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Estimating Distribution of

Dendritic Membrane Resistance

Using Markov Random Field
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With developments in optical imaging over the past decade, statistical meth-
ods for estimating dendritic membrane resistance from observed noisy signals
have been proposed. In most of previous studies, membrane resistance over a
dendritic tree was assumed to be constant, or membrane resistance at a point
rather than that distributed over a dendrite was investigated. Membrane resis-
tance, however, is actually non-uniformly distributed. Although in a previous
study a method was proposed in which a specific non-homogeneous distribution
form was assumed, it is applicable only when the appropriate distribution form
is known. We propose a statistical method, that does not assume a particular
distribution form of membrane resistance, for estimating membrane resistance
distribution from observed membrane potentials. We use the Markov random
field (MRF) as a prior of the membrane-resistance distribution. In the MRF,
any specific distribution form of membrane resistance is not assumed, but only
spatial smoothness of membrane resistance is assumed. We apply our method
to synthetic data to evaluate its efficacy, and show that even when we do not
know the appropriate distribution form, our method can accurately estimate
the membrane-resistance distribution.

1. Introduction

Information processing in neural systems is suggested to be dependent on how

the membrane properties are distributed over dendritic trees1)–7). In hippocam-

pal CA1 pyramidal neuron dendrites, for example, the membrane resistance is
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non-uniformly distributed. A recent computational study showed that this non-

uniformity improves the efficiency of information propagation from the distal to

proximal parts6).

With developments in optical imaging over the past decade, several statistical

methods for estimating membrane properties, especially membrane resistance,

from fluorescence intensity have been proposed4),5),7)–9). Optical imaging, how-

ever, has a low signal-to-noise ratio10)–17), so accurately estimating membrane

resistance over a dendritic tree is challenging. In previous studies, membrane

resistance over a dendritic tree was assumed to be constant, or membrane resis-

tance at a point rather than that distributed over a dendrite was investigated.

We previously proposed a method in which a specific distribution form was as-

sumed4),5),7). Although this method can accurately estimate membrane resistance

over a dendrite, it is applicable only when we know the appropriate distribution

form. Thus, developing methods for estimating membrane resistance over a den-

drite remains a challenge.

For this study, we propose a statistical method, which does not assume a par-

ticular distribution form of membrane resistance, for estimating membrane re-

sistance distributions from observed noisy signals. For this purpose, we use the

Markov random field (MRF)18),19) as a prior of the membrane-resistance distri-

bution. In the MRF, any specific distribution form of membrane resistance is not

assumed, but only spatial smoothness of membrane resistance is assumed. This

smoothness prior expresses a physiological premise that spatially adjacent mem-

brane resistances take similar values. Additionally, the dynamics of membrane

potential corresponding to a state in dendritic systems is expressed using the

cable equation20),21), and the observation process is expressed using a Gaussian

process. We estimate parameters, namely, membrane-resistance distribution by

using the expectation-maximization (EM) algorithm22). We applied our method

to synthetic data to evaluate its efficacy, and show that even when we do not

know the appropriate distribution form, our method can accurately estimate the

membrane-resistance distribution.

2. Formulation

In this section, we describe the three probabilistic models that we use in our
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Fig. 1 Schematic of compartment model. Compartment model is a spatially discrete approx-

imation of the cable equation. Membrane current Imemb
x,t and current along dendrite

Iinterx+1→x,t are given as −ax(vx,t − vrev) and D(vx+1,t − vx,t), respectively. v(x, t) is
membrane potential at position x at time t, which expresses electrical state of den-
drite. ax, D, and C are membrane conductance at position x, intercompartmental
conductance, and membrane capacitance, respectively. These three parameters define
electrical property of dendrite. Stationary distribution of this compartment model is
expressed as a Gaussian distribution. In our method, distribution of membrane con-
ductance ax is estimated using Markov Random Field (MRF). Unlike the previous
studies, in our method any specific distribution form is not assumed but only spatial
smoothness of the membrane conductance ax is assumed by using MRF.

method. Using these probabilistic models enables us to estimate the membrane-

resistance distribution of dendrite from observed noisy membrane potential. In

subsection 2.1, we describe the cable equation20), which expresses the dynamics

of the dendritic membrane potential, and its spatially discrete approximation,

the compartment model21). We then derive the stationary distribution of the

compartment model. In subsection 2.2, we explain the smoothness prior, based

on the MRF18),19), of the membrane resistance. The smoothness prior assumes

that spatially adjacent membrane resistances take similar values, to accurately

estimate membrane resistance distribution over a dendrite, even when observation

process is noisy. In subsection 2.3, we describe the observation model, which

expresses the noisy observation of membrane potential.

