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Technical Note

Lower Bound of Face Guards of Polyhedral Terrains
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Abstract: We study the problem of determining the minimum number of face guards which cover the surface of a
polyhedral terrain. We show that �(2n − 5)/7� face guards are sometimes necessary to guard the surface of an n-vertex
triangulated polyhedral terrain.
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1. Introduction

The art gallery problem is to determine the minimum number
of guards who can observe the interior of a gallery. Chvátal [4]
proved that �n/3� guards are the lower and upper bounds for this
problem; namely, �n/3� guards are always sufficient and some-
times necessary for observing the interior of an n-vertex simple
polygon in the two-dimensional space.

In three dimensions, a similar visibility problem has been con-
sidered for n-vertex triangulated polyhedral terrains. It is known
that there is a linear-time algorithm for placing �n/2� vertex
guards [2]. Here, a vertex guard is a guard that is only allowed
to be placed at the vertices of a terrain. As for the lower bound,
there is a polyhedral terrain for which �n/2� vertex guards are
necessary [3]. Thus, �n/2� is the lower and upper bound of the
number of vertex guards of a polyhedral terrain.

An edge guard is a guard that is only allowed to be placed on
the edges of a terrain, and the edge guard can move between the
endpoints of the edge. For the edge guarding problem, it was
shown that the upper bound is �n/3� [2] and the lower bound is
�(4n − 4)/13� [3] for n-vertex triangulated polyhedral terrains.
Reducing the gap between the upper and lower bounds of edge
guards remains an open problem.

Table 1 summarizes the upper and lower bounds of guards of
a polyhedral terrain. The paper stating the �(4n − 4)/13� lower
bound [3] did not present the detailed construction of a polyhe-
dral terrain for which �(4n − 4)/13� edge guards are necessary.
In 2003, Kaučič et al. [6] presented the detailed construction of
a polyhedral terrain for which �(2n − 4)/7� edge guards are nec-
essary. In response to this paper, the proof of the �(4n − 4)/13�
lower bound at a level of detail was presented in 2009 [1].

In Table 1, upper bounds of vertex and edge guards were firstly
proved in 1997 [3], [5]. However, these bounds are based on
the four color theorem, and for this reason, there seemed to be
no practical efficient algorithms achieving these bounds. The
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Table 1 Upper and lower bounds of guards of a polyhedral terrain.

Upper bounds Lower bounds
Vertex guards �n/2� [2], [3] �n/2� [3]
Edge guards �n/3� [2], [5] �(4n − 4)/13� [1], [3]
Face guards �n/3� obvious �(2n − 5)/7� current paper

first algorithmic upper-bounds were presented in 2003 [2]; it was
shown that there are linear-time algorithms for finding �n/2� ver-
tex guards and �n/3� edge guards.

In the current paper, we study the number of face guards,
where a face guard is allowed to be placed on the faces of a ter-
rain, and the face guard can walk around only on the allocated
face. A face guard can observe the allocated face and its adja-
cent faces. Here, two faces are said to be adjacent if they share a
vertex.

The face guarding problem is motivated by applications in
guarding bordering territories. In the real world, a territorial
owner keeps watch over neighboring lands not only from an edge
(borderline) or a vertex (corner), but also from all his territory.

Given an n-vertex triangulated polyhedral terrain, the face
guarding problem is to find the minimum number of face guards
which cover the surface of the terrain. In this paper, we
show that there is an n-vertex triangulated polyhedral terrain
for which �(2n − 5)/7� face guards are necessary for every n ∈
{6, 9, 12, . . . , 3i+6, . . .}. As for the upper bound, it is obvious that
�n/3� face guards can be found by a very simple algorithm, which
repeatedly removes triangulated faces one by one in some order
from the graph. Of course, the upper bound of �n/3� edge guards
immediately implies the upper bound of �n/3� face guards.

2. Definitions and Results

The definitions of polyhedral terrains and visibility are mostly
from landmark papers on guarding polyhedral terrains [3], [5].
A polyhedral terrain is a polyhedral surface in three dimensions
such that its intersection with any vertical line is either a point or
empty. A polyhedral terrain is triangulated if each of its faces is
a triangle.

Two points x and y of a terrain are said to be visible if the line
segment xy does not contain any points below the terrain. A point
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Fig. 1 6-vertex triangulated plane graph G6, which corresponds to a
6-vertex triangulated convex terrain T6 from the top view.

x of a terrain is said to be visible from a face f if there exists a
point y on the face f such that x and y are visible. A set of faces is
said to cover a terrain if every point of the terrain is visible from
one of these faces.

Let V = {v1, v2, . . . , vn} be the vertices of a terrain T such that
no three vertices of V are collinear. Each vertex vi is specified
by three real numbers (xi, yi, zi) which are its cartesian coordi-
nates and zi is referred as the height of vertex vi. In this paper, we
assume each zi is nonnegative.

Let V ′ = {v′1, v′2, . . . , v′n} denote the orthogonal projections of
the points V = {v1, v2, . . . , vn} on the X-Y plane, i.e., v′i is specified
by the two real numbers (xi, yi). Let E′ denote the orthogonal pro-
jections of T ’s edges on the X-Y plane. The graph G = (V ′, E′)
is an n-vertex triangulated plane graph corresponding to the ter-
rain T .

Theorem 1 For every n ∈ {6, 9, 12, . . . , 3i + 6, . . .}, there ex-

ists an n-vertex triangulated polyhedral terrain which needs at

least �(2n − 5)/7� face guards.

