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Abstract: In this paper, a new set of m-dimensional Power Spectrum-based data signatures is derived to obtain better
Vector Fusion 2-dimensional visualizations of a time series and periodic n-dimensional traffic data set as compared
with visualizations produced from using the entire set of n-dimensional Power Spectrum representations in literature,
where m � n. We were able to ascertain that 4-dimensional data signatures provide empirically optimal represen-
tations with respect to the data set used. We have achieved ≈97.6% reduction in terms of data representation of the
original nD data set with the signatures. We propose an algorithm that determines how good the selected set of m-
dimensional signatures represents the n-dimensional data set in 2 dimensions in quantitative terms. We use the Vector
Fusion visualization algorithm in transforming each signature from m dimensions into 2 dimensions. An improved set
of qualitative criterion is drawn to measure the goodness of the 2-dimensional data signature-based visual representa-
tion of the original n-dimensional data set. Finally, we provide empirical testing, discuss the results, and conclude the
contributions of the proposed methods.
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1. Introduction

A data signature, as defined in Ref. [1], is a mathematical data
vector that captures the essence of a large data set in a small
fraction of its original size. It had been shown in previous stud-
ies [2], [3] that Fourier-based data signatures employed on time
series traffic data sets provide better characterization on sets of
traffic flow behavior and unravel previously unknown informa-
tion from the data set. In particular, these studies show the effec-
tiveness of using such type of signatures to produce an optimal
cluster model from the 2006 North Luzon Expressway (NLEX)
Balintawak-Northbound (BLK-NB) traffic volume data set. The
data set had to be preprocessed, partitioned, and projected as
discrete input time domain signals. Each signal, representing a
week with 168 hourly traffic volume entries, is then decomposed
through the Fast Fourier Transform and its corresponding set of
Power Spectrum components is computed. A data signature is
obtained by selecting the first 85 components to represent each
week in its frequency domain. The X-Means [4] clustering algo-
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rithm was used to group all similar weeks and extract a number
of outliers by using these data signatures.

Shown in Fig. 1 is the time domain visualization of the data set
with rows (representing weeks of 2006) structured contiguously
conforming to the cluster model produced through X-Means on
the data signatures, denoted as XMeans(F,85). The horizontal
axis reflects the 168 hourly total traffic volume of each week from
Sunday to Saturday. Each pixel is colored based on the current
traffic volume of a time step in a week. This image is produced us-
ing the Iterative Data Image Rotated Bar Graph (iDIRBrG)-based
approach in Ref. [5].

Using Fig. 1 of the time domain data set, it is used to deter-
mine inter-cluster and intra-cluster similarities and differences.
Outliers are also easily identified with the significant changes
highlighted in various sections in their rows. In addition to these
results, analysts are also capable of mining out weeks which be-
long to a cluster that possesses peculiar behavior among its clus-
ter co-members. These weeks are referred to as potential out-

liers in Ref. [3]. Cluster and outlier analysis using this cluster
model is also detailed in the same paper. However, using a 2-
dimensional Vector Fusion (VF) visualization technique [7], [8],
a similar cluster, outlier, and potential outlier analysis can also
be accomplished in a more simplified and straightforward man-
ner than the iDIRBrG-based visualizations. We initially used the
168-dimensional Power Spectrum components of each week and
use VF to obtain a scattergram of the data set. The scattergram
points are then colored using the cluster model information ob-
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Fig. 1 iDIRBrG-based [5] visualization of the time-domain data set. The
y-axis is composed of weeks rearranged according to the results of
frequency-domain clustering (using the 85-dimensional data signa-
tures) through X-means. The lines separate the clusters from one
another.

Fig. 2 VF(85,168) for the 2006 NLEX BLK-NB traffic volume data set.

tained through X-Means(F,85).
Shown in Fig. 2 is the VF Visualization [7] VF(85,168) where

each point (representing a week) is colored using the results of
XMeans(F,85). The notation VF(X,Y) means that we have used
the first X and Y components of the Power Spectrum as inputs
to the X-Means clustering algorithm and the VF visualization
algorithm, respectively. In the latter part of the paper, the sec-
ond component Y may also be a set of elements associated to
a Power Spectrum component Ai for some i ∈ {1, 2, . . . , 168}.
Co-members in a cluster are identifiable using a unique color as-
signed to them. Additionally, a cluster’s behavior may further be
described by generating its confidence ellipses, bands and best-fit
curves [6].