2.1 Cable equation and stationary distribution for compartment

model

In the cable equation20), the dynamics of the membrane potential is given as

C
∂v(x, t)

∂t
= −ax (v(x, t)− vrev) +D

∂2v(x, t)

∂x2
+ u(x, t) + σξ(x, t), (1)

where v(x, t) is the membrane potential at position x at time t. In this paper, we

consider a one-dimensional dendrite for the sake of simplicity. The right-hand

side of eq. (1) consists of four terms. The first term −ax (v(x, t)− vrev) expresses

a passive linear membrane current, where ax is the membrane conductance (in-

verse of membrane resistance) at position x and vrev expresses reversal potential.

The objective of our study was to estimate membrane conductance ax from the

observed membrane potential. The second term D ∂2v(x,t)
∂x2 expresses a current

along the dendrite, where D is the intercompartmental conductance. The third

term u(x, t) expresses an external input, and the last term σξ(x, t) expresses the

internal noise of the neuron that is assumed to be white Gaussian with average

⟨ξ(x, t)⟩ = 0 and correlation function ⟨ξ(x, t)ξ(x′, t′)⟩ = δ(x − x′)δ(t − t′). Pa-

rameter C on the left-hand side of eq. (1) is the membrane capacitance. We can

assume C = 1 without loss of generality. Next, we introduce a spatially discrete

approximation to the cable equation: the compartment model21). A schematic

of the compartment model is shown in Fig. 1. In this model, a dendrite is seg-

mented into small compartments and the cable equation (1) is approximated as

follows:

vx,t+1−vx,t = ∆t {−ax(vx,t − vrev) +D(vx−1,t − 2vx,t + vx+1,t) + ux,t}+
√
∆tϵx,t,

(2)

where vx,t, ux,t and ϵx,t are the membrane potential, the external input, and

the internal noise assumed to be Gaussian with mean 0 and variance σ2, at

compartment x at time t, respectively.

We derive the stationary distribution of eq. (2) for computational simplicity.

Let ṽt = vt − vrev in eq. (2), where vt and vrev are M -dimensional column

vectors (v1,t, · · · , vM,t)
T and (vrev, · · · , vrev)T , respectively. M is the number of
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compartments. We then obtain

ṽt+1 = Φṽt +∆t

(
ut +

1√
∆t

ϵt

)
, (3)

Φ = I −∆tΨ, (4)

Ψ =

a1
. . .

aM

+D


1 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 1

 , (5)

where ut = (u1,t, · · · , uM,t)
T , ϵt = (ϵ1,t, · · · , ϵM,t)

T , and I is the identity matrix.

This equation is a first-order autoregressive model with Gaussian noise. If we

keep the external input ut constant (ut = u), the probability density function of

the true membrane potential converges to the stationary distribution as t → ∞.

Since eq. (3) is a Gaussian process, the stationary distribution is a Gaussian

distribution. Therefore, we just need to determine the mean and covariance of

the distribution. First, we derive the mean of the stationary distribution E [ṽ∞].

By iteratively solving eq. (3), we obtain

ṽt = Φtṽ0 +∆t
t−1∑
s=0

Φs

(
u+

1√
∆t

ϵt−1−s

)
. (6)

Since E [ϵt] = 0,

E [ṽ∞] = ∆t (I − Φ)
−1

u ≈ Ψ−1u, (7)

where we used limt→∞ Φt = 0 and
∑∞

s=0 Φ
s = (I − Φ)−1. Next, we derive the

covariance matrix Cov [ṽ∞]. From eq. (6),

Cov [ṽt] = Cov

[
Φtṽ0 +∆t

t−1∑
s=0

Φs

(
u+

1√
∆t

ϵt−1−s

)]

= ∆tσ2
t−1∑
s=0

Φ2s.