3. Proof of Theorem 1

We first construct an n-vertex triangulated plane graph Gn and
the corresponding n-vertex triangulated convex terrain Tn. Then,
we will prove that �(2n − 5)/7� is necessary for Tn.

Consider the 6-vertex triangulated plane graph G6 of Fig. 1.
This figure is also regarded as the top view of a 6-vertex triangu-
lated polyhedral convex terrain T6. Here, all points on the trian-
gle �(def ) of T6 have the same positive height.

Consider the triangle �(def ) in Fig. 1 (see also �(def ) in Fig. 2)
and one more 6-vertex convex terrain T6. We place T6 on the face
�(def ) of Fig. 1 so that the vertices a, b, c of T6 correspond ex-
actly to the vertices d, e, f of Fig. 1. In Fig. 2, the height of t0
above �(def ) must be a sufficiently small positive number com-
pared to the height of �(def ) above �(abc) so that the resulting
terrain is convex.

Furthermore, we place T6 on the face �(afe) so that the vertices
a, b, c of T6 correspond exactly to the vertices a, f , e of Fig. 1.
For such a placement, four edges (a, b), (a, f ), (a, e) and (a, c) of

Fig. 2 27-vertex convex terrain T27 with 72 faces.

T6 should be stretched so that a, b, c of T6 correspond exactly to
a, f , e of Fig. 1 (see also �(afe) in Fig. 2). One can see that, by
continuing this construction, we will obtain an ni-vertex convex
terrain Tni for every ni ∈ {9, 12, . . . , 3i + 6, . . .}.

In an analogous way, we place 72 six-vertex convex terrains T6

on 72 faces of Fig. 2. Then we obtain a triangulated polyhedral
convex terrain, say, T174, with 6 + 3 · 7 + 3 · 72 = 174 vertices.

Lemma 1 For every ni ∈ {9, 12, . . . , 3i + 6, . . .}, �(2ni − 5)/7�
face guards are necessary for Tni .

Proof of Lemma 1. First of all, we analyze the numbers of
guards for T6, T9, and T12. Consider T6 of Fig. 1. A guard must
be placed on the face �(def ) to observe all the seven faces of
Fig. 1. (Thus, Theorem 1 holds for n = 6.) Consider T9. A point
inside the small triangle t0 is not visible from any face guard out-
side �(def ), since the height of t0 above �(def ) is nonzero and T9

is convex. Thus, at least one guard must be placed in �(def ) to
observe inside t0. Hence, Lemma 1 holds for n1 = 9.

In the current proof, the lower bound for T6 is 1, and the lower
bound for T9 is also 1; we need no “new” guard for T9. (By an
exhaustive search, we can prove that two guards are necessary
and sufficient for T9.)

Consider T12. By the same reason as above, at least one “new”
guard must be placed in �(afe) to observe inside t1. The total
number of guards is two; one is in �(afe), and the other is in
�(def ). Hence, Lemma 1 holds for n2 = 12.

In a similar fashion, one can see that at least one “new”
guard must be placed in each of the remaining five triangles
�(bdf ),�(ced),�(bcd),�(cae), and �(abf ) to observe the five
small triangles t2, t3, . . . , t6, respectively. Hence, Lemma 1 holds
for n3, n4, . . . , n7.

Now, we prove Lemma 1 for every ni ∈ {9, 12, . . . , 3i + 6, . . .}.
For every addition of the set of seven triangles t0, t1, . . . , t6, the
numbers of vertices and guards increase by 21 and 6, respectively.
Therefore, the number of guards grows proportional to 6n j/21 (=
2n j/7) as the number of vertices n j = 3 j + 6 increases, where
j ∈ {0, 7, 14, . . .}. Thus, for every ni ∈ {9, 12, . . . , 3i + 6, . . .},
there exists a constant k ≥ 0 such that the lower bound can be
represented as �(2ni − k)/7�. (k will be fixed later.)
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The lower bound of guards grows from 1 to 1, 2, 3, 4, 5, 6, 7
when the number of vertices increases from 6 to 9, 12, 15, 18, 21,
24, 27 (i.e., when t0, t1, . . . , t6 are added), respectively. In general,
suppose that the number of vertices is n j = 21 j + 6, where j ≥ 0
is an arbitrary integer. The lower bound of guards grows from
6 j + 1 to

6 j + 1, 6 j + 2, 6 j + 3, 6 j + 4, 6 j + 5, 6 j + 6, 6 j + 7

when the number of vertices increases from 21 j + 6 to

21 j + 9, 21 j + 12, 21 j + 15, 21 j + 18, 21 j + 21,

21 j + 24, 21 j + 27,

respectively. Let

g( j,l) = 6 j + (l + 1),

n( j,l) = 21 j + (3l + 9),

where l ∈ {0, 1, . . . , 6}. If we fix k = 5, then

�(2n( j,l) − 5)/7� = �(2 · (21 j + (3l + 9)) − 5)/7�
= �(42 j + (6l + 13))/7�
= 6 j + �(6l + 13)/7�
= 6 j + (l + 1)

= g( j,l).

for every pair of j ∈ {0, 1, 2, . . .} and l ∈ {0, 1, . . . , 6}. Therefore,
Lemma 1 holds for every ni ∈ {9, 12, . . . , 3i + 6, . . .}.
4. Conclusions

We studied the problem of determining the minimum number
of face guards sufficient to cover the surface of a polyhedral ter-
rain. We showed that �(2n−5)/7� guards are sometimes necessary
for n-vertex triangulated polyhedral terrains. Reducing the gaps
between the upper and lower bounds of the edge and face guard-
ing problems remain open problems.
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