With the use of the entire set of Power Spectrum components
of each week, a “good enough” VF visualization is obtained from
the data set. However, a previous work in Ref. [3] has shown the
possibility of obtaining a signature from a small subset of the n-
dimensional Power Spectrum components while still achieving a
good cluster model of the data set. This model, in fact, was con-
cluded as a better one when compared to the model obtained by

using the original n-dimensional Power Spectrums of the data set.
Thus, this study aims to establish the following results,
• determine an optimal set of data signatures with smaller di-

mensionality m, where m � n, for optimal VF visualization
purposes;

• improve the qualitative goodness criteria [3] by measuring
the improvements of the 2-dimensional VF representation of
the data over its m-dimensional data signature;

• provide novel information from the data regarding ac-
tual traffic incidents by using the newly obtained optimal
m-dimensional data signatures in the VF visualization to
project data points with interesting or peculiar behavior far
enough from their co-members in the cluster. These points
may be considered as potential outliers [6].

• effectiveness of representation of the m-dimensional data
signatures using the algorithm on time series periodic traf-
fic data sets. Through this process, we show the robustness
and reliability of the signatures for 2-dimensional VF data
representation. We also show that this characteristic is main-
tained while achieving a simplistic, intuitive, abstract, yet
readily-interpretable representations of large n-dimensional
traffic data sets. These interpretations are achieved without
the need to refer to the time-domain n-dimensional data im-
age visualizations.

In Section 2, we give definitions and notations to the con-
cepts building the theoretical backbone of this study. Provided
in Section 3 are the details on how “good” visualizations are ob-
tained through qualitative and quantitative approaches. We fur-
ther strengthen our qualitative results by introducing an algorithm
to obtain a quantitative value measuring the consistency of the
visualization of the vector-fused data signatures with respect to
their actual Euclidean distances. In Section 3.3, we give charac-
terizations of Power Spectrum values so as to select reasonable
components for data signature construction. Finally, we show
empirical tests on various data signatures on various data sets and
detailed discussions on their results in Section 4 and conclusions
in Section 5.

2. Basic Definitions and Notations

2.1 The Data Sets
The data sets used in this work have the following character-

istics: time-series, periodic and multidimensional. In particular,
we used the 2006–2009 NLEX Balintawak Northbound (BLK-
NB) data set provided by the Manila North Tollways Corporation
(MNTC) through the National Center of Transportation Studies
(NCTS). A record contains hourly entries accumulated via an au-
tomatic detector embedded in every lane of NLEX’s segments.
The detector inserts the mean spot volume in its record for each
lane per hour, thus, 168 data points are collected in each week.
We totaled these values in all four lanes to obtain a 52 × 168 data
matrix, i.e., 52 weeks with 168 data points each.

2.2 Power Spectrums
Fourier descriptors such as Power Spectrums rely on the fact

that any signal can be decomposed into a series of frequency com-
ponents via Fourier Transforms. By treating each n-dimensional

c© 2012 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.20 No.3

weekly partition in the NLEX BLK-NB time-series traffic data
set as discrete signals, we obtain their Power Spectrums through
the Discrete Fourier Transform (DFT) decomposition as shown
below,

θ(t) = μ0 +

n−1∑
k=1

(
ak cos

2πk
n
− ibk sin

2πk
n

)
,

where μ0 is the component referred to as the offset of the sig-
nal translated from the horizontal axis. Using DFT, a vector
of real numbers can produce a vector F of frequency compo-
nents of the same length, where F = (a0 ± b0i, a1 ± b1i, a2 ±
b2i, . . . , an − 1 ± bn−1i), μ0 = a0 ± b0i and i2 = −1. For the
resulting n-dimensional vector, we produce distinct values for
a0 ± b0i, a1 ± b1i, a2 ± b2i, . . . , an/2 ± bn/2i and the succeeding
values are their complex conjugates.