(8)

By taking the limit t → ∞,

Cov [ṽ∞] = ∆tσ2
(
I − Φ2

)−1 ≈ σ2

2
Ψ−1. (9)

Thus, the stationary distribution is given as a Gaussian distribution:

p (v|a) = N
(
v

∣∣∣∣vrev +Ψ−1u,
σ2

2
Ψ−1

)
. (10)

We omit the subscript ∞ for the sake of notational simplicity. We can rewrite

eq. (10) using an energy function E(v|a):
p(v|a) = 1

Z(a)
exp

(
− 1

σ2
E(v|a)

)
, (11)

E(v|a) =
M∑
x=1

ax(vx − v̄x)
2 +D

M−1∑
x=1

(vx+1 − vx)
2, (12)

Z(a) = (πσ2)
M
2 |Ψ|− 1

2 , (13)

where v̄x is the x-th element of vrev +Ψ−1u.

2.2 Prior distribution of membrane conductance

In this subsection, we introduce the smoothness prior, based on the MRF18),19),

of the membrane conductance. The MRF is represented by a probability density

function:

p(a) ∝ exp(−E(a)), (14)

E(a) = λ
M−1∑
x=1

(ax+1 − ax)
2, (15)

ax ∈ [0,∞). (16)

This equation expresses a physiological premise that membrane conductances

of nearby compartments take similar values. The probability p(a) increases if

nearby membrane conductances take similar values and decreases if they take

dissimilar ones. As mentioned above, the objective of our study was to estimate

the spatial distribution of ax over the dendrite. Accurate estimation of the distri-

bution has been difficult because the signal-to-noise ratio of membrane potential

imaging is low. We use the MRF as a prior distribution of membrane conduc-

tance, to accurately estimate the distribution even when observation process is

noisy, without assuming a membrane-conductance distribution form.

2.3 Observation model

We introduce the observation model, a Gaussian process, which expresses the

noisy observation of membrane potential. Let yt = (y1,t, · · · , yM,t)
T be the

observed membrane potential at time t. Then, the observation model is given as

p(yt|vt) =
1

(2πη2)
M
2

exp

(
− 1

2η2
E(yt|vt)

)
, (17)

E(yt|vt) =

M∑
x=1

(yx,t − vx,t)
2. (18)
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This equation expresses that the observed membrane potential yx,t is the sum of

the true membrane potential vx,t and Gaussian noise with variance η2.

3. Estimation

In this section, we illustrate the estimation method. By using the models eq.

(11)–(18) described above, we estimate membrane conductance ax and potential

vx from observed noisy data yx. We derive the estimation method based on the

EM algorithm22). The EM algorithm is a standard method for estimating pa-

rameters in statistical models based on the maximum liklihood or the maximum

a posteriori principles.

The EM algorithm iterates over two steps, expectation (E-step) and maximiza-

tion (M-step). In the E-step, we obtain the expectation value of the membrane

potential v, and in the M-step, we obtain the estimates of the membrane conduc-

tance a. Let Y = {y1, . . . ,yN} denote a set of observed membrane potentials

and V = {v1, . . . ,vN} denote a set of corresponding true membrane potentials.

Then, the two steps are given as follows:

E-step Based on the current estimate of the parameter aold, the condi-

tional distribution of the latent variables p(V |Y ,aold) is calculated. Then

the expected values of V , and the expected complete-data loglikelihood

Q(a,aold) = ⟨log p(Y ,V |a)⟩p(V |Y ,aold)
are computed.

Q(a,aold) =
N

2
log |Ψ| − 1

σ2

N∑
i

{
Tr(Ψ(Σ + vrevv

T
rev))

+mT
i Ψmi − 2vrevm

T
i a+ uTΨ−1u

}
+ const.,

(19)

where mi, Σ are the mean and the covariance of the Gaussian distribution

p(vi|yi,aold).

