
IPSJ SIG Technical Report

Online Kernel Logging and Analysis for Real-time Robotics Applications

Midori Sugaya,†1 Hiroki Takamura,†2 Youichi Ishiwata,∗1

Satoshi Kagami∗1 and Kimio Kuramitsu†1

This paper presents a technologies for detecting errors of real-time application in online,
through the technique of extensible online kernel log monitoring and analysis for robotics
systems. The contributions of approaches are that we present a method for kernel log anal-
ysis based on a state transition model of scheduling tasks, and apply it for kernel logs to
detect anomaly behavior of real-time task. To reduce the analysis overhead of huge vol-
umes of data, we propose a separation of overhead that monitors and analyzes the kernel
logs in different cores. Based on the system, we provide an extensible framework for writ-
ing analyzers to detect errors incrementally. In our system, these components work together
to solve the problems highlighted by root cause analysis in robotic systems.

We apply the proposed system to actual robotics system, and report that it could find
several deviated errors and faults that include a serious priority inversion that could not
detect over 10 years in the actual operating robotics system.

1. Introduction

Today’s diverse and sophisticated embedded systems such as the humanoid robot are
connected to networks where they collect a massive amount of information for use
in providing advanced services. These services are achieved through interaction with
physical environments such as human communications and access to remote databases
through network connections. They are updated frequently due to the addition or re-
moval of devices so subsequently, it is difficult to achieve dependability in these com-
plex, networked systems [13]. These advanced robotic systems are generally supported
by real-time operat ing systems that will provide precise periodic execution of real-time
applications. To support accurate and precise periodic execution, it provides special
APIs for delivering timer, real-time scheduler and priority lock mechanisms in a pre-
dictable manner. Moreover, lots of human interaction complex softwares works together

†1 Yokohama National University
∗1 Presently with National Institute of Advanced Industrial Science and Technology
†2 Dependable Embedded OS R&D Center

on the system. This aspect makes it difficult to detect errors and the cause of the failure.
To reduce the time of detections of errors and fault for quick recovery are expected for
ensure a stable service for their users. We discussed the requirements of fault detections
in humanoid robotics, and summarized as follows.

The first, to interact with humans without serious accident or improve development
cycles, the error or fault detection as soon as possible. The second, detect general real-
time problems such as concurrency and scheduling without disturbing the execution of
these tasks. The third, there are applications which were implemented with a variety of
languages. The modification of applications are likely avoided. The last, the robotics
applications are easily add/remove from the system in development time to adjust the
movement of robotics. To adapt these changings, the supporting system should also
extensible for adapting changing environment.

To satisfy the robotics’s requirements, we consider online kernel log monitoring and
analysis system with extensible framework. We present the following three design pur-
poses of our system to show how we achieve this:
• Generality : Log analysis is a populer technique used to find evidence of attacks and

patterns of performance of the system [1]. We propose a kernel log analysis method
which can find application behavior errors. The behavior of application is abstracted
as transition states of a task from view point of kernel. It makes possible to make
application’s behavior model without modifying the applications. We compare the
patterns of transition states of abstracted task model with transitions patterns written
in kernel log.

• Performance : To detect error behavior of a process from kernel log, it needs de-
tailed information. Usually, it increases cost of monitoring. We separate moni-
toring and analysis functions to reduce analysis overhead from target system. To
achieve this, we present a multi-core architecture to reduce the cost of transferred
logs. Compared with sending it to the other host through network, it was 40 times
faster to transfere logs.

• Extensibility : To adapt to the changing environment, we provide extensible log
analysis framework. Compared to writing probes and analysis algorithm in the
applications and kernels, developer easily decides on the monitoring domain and
log-parsing algorithm. Our solution is simplified by focusing on log file analysis.

In kernel level, behavior of application is abstracted as a process, then it can detect

1 c⃝ 2012 Information Processing Society of Japan

Vol.2012-SE-176 No.3
Vol.2012-EMB-25 No.3

2012/5/21

IPSJ SIG Technical Report

error behavior without modification of application. However, in general, kernel level
detailed monitoring seems takes more cost. For this point, we took cost effective tool
that just generate kernel logs with constant low overhead [6], and separate analysis cost
to the other host to reduce overhead in target system with proposed architecture. This
mechanism is general and extensible as a user level script.

