denoting each element
m of the attribute Mh by h.m.

First, we focus on preprocessing for discrete values of features
HBA, HBD, RB, and NLR. Since a context is also a discrete rep-
resentation of a dataset, this process is directly achieved in the
following manner. For each feature h ∈ H, the set of attributes

c© 2012 Information Processing Society of Japan 41



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.5 No.2 39–48 (June 2012)

Mh = {h.m | m ∈ x(h) such that x ∈ set(X)}
and, for each x ∈ set(X), (x, h.m) ∈ Ih if and only if x(h) = m. In
this way, discrete values are translated into a context. The func-
tion ContextD in Algorithm 1 performs this translation.

Second, we describe how to make a context from continuous
values using discretization. Since a context has a discrete struc-
ture, we need to discretize original continuous values. We embed
such a discretization process in the learning process and increase
discretizing resolution along with the learning process. The de-
gree of resolution is denoted by a natural number k, called dis-

cretization level, and we explain the method of discretization at
fixed level k in the following. First we use min-max normal-

ization [13] so that every value is in the closed interval [0, 1].
Namely, for every feature h ∈ H and tuple x, the value x(h) is
mapped to the value y(h) such that

y(h) =
x(h) −minx∈set(X) x(h)

maxx∈set(X) x(h) −minx∈set(X) x(h)
.

Next we discretize values in [0, 1] and make a context using the
binary encoding of real numbers, which is the same approach as
Ref. [27]. At discretization level k,

Mh = {h.1, h.2, . . . , h.2k}.
For each tuple x and feature h, if x(h) = 0, then (x, h.1) ∈ Ih.
Otherwise if x(h) � 0, then (x, h.a) ∈ Ih if and only if

a − 1
2k

< x(h) ≤ a

2k
. (1)

This means that continuous values are encoded by the binary en-
coding scheme, that is, if we encode a real number x(h) into an
infinite sequence p = p0 p1 p2 . . ., a context at discretization level
k is decided by the first k bits p0 p1 . . . pk−1. Each value is con-
verted to exactly one relation of a context.

The function ContextC in Algorithm 1 performs the above
process to make a context from continuous variables. In the fol-
lowing, for a given table τ, we write G(τ), Mk(τ), and Ik(τ) for
the set of objects, attributes, and binary relations at discretization
level k obtained by Algorithm 1, respectively.
Example 1 Given a table τ = (H, X), where H =

{HBD,TPS,MW} and X = x1, x2, x3 such that

(x1(HBD), x1(TPS), x1(MW)) = (0, 0.61, 0.98),

(x2(HBD), x2(TPS), x2(MW)) = (0, 0.44, 0.74),

(x3(HBD), x3(TPS), x3(MW)) = (1, 0.72, 0.34)

as shown in Table 2. Let discretization level k = 1. Then, for
each feature, we have the context as follows:

MHBD = {HBD.0,HBD.1},
IHBD = {(x1,HBD.0), (x2,HBD.0), (x3,HBD.1)},
MTPS = {TPS.1,TPS.2},
ITPS = {(x1,TPS.2), (x2,TPS.1), (x3,TPS.2)},
MMW = {MW.1,MW.2},
IMW = {(x1,MW.2), (x2,MW.2), (x3,MW.1)}.

Thus we have the context such that

Table 2 A table and a context in Example 1.

H HBD TPS MW

X
x1 0 0.61 0.98
x2 0 0.44 0.74
x3 1 0.72 0.34

HBD.0 HBD.1 TPS.1 TPS.2 MW.1 MW.2
x1 × × ×
x2 × × ×
x3 × × ×

Fig. 2 The bipartite graph corresponding to the upper context.

G(τ) = {x1, x2, x3},
M1(τ) = MHBD ∪ MTPS ∪ MMW,

I1(τ) = IHBD ∪ ITPS ∪ IMW,

which is visualized as a cross-table in Table 2.