Power Spectrum is the distribution of power values as a func-
tion of frequency. For every frequency component, power can be
measured by summing the squares of the coefficients of the cor-
responding sine-cosine pair and then getting its square root. The
Power Spectrum Ak of the signal, k = 0, 1, . . . , n − 1 is given by,

Ak =

√
ak

2 + bk
2.

2.3 Vector Fusion Visualization
In literature [7], a method is introduced to provide a 3-

dimensional perspective of any given n-dimensional data vector
by using the Single-point Broken-line Parallel coordinates (SBP)
algorithm. Each instance in a given n-dimensional data set is pro-
jected in 3-dimensional as a vector resultant of its components.
The paper [8] simplifies this visual representation such that an
n-dimensional data point w = [w1, w2, . . . , wn] is represented as
a 2-dimensional resultant point in a scattergram by summing all
of data point’s component w j using a precomputed angle θ j with
w j−1, j = 1, 2, . . . , n. Shown below is the formula to compute the
2-dimensional coordinates (S PBx, S BPy) for an n-dimensional
data point w.

w = w1eiθ1 + w2eiθ2 + . . . + wneiθn

=

n∑
j=1

w j cos(θ j) + i
n∑

j=1

w j sin(θ j)

= (wsumX , wsumY ) = (S PBx, S BPy)

where θ j = ( j − 1)180◦/n, n is the dimension of the vector, and
w j is the value of the jth dimension.

3. Methodology

3.1 A Qualitative Goodness Measure of the VF Visualization
After obtaining the set of Power Spectrum components for

each n-dimensional week in the data set, m of these compo-
nents shall be selected and used as its data signature for VF
visualization purposes, where m ≤ n. To obtain relationships
of the weeks using the scattergram visualization, we shall use the
cluster model XMeans(F,85) to color each scatter point. Then,
we determine how well the 2-dimensional scattergram represents
the pre-computed point-to-point, intercluster, and intracluster re-
lationships obtained from XMeans(F,85). Shown below is the

criteria [3] that we have improved in this work.
( 1 ) Closeness of co-members. A good visualization should

show reasonable visual proximity of points belonging to a
common cluster. Regions occupied by clusters should have
minimal overlaps in the visualization.

( 2 ) Visibility of all points. No total occlusion should exist
among the points.

( 3 ) Outlier detection. Outliers seen after using X-Means clus-
tering algorithm should have a significant distance from all
other weeks such that they can easily be pinpointed in the
visualization.

( 4 ) Detection of potential outliers. Potential outliers, i.e.,
weeks within a cluster that show “interesting” behavior as
seen in the iDIRBrG-based visualizations, should be found
near or at the periphery of the region occupied by a cluster.
These should be projected far from their co-members in the
VF visualization.
The detection of potential outliers by use of projection of
convex hulls along the periphery of a cluster region and
determining whether they are “far enough” from their co-
members are both highly subjective processes. Candidate
potential outliers may exist along the convex hull but may
be significantly spatially near cluster centroids compared to
other points that may have a larger spatial distance but are
not along the hull. Thus, a previous work Ref. [6] formalized
the definition of potential outliers using regression curves,
confidence bands, and confidence ellipses. We shall use this
method to provide us a list of these points in our empirical
tests.

( 5 ) Characterizing relationship across clusters. A good vi-
sualization should aid users in efficiently determining what
characteristics differentiate one cluster from another in the
data set.

( 6 ) Consistency of the 2-dimensional representation of the
data points Suppose a point R has a smaller data signature
Euclidean distance from a point S compared to a point Q.
Then, the (SBPx, SBPy) Euclidean distance of R to S must
also be smaller compared with R’s distance to Q.

Exploring the first five criterions is easily done. Figure 2 in
Section 1 was shown in the previous work [3] to be the best VF
visualization of the 2006 NLEX BLK-NB traffic volume data set
based on these first 5 criterions. In this paper, we propose an
algorithm that checks the consistency stated in the last criterion.