In this paper, we describe the detail of our contributions by showing actual examples
of our prototype architecture. We implement a prototype system on ART-Linux, which
provides a hard real-time extension on Linux kernel. We detect actual faults by using
our proposed system and associated tools. Non-experienced engineer can find a serious
priority inversion that could not detect over 10 years in the actual operating robotics
system by using the automatic log analysis support.

The paper will be constructed as follows: In section 2, we will introduce the related
works for this area. In section 3, we will describe the proposed system architecture,
and in section 4, we will describe the method to analysze kernel logs, in section 5, we
will present a desing and actual log volumes of the system, and show the extensible
framework that analyze logs. 7 will conclude the paper.

2. Related Work

Runtime software monitoring has been used for profiling, performance analysis, soft-
ware optimization as well as software fault-detection, diagnosis, and recovery [5]. There
has been a lot of wok in the domain of on-line monitoring in distributed systems [3] use
resource or system calls to detect performance bottleneck or overheads in some com-
ponent path with low overhead. Combined with the component-based approach, and
provided it’s framework, these approaches are effective to specify the component or
path that contains fault. In other words, it might impose to use specific languages and
method of designing applications.

For detecting faults in complex real-time systems a variety of tools are presented:
GRASP is an integrated tool that can trace, visualize and measure the behavior of real-
time systems [8]. It provides plug-in infrastructure for the µC/OS-II real-time Operating
System, however, it does not take into account the performance of the real-time system
or log volume. Its method focuses mainly on detecting the performance of timing behav-
ior such as worst/average/best execution cases. The cause of failure will not be noticed
with this method. RESCH focuses on a more general operating system such as real-time

Fig. 1 Overall Architecture

Linux [2]. This tool only focuses on the real-time scheduler and debugging task.

3. Online Kernel Log Monitoring and Analysis

3.1 Requirements
Currently, humanoid robots that require high-performance embedded systems are ex-

pected to be flexible to allow for human instructions and be responsive to environmental
changes. For these systems, proactive avoidance and quick reactions of failures are re-
quired since these systems have to interact with humans.

We presented in previous section in detail, there are requirements for the design. The
first, to interact with humans without serious accident or improve development cycles,
the error or fault detection as soon as possible. The second, detect general real-time
problems such as concurrency and scheduling without disturbing the execution of these
tasks. The third, there are applications which were implemented with a variety of lan-
guages. The modification of applications are likely avoided. The last, the robotics
applications are easily add/remove from the system in development time to adjust the
movement of robotics. To adapt these changings, the supporting system should also
extensible for adapting changing environment.

Generally, failures are caused by unexpected faults where a developer forgot to write
the exception handling or error code. In these cases, it is not easy to detect the cause

2 c⃝ 2012 Information Processing Society of Japan

Vol.2012-SE-176 No.3
Vol.2012-EMB-25 No.3

2012/5/21

IPSJ SIG Technical Report

of the failure online because it did not produce an error message. Traditionally, expe-
rienced engineers analyze these complex failures. Offline analysis is now done using
integrated development environment tools such as debugger and visualizer [7], or trac-
ers and profilers [4, 6]. However, there are few successful online systems because most
failures are not expected until they occur.

3.2 Online Kernel Monitoring and Analysis
We present online monitoring analysis system with low-overhead for considering per-

formnance of first and second requirement. Then, the analysis data should be collected
from kernel level to satisfy the requrement of third, generosity. It makes no modifi-
cations for their applications. For the last requirement, we provide these system on
extensible framework. The whole system architecture which we present is illustrated in
Figure1. In the Figure, you can see on the left target system, real-time applications are
running on real-time operating system on a processor. In this operating system, kernel
monitoring mechanism that collect logs of task schedulings and related parameters are
running. These monitoring logs are transfered to the next core for the analysis. On the
other processor, general-purpose operating system works to store the transfered log from
monitoring core and checking whether the invariant of real-time task behaviors in kernel
logs. If there are any anomaly behavior on the task, it will report the path and errors.