2.3 Lattice Construction Using FCA
From a context obtained by the data preprocessing, LIFT gen-

erates closed sets as clusters and constructs lattices of closed
sets (concept lattices) by FCA. We first summarize FCA. See
Refs. [7], [11] for detail explanation.
Definition 1 A pair (A, B) with A ⊆ G and B ⊆ M is called a
concept of a context (G, M, I) if A′ = B and A = B′, where

A′ := {m ∈ M | (g,m) ∈ I for all g ∈ A} and

B′ := {g ∈ G | (g,m) ∈ I for all m ∈ B}.

The set A is called an extent and B an intent.
Each operator ′ is a Galois connection between the power set lat-
tices on G and M, respectively, hence the mapping ′′ becomes a
closure operator on the context (G, M, I). This means that a set
of objects A ⊆ G is closed and (A, B) is a concept for some set
of attributes B if and only if A′′ = A, and vice versa. Thus a
set of objects A of a concept (A, B) can be viewed as a cluster

determined by the algebraic property of “closed.”
The set of concepts over (G, M, I), called the concept lat-

tice, is written by B(G, M, I). In frequent pattern mining, a set
of attributes corresponds to an itemset and the lattice is called
the closed itemset lattice [22]. For a pair of concepts (A1, B1),
(A2, B2) ∈ B(G, M, I), we write (A1, B1) ≤ (A2, B2) if A1 ⊆ A2.
Then (A1, B1) ≤ (A2, B2) holds if and only if A1 ⊆ A2 (and
if and only if B1 ⊇ B2). This relation ≤ becomes an order
on B(G, M, I) in the mathematical sense and 〈B(G, M, I),≤〉 be-
comes a complete lattice. For a table τ, we denote the set of con-
cepts B(G(τ), Mk(τ), Ik(τ)) by Bk(τ). If domains of all features
are discrete; i.e., Dom(h) = IN for all h ∈ H, we abbreviate the
superscript k.
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Table 3 A table τ in Example 3 and the context (G(τ), M1(τ), I1(τ)), where feature names TPS, MW, and
XLogP are abbreviated as T, M, and X, respectively.

H TPS MW XLogP

X
x1 0.23 0.12 0.18
x2 0.35 0.03 0.74
x3 0.41 0.79 0.91

T.1 T.2 M.1 M.2 X.1 X.2
x1 × × ×
x2 × × ×
x3 × × ×

Fig. 3 A concept lattice constructed from the context in Table 2. Feature
names HBD, TPS, and MW are abbreviated as H, T, and M, respec-
tively.

Fig. 4 The concept lattice B1(τ) with its geometric interpretation.

Example 2 Let us consider the table τ given in Example 1
and the context (G(τ), M1(τ), I1(τ)) generated from τ. The set
Bk(τ) consists of seven concepts in total: (∅, {HBD.0, HBD.1,
TPS.1, TPS.2, MW.1, MW.2}), ({x1}, {HBD.0, TPS.2, MW.2}),
({x2}, {HBD.0, TPS.1, MW.2}), ({x3}, {HBD.1, TPS.2, MW.1}),
({x1, x2}, {HBD.0, MW.2}), ({x1, x3}, {TPS.2}), and ({x1, x2, x3},
∅). We show the concept lattice in Fig. 3.
Example 3 Let us consider a table τ = (H, X) such that H =

{TPS, MW, XLogP} and X = x1, x2, x3, where

(x1(TPS), x1(MW), x1(XLogP)) = (0.23, 0.12, 0.18),

(x2(TPS), x2(MW), x2(XLogP)) = (0.35, 0.03, 0.74),

(x3(TPS), x3(MW), x3(XLogP)) = (0.41, 0.79, 0.91),

which consists of only continuous values (Table 3). The concept
lattice corresponds to a hierarchy of cubes in three-dimensional
Euclidean space (Fig. 4).