3.2 Exploring Criterion 6 via Benchmark Model M1 and VF
Test Model M2

Criterion 6 requires us to initially model how points, repre-
sented by their data signatures, relate to one another in terms of
their Euclidean distances. This is the benchmark model M1.

To build the benchmark model M1, let R = [r0, r1, . . . , rm]
and S = [s0, s1, . . . , sm] be data signatures from two arbitrary data
points from the data set D. Let δ(R, S ) be the Euclidean Distance

between R and S , δ(R, S ) =

√
m∑

i=1
(ri − si)2. By computing all the

Euclidean distances of all data signatures in D, M1 shall have a
distance matrix for all the points of D.
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We build the test model M2 by initially using the VF visual-
ization algorithm to generate the (SBPx, SBPy) 2-dimensional
representation of the m-dimensional data signature in D.
Let R′ = (S BPx1, S BPy1) and S ′ = (S BPx2, S BPy2) be the
vector-fused data signature R and S , respectively.

Let δ(R′, S ′) be the Euclidean Distance from R′ to S ′. Then,
compute all the Euclidean distances of all vector-fused data sig-
natures in D to obtain a distance matrix of D for M2. Finally,
using the distance matrices of M1 and M2, we compare how con-
sistent is M2’s 2-dimensional representation of the original m-
dimensional signatures of M1 by using the algorithm below,
Algorithm for Quantitative Analysis
( 1 ) Let N be the number of weeks in the data set D. For each

week R in D, create a list LR containing every other week
S ∈ D arranged from the smallest to the largest Euclidean
Distance δ(R, S ) from R of M1.

( 2 ) Get the maximum distance MaxD which is equal to the
distance from R to the last week in the list LR. Let d =

MaxD/N. Let P(i) be the set of weeks in D in the ith par-
tition in the list LR, i.e., the set of weeks found at the dis-
tance q, q ∈ (i ∗ d, (i + 1) ∗ d], where i = 0, 1, . . . ,N − 1.
Let Count(i) be equal to the number of weeks in P(i), where
i = 0, 1, . . . ,N − 1.

( 3 ) Create a list L′R containing every other week S ∈ D ranked
from the one with the closest Vector-Fusion Visualization
Euclidean distance δ(R′, S ′) in M2 to the farthest (with re-
spect to R).

( 4 ) Let P′(i) of M2 be the ith partition in the list L′R containing
the set of weeks ranked from r, where ∀r,

r ∈
⎡⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎝

i−1∑
j=0

|P( j)|
⎞⎟⎟⎟⎟⎟⎟⎠ + 1,

i∑
j=0

|P( j)|
⎤⎥⎥⎥⎥⎥⎥⎦ .

( 5 ) For each partition i, i = 0, 1, . . . ,N−1, compute for the num-
ber of matches at the ith partition of M1 using R, denoted as
M(R, i), where M(R, i) = P(i) ∩ P′(i). Then, compute for the
errors in M2 with respect to M1 at the ith partition using R,
denoted as A(R, i),

A(R, i) =

∑
∀S :S∈P(i)

|i − i′|
N

,

where S ∈ P(i′) of M2. Finally, compute for the consis-
tency of M2 with M1 using R on the ith partition, denoted
as Cons(R, i), where

Cons(R, i) = M(R, i) − A(R, i).

( 6 ) Compute for the overall consistency of M2 with M1 using R

as OC(R),

OC(R) =
N−1∑
i=0

Cons(R, i).

Finally, compute for the model consistency of M2 with the
benchmark model M1 using all data points in the data set D,
denoted as MC, were

MC =
∑
∀R:R∈D

OC(R).

Fig. 3 Benchmark and Test Models M1 and M2, respectively.