3.3 Low-cost Monitoring Architecture
To achieve performance by low-cost monitoring, we insert a minimum number of

probes for kernel that only a few points. From these points, a kernel monitoring module
collect logs. Actually, these monitoring overhead is around 5% in 1GHz average robotics
backend machine, and constant without big jitters. It will be acceptable in real-time sys-
tem, since real-time system dislike unpredictable overheads rather than predictable over-
head for the system. The CPU consume time of analysises will not constantly consume
CPU resouce because of is depending on the type of information and analysis algorithms
and patterns. To reduce the jittered overhead from target real-time system, we consider
the analysis part will be moved from the target CPU core to other core.

In the following sections, we firstly present kernel log analysis method, then we in-
troduce the separation design of architecture and extensible framework. Finally, we
show the experimental studies of online kernel log analysis applying to an actual robotic
systems.

4. Analysis Method

To achieve generality by reducing the development cost that is needed to develop as-
sertion for each monitoring point in application, we develop a general model that is
based on the transition state of a real-time task by using the information from kernel.
From the kernel, it makes possible to make application’s behavior without depending
on specific implementations and modifications of applications. Once we build the infor-
marmodel of tasks in kernel, we analyze the logs that aim to determine the normal or
abnormal behavior of the task in . In this section, we describe the kernel log analysis
method.

4.1 Kernel Log Analysis
As we describe previously, a behavior of an application can be considered as a task

which is scheduled as an abstracted entity in kernel. A state of the task will be changed
according with the scheduling procedural functions which are called by kernel to switch
the tasks for executions. We can consider that the task’s scheduling sequences of functios
can shows a abstracted behavior of an application as a task from kernel. Based on this
consideration, we developed the following two models.

First, we assume to use information from kernel. From an operating system’s view,
and scheduling behavior of tasks are modeled as transition states. Through functions,
state of tasks are changed. We define functions and transition are as the labeled transition
system 4.2.1. Since this transition is finite for each task, we can apply this model for
detecting an incorrect transition compared with the correct transition state. Then, we
add the time element for the transition state. Based on the difference between the time
of scheduling tasks, we can detect a type of faults which arouse by the delaying of
scheduling 4.2.2.

Finally, we consider multiple tasks transition state. However, multiple tasks transition
state itself was too complex to express the problem of competitive shared resource prob-
lems. Therefore, we omit the transition, and use only the order of tasks (priority), and
shared resource information (lock), and time.

In Figure 2, we define a finite-state machine mechanism of a real-time task on an oper-
ating system. Based on the actual operating system scheduling procedure, we developed
the following models. (1) State transition model of scheduling task, (2) Add a transition
time of the above conditions, (3) Competitive resource of multiple tasks.

3 c⃝ 2012 Information Processing Society of Japan

Vol.2012-SE-176 No.3
Vol.2012-EMB-25 No.3

2012/5/21

IPSJ SIG Technical Report

Fig. 2 Model Checking for Real-time System

4.2 Task Models
4.2.1 Transition of Single Task
In our model, a labeled transition system is a tuple (S , L,→) where S is a set of states.

L is a set of labels. L is a trigger function that invokes the next state of the transition.
→⊆ S × L × S (1)

is a ternary relation. In Figure 2, the right-hand picture shows the transitions. If p, q ∈ S
and a ∈ L, then (p, a, q) ∈→ is usually written as p × a → q. In our model, S and L are
set of
• S = {NonRTRunning,NonRTS leep,Running,Wait,

S uspend, Blocked}
• L = {art enter(), art wait(), art wakeup(), schedule(),

dispatch(), art exit()}.
For example, if a running real-time task in state Running invokes function art wait(),
we can write it as a ternary relation Runing × art wait() → Wait. Our verification is
to check the sequence of recorded states in log data. It is checking the sequence of
transition states in our labeled transition model. If it corresponds to a valid sequence
of transition states in our model, the task did not take an improper state. If it dose not
correspond to a the valid sequence of transition state in our model, the task possibly took
an improper state.

4.2.2 Timing Conditions
Based on the transition state of scheduling tasks, we propose a checking method with

a time property. We consider that each state has time information. In such a case our
labeled transition system is a quadruplet (S ,T, L,→) where S is a set of states, T is a set

of times, L is a set of labels and
→⊆ (S × T) × L × (S × T) (2)

is a relation. ((p, t1)×a→ (q, t2)) ∈→ is usually written as (p, t1)→a (q, t2). Using time
information, we can verify the more concrete scheduling properties (in 3.5.2).