To obtain concept lattices, we use the algorithm developed by
Makino and Uno [20], which is known to be one of the fastest
such algorithms. Their algorithm enumerates all maximal bipar-
tite cliques in a bipartite graph with O(Δ3) delay, where Δ denotes
the maximum degree of the given bipartite graph, i.e.,

Δ = max{#J | J ⊆ I, where g = h for all (g,m), (h, l) ∈ J or

m = l for all (g,m), (h, l) ∈ J}
(#J is the number of elements in J). For instance, Δ = 3 in
the context (G(τ), M1(τ), I1(τ)) in Example 1 (shown in Table 2).
Since we can easily check that each context and concept exactly
coincide with a bipartite graph and a maximal bipartite clique,
respectively (Fig. 2), we can use their algorithm directly.

2.4 Classification and Ranking
Here we discuss classification on concept lattices using la-

bel information. Our strategy is to design preference, a kind of
weight, for each label of a given test datum (unlabeled tuple)
y based on concepts produced by FCA, and achieve multi-label
classification based on the preference. Moreover, we show that
label ranking can be achieved using the preference.

First LIFT translates y into a context with just one object using
Algorithm 1; i.e., G(υ), Mk(υ), and Ik(υ), where υ = (H, y). We
always assume that the header H is exactly the same as that of a
table τ = (H, X) of training data.

The key idea is, for each concept (A, B) ∈ Bk(τ) obtained from
a table τ of training data, to treat the set of attributes B as a clas-

sification rule. For an unlabeled tuple y, we check whether or not
the object y has the all attributes of the concept (A, B), since this
condition means that the object y has the same properties of the
objects A, meaning that y is classified to the same class of objects
in A. We call this property consistency which is formally defined
as follows:
Definition 2 (Consistency) For a context ({y}, M, I) and a con-
cept (A, B), the object y is consistent with (A, B) if two conditions
B ⊆ {m ∈ M | (y,m) ∈ I} and B � ∅ hold.
Consistency has the monotonicity with respect to the order ≤ on a
concept lattice. If an object y is consistent with a concept (A, B),
it is consistent with any concept (C,D) such that (A, B) ≤ (C,D),
and if an object y is not consistent with a concept (A, B), it is
not consistent with any concept (C,D) such that (C,D) ≤ (A, B).
Thus, for the set of concepts Bk(τ), if we define

C(y) := {(A, B) ∈ Bk(τ) | y is consistent with (A, B)},
there always exist finite concepts (A1, B1), (A2, B2), . . ., (Al, Bl)
such that
⋃

i∈{1,2,...,l}
↑(Ai, Bi) = C(y),

where
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↑(A, B) = {(C,D) ∈ Bk(τ) | (A, B) ≤ (C,D)}.
Here we give the formal definition of the preference of a la-

bel. We denote the set of labels associated with a tuple x by
Λ(x). Thereby, for a set of tuples (objects) A,Λ(A) denotes the set⋃

x∈A Λ(x). LIFT allows unlabeled data for training, hence Λ(x)
could be empty, meaning that the object x is unlabeled. This is
why LIFT is a semi-supervised learning algorithm.
Definition 3 (Preference at discretization level k) Given tables
τ = (H, X) and υ = (H, y) with |υ| = 1. For each discretization
level k and each label λ ∈ L, we define the preference of λ at

discretization level k with respect to the tuple y by

ψk
y(λ|τ) :=

∑
{#Λ(A)−1 | y is consistent with

(A, B) ∈ Bk(τ) such that

λ ∈ Λ(A)},
where #Λ(A) denotes the number of elements in Λ(A), and we
assume #Λ(A)−1 = 0 if #Λ(A) = 0 for simplicity.
We do not take the size #A of the extent A into account, since the
distribution of training data with respect to labels is often biased,
especially in biological data.
Example 4 Let τ = (H, X) be a table in Example 3 (see Fig. 4)
and tables υ = (H, y) and σ = (H, z) be

(y(TPS), y(MW), y(XLogP)) = (0.12, 0.41, 0.31),

(z(TPS), z(MW), z(XLogP)) = (0.31, 0.22, 0.89).