The algorithm above is illustrated in Fig. 3. Step 1 builds M1 and
M2 by computing maxD and maxD′ as the distance of a week to
the farthest point in the m and 2 dimensions, respectively. Note
that model M1 is constructed using the original signatures while
model M2 is achieved from vector-fused signatures. In Step 2 of
building M1, the relationships of week R with all other weeks in
the data are established and ranking of weeks based on proximity
are determined by projecting concentric circles from the farthest
point to R. These circles determine partition numbers associated
to the other weeks in the data set. This information is accounted
for in performing Step 2 of building M2. The relations of R with
all other points in M1 are then checked and the consistency of
these relations with respect to its counterpart in M2 is analyzed.
Since there exist distortions in applying the VF algorithm for con-
verting from an m-dimensional space to a 2-dimensional space,
we can then identify a data signature construction that yields op-
timal visualizations for data sets. The algorithm performs all of
the aforementioned processes for each week in the data, thus, it
determines the consistency of the projections in O(N2) time and
space complexity, where N is the number of weeks in the data
set analyzed. A perfect representation of M1 in M2 would have
every R and all other weeks placed in their correct partitions for
both models. In such case, the algorithm outputs the maximum
quantitative analysis value of N2.

3.3 On Obtaining Candidate Optimal Data Signatures for
Vector Fusion Visualization

In recent studies [2], [3], Power Spectrum-based data signa-
tures of each week in the 2006 NLEX BLK-NB traffic volume
data set were used in obtaining optimal cluster models through
the X-Means clustering algorithm. An optimal cluster model can
be obtained by using the first 85 components of the Power Spec-
trums of each input rather than using all of them. Figure 4 shows
the values of the first 85 components of the Spectrum. When pro-
jecting the last few components, we just obtain a mirror image of
the visualization below.

As seen in Fig. 4, almost all weeks had the 7th dominant Power
Spectrum component (also known as harmonic). The first 7 har-
monics show significant variations compared to the succeeding
values. Note the 42nd harmonic shows a significant increase of
the value from the normally-decreasing values of previous val-
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Fig. 4 Power Spectrums A1, A2, . . . , A85 for 2006 Traffic Data Set.

Fig. 5 Dominant Power Spectrums Values A7, A14, . . . , A84 of the Data’s
sampled weeks.

ues of Harmonics 7, 14, 21, 28, and 35. Most weeks already had
low values in harmonics 21, 28, 35 and increase at the 42nd har-
monic. The succeeding harmonics already show values converg-
ing to zero. Thus, it is reasonable to use harmonics 7, 14, . . . , 42
and the offset as candidate components of the data signatures of
the weeks in the NLEX data set for visualization purposes.

With a closer look at the candidate harmonics in Fig. 5 us-
ing a set of sampled weeks from different clusters of the data
(inclusive of outliers), it can be seen that the most variation of
the Power Spectrum values are in A7, A14, and A21. Thus it is
also interesting to obtain a visualization of the data set using
the data signature composed of the Power Spectrum components
A0, A7, A14, and A21. Finally, note that Week 15 has its first har-
monic to be dominant. A relatively large and peculiar set val-
ues for the first few harmonics of Week 44 can also be seen in
Fig. 4 and Fig. 5. By taking advantage of Weeks 15 and 44 non-
conforming dominant harmonics, we can choose to use compo-
nents of factor 7 as data signature, thus highlighting them as ap-
parent outliers in the data set.

4. Results and Discussion

Implementing the algorithm on the benchmark and test mod-
els M1 and M2 using varied data signatures of each data point
in D, the following values for Model Consistency (MC) are ob-
tained as shown in Table 1. The MC of VF(85,168), which is the
previously-known optimal model Ref. [3], is clearly defeated by

Table 1 Model Consistency (MC) of M2 with M1 for the data sets.

Model 2006 2007 2008 2009
VF(85,{0,7,14,21}) 293.00 109.00 303.00 136.00

VF(85,{0,7,14,21,28,35,42}) 207.00 77.00 177.00 100.00
VF(85,43) 93.00 37.00 73.00 65.00

VF(85,168) 100.00 60.00 87.00 84.00
VF(85,85) 102.00 46.00 69.00 55.00

Fig. 6 VF(85,{0,7,14,21}) for 2006 NLEX BLK-NB data set.

the MC of proposed 4-dimensional data signatures constructed
using the Power Spectrum components {0, 7, 14, 21} for all the
data sets tested.