5. System Architecture

5.1 Basement System
Since our expected log volumes are so huge, it is not practical to store the logs in

other hosts and use huge bandwidth of networks, especially for the embedded systems.
Instead, we need to consider the overhead of the analysis because a real-time system is
sensitive to the scheduling of the overhead. We consider that once the cost is predictable,
it will be accepted.

Based on this idea, we propose to employ multi-OS on multi-core architecture with
one of the cores exclusively assigned to the log analysis. The target real-time OS on
the other core will only be allowed to consider the constant overhead of the log transfer
task. Our proposed system architecture is demonstrated in Figure 1. There are several
multi-core architectures available for real-time systems, both for business use and for
free. QNX [15], SPUMONE [11] provides a microkernel architecture that supports both
real-time and non real-time operating systems and applications. These architectures will
be flexible and used without modification of the operating systems; however, message-
passing overhead will not be neglected. There are other approaches that directly map
operating systems on each of the cores [16]. This approach will benefit performance
without the VMM layer. However, it depends on the core processor architecture. Cur-
rently, we work with ART-Linux that will support hard real-time applications, work on
the general x86 processor and have facilities to use shared memory through file sys-
tems [9]. We apply ART-Linux to our online log analysis architecture for these reasons.

5.2 Extensible Log Analysis Framework
To achieve extensibility, we present stream analysis engine framework that support to

write analyzer easily. Application programmer should not bother the diversity of log
format and design of analyzers and it’s management. This framework provide the basic
facilities to analyze logs. This framework will be apply for not only kernel log, but also
user level logs are easily analyzed.

Log analysis is a very popular technique; however, there are still problems. To achieve

4 c⃝ 2012 Information Processing Society of Japan

Vol.2012-SE-176 No.3
Vol.2012-EMB-25 No.3

2012/5/21

IPSJ SIG Technical Report

Fig. 3 Stream Analysis Engine Overview

the quick adaptation with log analysis, we consider the following problems to extend the
system: One is the variety of log formats that developers need to treat during the input
process. Actually, in the web area, log formats are defined by the RFC 1413, 2326 etc.

The second is lack of abstraction to write log analysis codes to improve the productiv-
ity. When a developer develops an analyzer, they need to understand what type of errors
or anomalies should be detected. It depends on the target problem. Most of the codes
are for detecting errors such as writing text filters and formatting the text for reporting
but sometimes they need to write the network connections to send the result to the other
host. We consider that these problems come from the lack of log analysis extensible
framework.

5.2.1 Monitoring in kernel log
In order to comprehensively monitor the behavior of an application in a system, probes

or checking codes need to be embedded to monitor its behavior. However, it obviously
causes overheads for their function calls. Moreover, the cost of inserting probes in each
application must not be neglected.

5.2.2 Extensible Framework
We propose Stream Analysis Engine (SAE) and its viewer (SAEV) which aim to add

the log analysis code and visualize the result more clearly. To achieve this, SAE will
provide support using the following three processes: One is input stream processing,
the second is analyzer development, and the third is output support for the SAEV. We

will develop the script interfaces and its libraries. In the following sections, we will
introduce their detail. We need to develop a framework to receive logs from loggers and
analyze them with an algorithm. We also have a requirement to re-write the code online
to support the quick restart of the robot components. To write an analysis and allow the
developer to analyze code more easily, DTrace [4] and System Tap [10] provides the
C-like scripting language. The purpose of these tools is to provide a scripting language
where the syntax is familiar to them. Scripting language.

For the same reason, we apply the Konoha scripting language [12]. The syntax is
similar to C and Java where developers use the object oriented interfaces and methods
for the analysis. Konoha provides type information for scripting and it will be safer
than the other scripting languages that will be attacked without the knowledge of type
information. Our team also extended the Konoha library to provide API that accesses a
log stream transparently without dependency on format, methods for the analyzer, and
binding the network socket interfaces for the languages to be treated transparently with
the output streams.