Assume that Λ(x1) = {A}, Λ(x2) = {B}, and Λ(x3) = {C} in X. Bi-
nary relations I1(υ) and I1(σ) at discretization level 1 for objects
y and z are

I1(υ) = {(y,TPS.1), (y,MW.1), (y,XLogP.1)},
I1(σ) = {(z,TPS.1), (z,MW.1), (z,XLogP.2)}.

The object y is consistent with three concepts ({x1, x2, x3},
{TPS.1}), ({x1, x2}, {TPS.1, MW.1}), and ({x1}, {TPS.1,
MW.1, XLogP.1}), and z is consistent with four concepts
({x1, x2, x3}, {TPS.1}), ({x1, x2}, {TPS.1, MW.1}), ({x2, x3},
{TPS.1, XLogP.2}), and ({x2}, {TPS.1, MW.1, XLogP.2}). Thus
we have the preference

ψ1
y(A|τ) =

1
3
+

1
2
+ 1 = 1.83, ψ1

y(B|τ) =
1
3
+

1
2
= 0.83,

ψ1
y(C|τ) =

1
3
= 0.33,

ψ1
z (A|τ) =

1
3
+

1
2
= 0.83, ψ1

z (B|τ) =
1
3
+

1
2
+

1
2
+ 1 = 2.33,

ψ1
z (C|τ) =

1
3
+

1
2
= 0.83.

These results of preferences reflect the similarity between data,
since y and z are most similar to the first and second tuples of X,
respectively.

It is easy to perform multi-class classification from the prefer-
ence at some fixed discretization level. However, this preference
would not be enough to exploit information from obtained data.
We show a simple representative case in the following, which
shows the anti-monotonicity of the notion of consistency with re-
spect to discretization level.

Table 4 A table τ for training with labels and a table υ as a test datum in
Example 5, shown at the bottom of τ, and contexts at discretization
levels 1 and 2, where HBD and TPS are abbreviated as H and T,
respectively.

H HBD TPS

X
x1 0 0.56
x2 0 0.91

y 0 0.11

Labels
A
B

H.0 T.1 T.2
x1 × ×
x2 × ×
y × ×

H.0 T.1 T.2 T.3 T.4
x1 × ×
x2 × ×
y × ×

Example 5 Let τ = (H, X) be a table such that H = {HBD, TPS}
and X = x1, x2, where

(x1(HBD), x1(TPS)) = (0, 0.56), Λ(x1) = {A}
(x2(HBD), x2(TPS)) = (0, 0.91), Λ(x2) = {B}

and υ = (H, y) be a table such that

(y(HBD), y(TPS)) = (0, 0.11).

At discretization level 1, we have the context shown in Table 4
and there are two concepts

({x1, x2}, {HBD.0,TPS.2}), (∅, {HBD.0,TSP.1,TPS.2}).
The object y is not consistent with any concept, hence

ψ1
y(A|τ) = 0, ψ1

y(B|τ) = 0.

However, at discretization level 2, there are four concepts

({x1, x2}, {HBD.0}), ({x1}, {HBD.0,TPS.3}),
({x2}, {HBD.0,TPS.4}), (∅, {HBD.0,TSP.1,TPS.2}),

and y is consistent with the concept ({x1, x2}, {HBD.0}), thus

ψ2
y(A|τ) = 0.5, ψ2

y(B|τ) = 0.5.