For illustrative purposes, we show results and perform analy-
sis on the 2006 NLEX BLK-NB data set using the proposed al-
gorithm and the candidate data signatures for VF visualizations.
This can be replicated on other data sets.

Figure 6 shows the VF visualization VF(85,{0,7,14,21}) of
the 2006 data set. To support the quantitative results, we check
whether VF(85,{0,7,14,21}) is better compared with VF(85,168)
in the qualitative criteria [3] using this data.

In terms of Criterion 1, VF(85,168) slightly surpasses the qual-
ity of VF(85,{0,7,14,21}) by an outlier Week 18 (i.e., Cluster 5).
Nevertheless, both visualizations had minimal overlaps in some
of their clusters such as Clusters 1 and 0. In general, closeness
of co-members is maintained for both VF models. Both models
also satisfy Criterion 2. In terms of Criterion 3, known outliers,
i.e., Weeks 15, 51, and 44 are easily seen in both visualizations.
It is notable that both Weeks 44 and 18 seem to have similarities
with Cluster 4 in both VF visualizations. However, VF(85,168)
had clearly projected Week 18 far enough from this cluster as
compared to VF(85,{0,7,14,21}). The latter had actually placed
this outlier within Cluster 4’s region while the former projected
it along the edge of the confidence ellipse of the cluster. In the
detection of potential outliers, we had to refer back to the time do-
main iDIRBrG visualization in Fig. 1 to obtain a set of this points
by intra-cluster analysis which we identified as Weeks 1, 30, 31,
43, and 48. It should be noted that a previous result in Ref. [2]
has shown that Week 30 has the set of the smallest traffic volume
values for year 2006. By using definitions of potential outliers
and categories thereof as defined in Ref. [6], it can be observed
that VF(85,{0,7,14,21}) slightly outperforms VF(85,168) by the
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former’s capability of detecting Week 31 as a potential outlier.
However, for both models, Week 43 has not been detected as this
type. As for the fifth criterion, it can be seen that both models
clearly project clusters from the leftmost to the rightmost parts of
the visualization in terms of ascending magnitudes of traffic vol-
ume values. In summary, for the first five qualitative goodness-
of-representation, the two VF visualization models clearly have a
competitive quality in terms of representing the relationships of
the data signatures in their original m-dimensional space in the
transformed 2-dimensional (S BPx, S BPy) space.

5. Conclusions

In this paper, we were able to obtain an optimal data signature
that is more effective in representing points in the data set for VF
visualization compared with using the entire set of Power Spec-
trum components. We added another qualitative criterion, i.e.,
Criterion 6, to further check the goodness of the data set visualiza-
tion. An algorithm was formulated to check how each proposed
vector-fused data signature visualization performs with respect
to this criterion. Different data signature constructions were for-
mulated and checked using the algorithm with results showing
that the Power Spectrum components A0, A7, A14, and A21 pro-
vide the best VF visualization quantitative value among the eval-
uated models in this paper for the 2006–2009 NLEX BLK-NB
traffic volume data sets. By performing this analysis on multiple
data, it was shown that the 4-dimensional data signatures provide
robust representations for data visualization. Further validation
of this model has also shown its competitiveness when compared
with the previously-known optimal model Ref. [3] VF(85,168) in
terms of the first five criterions. Thus, the quantitative analysis-
based algorithm had shown that 4-dimensional models can be
used to represent high dimensional data sets without sacrificing
the amount of information that can derived from the visualiza-
tions. This representation accounts for a total of ≈97.6% dimen-
sionality reduction with even better results in visualizing the data
set based on the proposed algorithm. This reduction is crucial
when analysts apply any additional exploratory data mining tech-
niques such as clustering. Finally, with reliable, yet simple, 2-
dimensional visuals produced by use of VF and data signatures,
analysts are now capable of pinpointing weeks that may exhibit
“interestingness” due to their spatial distance from all other points
(or co-members) in the visualization.
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