5.2.3 Stream Analysis Engine Components
We develop SAE as the framework for developing analyzers. SAE provides the

simple API for the developer who will develop or extend their analyzer such as
add(), start(), convert(), stop(). SAE also provides the filters for extracting information
from logs with Regex, and macros that they can personally define. The SAE consists of
four components:
• Receiver: It treats the input data from the logs. In our framework, the SAE objects

contain all of the metadata from the log stream that they read, the analyzer that it
starts with, and the socket with which it connects to the viewer. SAE provides the
start() and stop() mechanism that controls the reading and exit from the logs ((1) in
Figure 3).

• Analyzer: It receives logs from Receiver, and applies the analyzer algorithm that was
written by the developer, then it receives the result of it. The detailed procedures
are as follows: Develop filter method that extracts required events from the log
streams, analyze method that applies for the filtered data, and then analyze the
class that contains these two methods ((2) in Figure 3). After creating an example
of SAE, the filter and analyze method should be added to the SAE object.

• Sender: It sends log analysis results to other hosts such as some databases or a

5 c⃝ 2012 Information Processing Society of Japan

Vol.2012-SE-176 No.3
Vol.2012-EMB-25 No.3

2012/5/21

IPSJ SIG Technical Report

Sample source code [sample analyzer.k]

1 include "sae.k";

2 LOGFILE = "/path/to/sample.log";

3 class Analyzer {

4 Analyzer() {}

5 @Static String[] filter(String input) {

6 /* filter method */

7 }

8 @Static Map[] analyze(String[] input) {

9 /* analyzer method */

10 }

11 void main(String[] args)

12 {

13 StreamAnalysisEngine sae =

14 new StreamAnalysisEngine();

15 Analyzer a = new Analyzer();

16 Func<String=>String[]> sample_filter =

17 delegate(a, filter);

18 Func<String[]=>Map[]> sample_analyzer =

19 delegate(a, analyze);

20 sae.add("sample", sample_filter);

21 sae.add("sample", sample_analyzer);

22 sae.start("sample", "LOG:" + LOGFILE);

23 }

viewer. The amount of the result would be very much smaller than the input log
stream. The cost of sending the result to the other host is not high. We will show
the cost of sending the result in the evaluation.

• Converter: It converts the result of analysis to other protocol formats in order to
apply the result stream that will be decoded by the other host easily. convert method
will encored the data according to the given protocol.

We will show the Analyzer Class in the sample code. In the code, the path to the
log file is defined as LOGFILE. Then, the developer uses the f ilter method to extract
the necessary data from the log stream. String type all lines contains the results
of the input strings with parsing the split method. The developer can use this typical
method to extract the necessary data. The analyzer method can be applied to check the
state according to the transitional state of a task. If the analyzer method finds a faulty
condition, it will return the fault. Finally, the results and codes from the analyzer method
are passed to SAE. Konoha provides the main function from which the entire program
like C starts. In the main function, an instance of SAE is created and added to the f ilter
and analyzer method. To define the f ileter and analyzer as delegator, these instances

can be called together. In the sample code, there is no method for converter because it
assumes that you use the default protocol.

SAE will detect errors and faults. To shorten the debugging time, SAE viewer will
take into account the faults and errors that are reported by the log analysis. To support
the structural understanding of the problem, we simply map the result of the analyzer in
a case tree. In this paper, we could not explain the detail of the tree but it was described
in the paper [14]. To show the result to the viewer, we developed four components: (1)
Connector, (2) Generator, (3) Viewer, and (4) State Manager. The complete architecture
is shown in the Figure 3.

6. Evaluation

6.1 Detecting Faults
In our case studies, we detect fault by using this system. API missuse, task scheduling

delay with feasibility study misses and over-interrupted periodic task delay. We applied
each pattern checking modules for kernel logs, and detect the deviated patterns from
defined pattern in previous section. In our system, if the analyzer finds an error in the
system, it shows a warning. Each analyzer will judge an incorrect behavior or rule as
an anomaly. An analyzer will detect the counter examples that response time variance
above the threshold. Generally, if the priority inheritance is missed, then the long la-
tencies appear in the high priority task. In this case, we can detect priority inversion.
Investigating the problem with a detailed inspection, we can detect that the root cause is
the wrong implementation that the low priority task invoke art wait() function soon after
holding the lock for the shared resource. It induced the kernel and did not inherit the
higher priority from the high priority task that accessed the common resource after the
low priority task kept hold of its lock. It was the specification matter and the developer
that did not understand the specification.