Therefore y can be classified to both classes A and B.
Ideally, all discretization levels should be taken into account to

obtain the preference of labels. One of straightforward ways is to
obtain the preference of a label by summing up preferences for
each discretization level. However, if we define the preference by

ψy(λ|τ) :=
∑

k≥1

ψk
y(λ|τ),

this preference goes to infinity in many cases. We therefore intro-
duce the maximum level kmax of discretization as a parameter.
Definition 4 (Preference) Given tables τ and υ, where |υ| = 1,
and a natural number kmax. For each label λ ∈ L, we define the
preference of λ by

ψy(λ|τ) :=
kmax∑

k=1

ψk
y(λ|τ)

for a tuple y.
We abbreviate “|τ” of the expression ψy(λ|τ) if it is understood
from context. We give the LIFT algorithm in Algorithm 2, which
calculates the preference for each label.
Example 6 Let us consider a table τ = (H, X) with H = {HBD,
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Table 5 A table τ for training with labels and a table υ as a test datum, shown at the bottom of τ, in Ex-
ample 6 and contexts at discretization levels 1 and 2, where HBD, TPS, and MW are abbreviated
as H, T, and M, respectively.

H HBD TPS MW

X
x1 0 0.98 0.88
x2 1 0.41 0.48
x3 2 0.12 0.71

y 0 0.77 0.79

Labels
A
B C
A C

H.0 H.1 H.2 T.1 T.2 M.1 M.2
x1 × × ×
x2 × × ×
x3 × × ×
y × × ×

H.0 H.1 H.2 T.1 T.2 T.3 T.4 M.1 M.2 M.3 M.4
x1 × × ×
x2 × × ×
x3 × × ×
y × × ×

Algorithm 2: The LIFT algorithm
Input: Tables τ = (H, X) and υ = (H, y), and maximum level kmax

Output: Preference ψy for each label λ ∈ L
function LIFT(τ, υ, kmax)
1: k ← 1 // k is discretization level
2: for each label λ ∈ L
3: ψy(λ|τ)← 0 // initialization
4: end for
5: return Learning(τ, υ, k, kmax)

function Learning(τ, υ, k, kmax)
1: (G(τ), Mk(τ), Ik(τ))← Context(τ, k) // make a context from τ
2: (G(υ), Mk(υ), Ik(υ))← Context(υ, k) // make a context from υ
3: make a concept lattice Bk(τ) from (G(τ), Mk(τ), Ik(τ)) by FCA
4: for each label λ ∈ L
5: compute the preference ψk

y(λ|X) at discretization level k
6: ψy(λ|X)← ψy(λ|X) + ψk

y(λ|X)
7: end for
8: if k = kmax then
9: return (ψy(λ|τ))λ∈L

10: else
11: return Learning(τ, υ, k + 1, kmax)
12: end if

RB, TPS, MW}, where labels are associated with each tuple as
shown in Table 5, and a table υ = (H, y) with an unlabeled tuple
y. Assume that kmax = 2. At discretization level 1, we have

ψ1
y(A) = 1.5, ψ1

y(B) = 0, and ψ1
y(C) = 0.5,

since y is consistent with two concepts

(A1, B1) = ({x1, x3}, {MW.2}) and

(A2, B2) = ({x1}, {HBD.0,TPS.2,MW.2}),
where Λ(A1) = {A,C} and Λ(A2) = {A} (see Fig. 5). Remember
that we always ignore the concept whose attribute is empty. At
discretization level 2, we have

ψ2
y(A) = 1, ψ2

y(B) = 0, and ψ2
y(C) = 0,

since y is consistent with only one concept
({x1}, {HBD.0,TPS.4,MW.4}). Finally we have

ψy(A) = 2.5, ψy(B) = 0, and ψy(C) = 0.5

for each label.

Fig. 5 Concept lattices constructed from contexts B1(τ) (left) and B2(τ)
(right) in Table 5. The tuple y is consistent with concepts denoted by
black dots.

From the preference obtained by LIFT, multi-label classifica-
tion can be achieved, that is, an unlabeled tuple y is associated
with a set of labels L ⊆ L such that L = {λ ∈ L | ψy(λ) � 0}. Fur-
thermore, a partial order � of labels can be derived from prefer-
ences, where λi � λ j (λ j is preferable than λi) if ψy(λi) ≤ ψy(λ j).
Thus we can also achieve the label ranking problem using the
preference.