M-step A new estimation value of the parameter anew is inferred, which max-

imizes the sum of Q(a,aold) and log p(a):

anew = argmax
a

{Q(a,aold) + log p(a)} . (20)

Starting with the initial setting aold = a0, these two steps are repeated until

convergence.
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Fig. 2 Estimating parameters for sigmoidal distribution ((a), (b)) and sinusoidal distribution
((c), (d)). Top panels show membrane potential. Sample of observed membrane po-
tential out of N samples is plotted as black circles. Corresponding true membrane
potential, estimate using MRF, and estimate without MRF are plotted as gray line,
open circles (◦), and crosses (×), respectively. Bottom panels show membrane conduc-
tance. True membrane conductance, estimate using MRF, and estimate without MRF
are plotted as gray line, open circles (◦), and crosses (×), respectively.

4. Results

We present results of applying our method to synthetic data. The synthetic

data were generated as follows. First, true membrane potentials were generated

from the compartment model, eq. (2). Observed membrane potentials Y were

then generated from the observation model, eq. (17). We estimated membrane

conductance a and membrane potentials V from observed membrane potential

Y generated as above. We compared our method to that without the MRF,

in which p(a) is a uniform distribution in stead of eq. (14). We set D = 10,

vrev = −70, σ = 0.01, ∆t = 0.01, η = 0.05, and λ = 100. The number of samples

N was 200.
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4.1 Sigmoidal distribution

First, we present the results of applying the methods to the case where mem-

brane conductance distribution is sigmoidal, plotted as a gray line in Fig. 2(b). In

hippocampal CA1 pyramidal neuron dendrite, sigmoidal membrane-conductance

distribution is observed4),5). A sample of observed membrane potential out of N

samples is plotted as black circles in Fig. 2(a). The corresponding true membrane

potential, estimate using the MRF, and estimate without the MRF are plotted as

gray line, open circles (◦), and crosses (×), respectively. we can see that the open

circles (◦) and crosses (×) are almost on the gray line, that is, the estimates of

membrane potential agree well with the true membrane potential. The estimates

of membrane conductance are plotted in Fig. 2(b). Although our method did not

assume that distribution form of membrane conductance is sigmoidal, estimated

membrane conductance (◦) agrees well with the true membrane conductance. In

contrast, the estimate without MRF (×) is less accurate.

4.2 Sinusoidal distribution

Second, we present results of applying the methods to the case where membrane

conductance distribution is sinusoidal, to show that out method is applicable not

only to the sigmoidal case. As is in the above case, observed membrane potential

is plotted as black circles in Fig. 2(c). The true membrane potential, the estimate

using the MRF, and the estimate without the MRF are plotted as gray line, open

circles (◦), and crosses (×), respectively. The membrane potential is plotted in

Fig. 2(a). We can see that the open circles (◦) and crosses (×) are almost on

the gray line, that is, the estimates of membrane potential agree well with the

true membrane potential. The estimates of membrane conductance is plotted in

Fig. 2(d). The estimate using the MRF (◦) agree well with the true membrane

conductance, while the estimate without the MRF (×) deviates due to noise.

As presented above, in both sigmoidal and sinusoidal distribution cases, the

membrane conductances estimated using the MRF agree well with true membrane

conductances, while those estimated without the MRF deviate from the true

membrane conductances. Thus, our method, in which the MRF is used as a

smoothness prior, enables us to estimate the membrane-resistance distribution

accurately even when the appropriate distribution form is unknown.

5. Summary

We proposed a method for estimating the distribution of membrane resistance.

The dynamics of the membrane potential are expressed using the compartment

model and the observation process was modeled as a Gaussian process. Mem-

brane resistance was estimated using the EM algorithm.

Unlike the previous studies, in which specific distribtion forms of membrane

resistance are assumed, in our method any specific distribution form is not as-

sumed but only spatial smoothness of the membrane resistance is assumed by

using MRF. We showed using synthetic data that our method can be applied

when the appropriate distribution form is unknown.

The stationary distribution of the compartment model is used for computa-

tional simplicity. Transient dynamics can be used for estimation by applying

Kalman filter to the compartmnet model. We targeted voltage-independent re-

sistance. Our framework using MRF as a prior of membrane resistance distribu-

tion can also be applicable to voltage-dependent resistance. This is a subject for

further study.
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