6.2 Performance of Log Transfer
In this section, we compare the two methods that make communication possible in the

OS. One is shared memory, the other is the socket. The experiment machine is MacOSX-
10.5.8 CPU(2.13 GHz Intel Core 2 Duo) Memory(2 GB 1067 MHz DDR3). We set up
multi-OS architecture and developed the program that writes logs to the shared memory
and reads shared memory from the other operating system. We set a high-resolution time
stamp count RDTSC to check the time of the application. The result is shown in Figure

6 c⃝ 2012 Information Processing Society of Japan

Vol.2012-SE-176 No.3
Vol.2012-EMB-25 No.3

2012/5/21

IPSJ SIG Technical Report

Fig. 4 Log Transfer Rate

4. Shared memory data transfer shows 1 GB per second, while socket communication
transfers the data at 25 MB per second. Shared memory is implemented on RAM, the
speed that the memory is written at is very high, compared to the socket that copies the
buffer from user to kernel and kernel to user through the Ethernet. In section 5, we will
show the experimental result of collecting logs. The generated log speed is 25 MB/sec,
so, if we transfer the log to the other host, we find we should use shared memory.

We also evaluate the average cost to transfer the log. It was, on average, 7%. Com-
pared to the average cost, which increases with the number of analyzers of around 5%
per analyzer, it will keep down the cost in the target system. If we use the maximum
transfer rate of shared memory, we can approximate, based on the generated log speed
and time period of a task, that a 33.2us period is permitted for a real-time task’s logging.

6.3 Peformance of Log Analysis
For the experience, we added the bug code to the robot program (1) based on the

commitment model, develop four faults for both of kernel and user application (2) add
the developed faults to the servo program (3) run the robot system with our logging
system also works (4) the results will be stored to the evidence engine which moves the
servo by sensing the result. Then, we write an analyzer by using the our framework [17]
to detect bugs that will not call the API correctly. This means it will be caused by the
abnormal sequence call in the transition. Then we setup the framework system and start

Fig. 5 Average Time of Different Sliding Window Size

Fig. 6 Average Size of Different Sliding Window Size

the logger as well.
Figure 5 shows average processing time of each SAE components, such as Receiver,

Filer, Analyzer, Converter, Sender. In this figure, x-axis indicates sliding window size
(Mbytes), and y-axis indicates average processing processing time of transfered kernel
monitoring log. Obviously, in these components, Analyzer takes the longest time. It
consumes the time for judgement for sequential pattern of function calls and events in
the log. Analyzer result shows that it dose not consistently increase with increasing of

7 c⃝ 2012 Information Processing Society of Japan

Vol.2012-SE-176 No.3
Vol.2012-EMB-25 No.3

2012/5/21

IPSJ SIG Technical Report

sliding window size. There are variation in each size. We consider it comes from the
differences of contained data type in log not comes from the volume of logs, since next
Figure 6 shows the result of the processing size increasing linearly to the increasing of
sliding window size. The results differ depending on contained data type of log that lots
of pattern matches patterns or not.

Similer variation is seen in Converter that it’s processing time depends on the result of
Analyzer. Sender and Receiver time are small in this result. Both values occupy 7% in
the SAE. Figure 6 shows average processing size (Mbytes) for different window size. x-
axis indicates sliding window size (MByte), and y-axis indicates average log processing
size (Mbytes) in each SAE compoonent.

Compared to the average time, which we showed as Figure 5, the average processing
size is linearly increased along with the sliding window size. It means that the size of
the sliding window did not affect the analysis. On the other hand, there are a differences
in 7 Mbyte between the result of Receiver and Sender at most. It means that Filter could
reduced the data. It also means filter can reduce the volume of data by implementing
suitable filters.

7. Conclusion

In this paper, we proposed online kernel monitoring and log analysis method and sys-
tem. The aim of our prototype system is to satisfy the requirements of the advanced
embedded system. The contributions of our approach are the following: Develop a log
analysis method based on model checking for transition modeling of real-time tasks.
Develop an online logging and analysis system where the monitored application and
systems are analyzed concurrently without disturbing the real-time execution of moni-
tored applications. The result of the analysis will be sent to map the fault tree, where
the engineer will execute the root cause analysis with fault tree viewer. It provides the
procedure for logically structuring of the problem. In the future, we will evaluate our
system to show its effectiveness in finding of the root causes of problems. Moreover, we
will try to develop a more general technique to define and analyze problems.