The time complexity of LIFT is O(nd) + O(Δ3N), where n is
the number of tuples, d is the number of features, and N is the
maximum number of concepts in concept lattices constructed in
the learning process of LIFT; i.e.,

N = max
1≤k≤kmax

#Bk(τ),

since data preprocessing takes O(nd), making a concept lattice
takes less than O(Δ3N), and obtaining the preference takes less
than O(N).
Example 7 For training and test data given in Example 6, labels
A and C are associated with y since both ψy(A) and ψy(C) are
larger then 0. Moreover, we have the order B � C � A of label
ranking for the tuple y.

3. Experiments

We evaluate the LIFT algorithm using real data of ligands and
receptors compared to SVM and the decision tree-based algo-
rithm. We also experimentally measure the effectiveness of unla-
beled data for training in semi-supervised learning by LIFT.
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Fig. 6 Accuracy for each receptor family obtained by LIFT without unlabeled training data (LIFT (w/o)),
LIFT, the tree algorithm, and SVM with the RBF kernel. Data show mean ± s.e.m.

3.1 Materials and Methods
3.1.1 Environment

LIFT was implemented in R and all experiments were per-
formed in R version 2.12.2 [23]. LIFT uses LCM*4 distributed
by Uno [28] to construct a concept lattice Bk(τ), which was im-
plemented in C. In all experiments, we used Mac OS X ver-
sion 10.6.5 with two 2.26-GHz Quad-Core Intel Xeon CPUs and
12 GB of memory.
3.1.2 Databases

We collected the entire 1,782 ligand data in the IUPHAR
database [25]*5. In the database, each ligand is characterized by
seven features: HBA, HBD, RB, TPS, MW, XLogP, and NLR as
described in Section 2.1. Receptors, which corresponds to class
labels, are classified into families, such as 5-Hydroxytryptamine
receptors and Acetylcholine receptors, hence we picked up the
eleven largest families from the database and used respective fam-
ilies as datasets for each training. Statistics of receptor families is
shown in Table 6. In semi-supervised learning of LIFT, entire lig-
ands except the focusing receptor family were used as unlabeled

*4 http://research.nii.ac.jp/˜uno/codes.htm
*5 http://www.iuphar-db.org/index.jsp

Table 6 Families of receptors. The number of ligands and receptors corre-
spond to the data size and the number of class labels, respectively.

Family name # of Ligands # of Receptors
5-Hydroxytryptamine receptors 286 53
Acetylcholine receptors 100 68
Adenosine receptors 162 40
Adrenoceptors 111 35
Dopamine receptors 69 40
Histamine receptors 120 37
Neuropeptide Y receptors 76 34
Metabotropic glutamate receptors 73 9
Transient receptor potential channels 78 58
Voltage-gated potassium channels 61 71
Ionotropic glutamate receptors 81 14

training data.
3.1.3 Learning Algorithms

To measure the effectiveness of unlabeled ligand data, we used
LIFT in two cases: Only labeled data were used in training in the
first case (denoted by LIFT (w/o) in Fig. 6), and all ligands ex-
cept test data were used as unlabeled training data in the second
case. The maximum level kmax was set at 5 throughout all ex-
periments. As control for evaluation of LIFT, we adopted SVM
with the RBF kernel and the decision tree-based method imple-
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mented in R [24], since the tree method is a typical learning al-
gorithm which can be applied to mixed-type data containing both
discrete and continuous variables. We used the function ksvm in
the kernlab package for SVM [16], where all discrete values are
treated as continuous. Note that these control methods are typi-
cal supervised learning methods and cannot use unlabeled data in
the learning phase. Moreover, since they are algorithms designed
for single-label classification, we just used the first label for each
training datum. LIFT thus has some advantage compared to SVM
and the decision tree-based method in learning in terms of label
information.
3.1.4 Evaluation