Acknowledgment

This works was supported by the following projects: JST-CREST: Dependable Oper-
ating Systems for Embedded Systems at Aiming at Practical Application Project.

References

1) J.H. Andrews and Y.Zhang. General test result checking with log file analysis. IEEE Trans.
Softw. Eng., 29:634–648, July 2003.

2) M.Asberg, J.Kraft, T.Nolte, and S.Kato. A loadable task execution recorder for linux. In 1st
International Workshop on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS 2010), pages 31–36, 2010.

3) P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magpie: real-time. modelling and
performance-aware systems. In 9th. Workshop on Hot Topics in Operating Systems (HotOS
IX), New York, NY, USA, 2003.

4) B.M. Cantrill, M.W. Shapiro, and A.H. Leventhal. Dynamic instrumentation of production
systems. In Proceedings of the annual conference on USENIX Annual Technical Conference,
ATEC ’04, pages 2–2, Berkeley, CA, USA, 2004. USENIX Association.

5) N.Delgado, A.Q. Gates, and S.Roach. A taxonomy and catalog of runtime software-fault
monitoring tools. IEEE Trans. Softw. Eng., 30:859–872, December 2004.

6) M.Desnoyers and M.R. Dagenais. The lttng tracer: a low impact performance and behavior
monitor for gnu/linux. In Proceedings of the Linux Symposium, volume1, pages 209–224,
2006.

7) Eclips. http://www.eclipse.org/.
8) M. Holenderski, M. M.H.P, van den Heuvel, R. J. Bril, and J. J.Lukkien. Grasp: Tracing,

visualizeing and measuring the behavior of real-time systems. In 1st International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS 2010),
pages 37–42, 2010.

9) Y.Ishiwata, S.Kagami, K.Nishiwaki, and T.Matsui. Art-linux 2.6 for single cpu: Design and
implementation. Journal of Robotics Society of Japan, 26(6):77–84, 9 2008.

10) B.Jacob, P.Larson, B.H. Leitao, and S.A. M.M. daSilva. Systemtap: Instrumenting the linux
kernel for analyzing perfomance and functional problems. In Proceedings of the annual con-
ference on USENIX Annual Technical Conference, REDP-4469-00, IBM, 2009. International
Technical Support Organization.

11) W.Kanda, Y.Yumura, Y.Kinebuchi, K.Makijima, and T.Nakajima. Spumone: Lightweight
cpu virtualization layer for embedded systems. In Embedded and Ubiquitous Computing,
2008. EUC ’08. IEEE/IFIP International Conference on, volume 1, pages 144–151, Dec.
2008.

12) K.Kuramitsu. Konoha - implementing a static scripting language with dynamic behaviors.
In Workshop on Self-sustaining Systems (S3) ACM. ACM Press, 2010.

13) J.-C. Laprie and B.Randell. Basic concepts and taxonomy of dependable and secure com-
puting. IEEE Trans. Dependable Secur. Comput., 1(1):11–33, 2004.

14) Y.Matsuno, J.Nakazawa, M.Takeyama, M.Sugaya, and Y.Ishikawa. Toward a language for
communication among stakeholders. In Proc. of the 16th IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC’10), pages 93–100, 2010.

15) QNX. http://www.qnx.com/.
16) N.Sugai, H.Kondo, and S.Ochiai. A software platform for multiple os extension on embed-

ded chip-multiprocessor. In IPSJ SIG Technical Report, volume3, 2007.
17) M.Sugaya, K. Igarashi, M.Goshima, S.Nakata, and K.Kuramitsu. Extensible online log

analysis system. In Proceedings of the 13th European Workshop on Dependable Computing,
EWDC ’11, pages 79–84, New York, NY, USA, 2011. ACM.

8 c⃝ 2012 Information Processing Society of Japan

Vol.2012-SE-176 No.3
Vol.2012-EMB-25 No.3

2012/5/21