Let υ = (H,Y) be a test table with Y = y1, y2, . . . , yn and the
domain of labels L be {λ1, λ2, . . . , λl}. Assume that we have the
preference {ψy(λi|τ) | 1 ≤ i ≤ l} for each label λi ∈ L by LIFT,
where

ψy(λp1 |τ) ≥ ψy(λp2 |τ) ≥ ψy(λp3 |τ) ≥ . . . ≥ ψy(λpl |τ).

for each tuple y ∈ set(Y). In LIFT, we define the accuracy acc(υ)
by

acc(υ) :=

∑n
i=1 #
{
λ j ∈ Λ(yi) | j ∈ {p1, p2, . . . , p#Λ(yi)}

}
∑n

i=1 #Λ(yi)
,

which takes values in [0, 1] to be maximized. This means that
when y is associated with q labels, we check whether or not each
label is in top-q labels determined by the preference. Notice that
we do not take labels λp#Λ(y)+1 , . . . , λpl into account to obtain the
accuracy since the database has only positive information and
λ � Λ(y) does not means that the ligand y does not bind to the
receptor λ.

For the decision-tree based method and SVM, the accuracy is
obtained by

acc(υ) :=
#{yi | 1 ≤ i ≤ n, f (yi) ∈ Λ(yi)}

n
,

where f (yi) is the output for the tuple yi by respective learning
algorithms.

Mean and s.e.m. (standard error of the mean) of accuracy
was obtained for each dataset (receptor family) by 10-fold cross-
validation.

3.2 Results and Discussion
Results are shown in Fig. 6. These results clearly show that

LIFT is more effective than the typical classification algorithms
of SVM and the tree algorithm for ligand finding. Accuracy
obtained by LIFT is significantly higher than that by SVM and
the tree algorithm in eight cases out of eleven cases (checked by
paired t-test, α = 0.05). One of reasons of the difference might be
that LIFT can treat multi-labels effectively whereas SVM and the
tree algorithm cannot. Moreover, SVM treated discrete values as
continuous, presumably resulting in lower accuracy.

Comparison with other preprocessing methods is valuable. For
example, we can convert the original database into a single-label
database by duplicating tuples with multiple labels. It is thus fu-
ture work to investigate the relationship between LIFT and such
techniques.

Since each family has many classes from 9 to 71, accuracy of
LIFT, which is more than 50% in most cases, is high enough. Fur-
thermore, unlabeled training data can be used effectively in LIFT
in the semi-supervised manner. Our results therefore indicate that
LIFT should be valuable for finding new ligands and contribute
to biology and biochemistry.

By using LIFT, we can find new ligand candidates from any
training data, hence LIFT can be used as a tool for actual biolog-
ical experiments to narrow down new ligand candidates. Check-
ing such candidates obtained by LIFT in biological experiments
is future work.

4. Conclusion

In this paper, we have proposed a semi-supervised learning al-
gorithm, called LIFT, for ligand finding from databases. LIFT
performs preference learning, that is, multi-label classification
and ranking, in the semi-supervised manner. First, every dataset
is translated into a (formal) context, followed by clustering of it
by FCA by putting on a concept lattice, where each continuous
(real-valued) value is discretized based on the binary encoding
scheme. Then, on the lattice, the preferences of class labels for
unlabeled test data are obtained by taking labels of training data
into account.

Since LIFT is a flexible learning algorithm, it can be applied to
any databases in various domains. Thus considering contributions
to other domains is one of future work. Another future work is
to treat incremental databases in LIFT, because lots of databases
are frequently updated whereas LIFT cannot directly treat such
incremental databases. LIFT can display weighted classification
rules, which are easily-interpreted, thus analysis of learned rules
from biological point of view is also a future work. Furthermore,
using biological background knowledge such as the structure of a
receptor for learning is interesting future work.
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