
Journal of Information Processing Vol.20 No.2 396–405 (Apr. 2012)

[DOI: 10.2197/ipsjjip.20.396]

Regular Paper

Activity Recognition Using Radio Doppler Effect for
Human Monitoring Service

Masatoshi Sekine1,a) KuratoMaeno1

Received: June 24, 2011, Accepted: January 13, 2012

Abstract: Recently it has become more important to monitor the daily human activities of the elderly and of children.
In this paper, we propose a system for practical activity recognition using the Doppler effect in 24 GHz microwaves. It
extracts the features from the signals, selects the optimal features, and then classifies activities using a pattern matching
technique. We can sense human activities simply with setting Doppler sensors on the wall or tables, without any body-
attached sensors. As a result of performance evaluation, our system achieves over ninety percent in the classification
of eight actions on average.
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1. Introduction

Human activity recognition is very promising technology for
several services, such as daily healthcare, remote caring, safety
management, and so on. It is important to monitor human daily
activities remotely and to detect usual and unusual events in de-
tail. Today there are various kinds of sensors for monitoring hu-
man activities. In this environment, it is important to change raw
data into meaningful data according to each application.

In sensing human activities, there are two main sensor types:
a body-attached type and a wall-mounted type. For example, in
the body-attached type, accelerometers are attached to the arms
or legs [1]. It is easy to detect what parts of the body are moved
because sensors are fixed to specific parts of the body. However,
some problems remain in these systems. Elderly people and chil-
dren tend to forget to wear these sensors, and some of them are
not willing to wear them. It is also difficult to attach sensors to
every part of the body. These systems could not work for exam-
ple when the wearer uses the bathroom or when the batteries are
being changed.

However, wall-mounted sensors can solve the disadvantages of
body-attached sensors. They are suitable for the long term mon-
itoring of people. Infrared sensors [2] and camera sensors are
examples of them [3]. However, the infrared sensor is weakened
by heat and dust, and can not detect objects other than human
beings and animals. In addition, camera sensors have some prob-
lems relating to the privacy and data processing overhead. Com-
pared with a depth camera, a Doppler sensor does not suffer from
optical problems, such as range measurement problems caused
by highly reflective surfaces that are too close to the depth cam-
era [4]. A Doppler sensor can detect the object even if obstacles
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exist because of the penetrations and reflections of radio. It also
enables one-dimensional processing while depth camera requires
two-dimensional processing.

In this paper, we focus on Doppler effect of microwave to rec-
ognize human activities. Doppler sensor uses the Doppler effect
of waves such as radio and ultrasonic in general. When a wave is
transmitted to moving objects, the reflected wave shifts frequency
corresponding to their velocity. A Doppler sensor uses this princi-
ple, and it outputs a beat signal whose frequency is the difference
one between the transmitted and received waves. Doppler sen-
sor can detect very small motions of a user such as breathing and
heartbeat when the user is away from the sensor [5], [6]. In the
future, wireless sensor networks will be deployed and it provides
great opportunities for monitoring and collecting detailed infor-
mation from the physical world [7]. Doppler effect could also be
used in these sensor networks. As a first step, we study the possi-
bilities of Doppler sensor.

We assume that a Doppler sensor is deployed at a fixed place,
such as on a wall or a table, and transmits microwave whose fre-
quency is ft. An object moves towards the sensor with the veloc-
ity ±v. Then, the frequency of the received wave fr is described
as follows [8]:

fr = ft ± fd (1)

where the Doppler frequency fd that is the difference between the
frequency of the transmission wave and the reception wave. If the
object moves towards the sensor on the same line, the observed
Doppler frequency fd will be higher. On the other hand, if the ob-
ject moves away from the sensor, the observed Doppler frequency
fd will be lower. fd is calculated as follows:

fd = | fr − ft | = ft
(c + v
c − v − 1

)
=

2v
c − v ft � 2v

c
ft (2)

where c is the velocity of a radio.
Then we define the signal of transmitted wave Vt at the time t
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becomes as follows:

Vt(t) = Kt sin(2π ftt) (3)

where Kt is the amplitude of the transmitted wave. When the
delay between the transmission time and reception time is τ, the
received signal at the time t, Vr(t), is as follows:

Vr(t) = Kr sin(2π( ft ± fd)t − 2π ftτ) (4)

where Kr is the amplitude of the received wave. It depends on the
size of the moving objects and the distance between the object
and the sensor. The transmission signal and the reception signal
are superimposed in the mixer. After all, the beat signal Vd at
the time t is observed as an output signal of Doppler sensor as
follows:

Vd(t) = Kd sin(2π fdt − 2π ftτ) (5)

where Kd is the amplitude of the signal and mainly depends on
the signal strength of the received wave.

The variances of amplitude and frequency of the signal depend
on the range and velocity of motions. Therefore it is possible to
recognize the activities of the user by extracting the features of
the signals.

The rest of this paper is structured as follows. In Section 2,
we introduce the related works of our system and their problems.
In Section 3, we propose an activity recognition system using a
Doppler sensor for human monitoring service. In Section 4, we
evaluate our proposed system and show the effectiveness of our
proposed method by the experimental study. In Section 5, we
conclude this paper.

2. Related Works

There are some related works on radio-based activity recogni-
tion. An existing wireless LAN system is used as action recogni-
tion in Ref. [9]. They use the change of the signal strength caused
by human motions and recognize whether a person is still or mov-
ing. The main advantage of this system is that it is not neces-
sary to set up new additional hardware for activity recognition.
However, these systems using signal strength are easy to be influ-
enced by the change of environments and can not detect the actual
movement of human activities. In Ref. [10], eight gestures are
recognized using one ultrasonic transmitter and two receivers. In
general, the more sensors become enabled, the more robust recog-
nition becomes. However, there is a trade-off between the robust-
ness and the cost of deploying sensors and processing data. A
study is also being carried out on the analysis on specific actions
such as identification and classifying the types of walkers [11],
chewing motion [12]. In Ref. [13], seven activities such as run-
ning and walking are recognized using support vector machine
(SVM). However, there is no certainty with regard to how the six
features that are statically selected have effect on the recognition
rates.

On the other hand, feature extraction is studied for pattern
recognition. The optimal solution is gained only when all the
combinations of the features are evaluated [14]. However, the
number of combinations of features explodes when the number of

features is large. Sequential forward selection (SFS) or sequential
backward selection (SBS) is generally used for feature selection.
In SFS, no feature is selected at the first time. The features are
sequentially selected to maximize the evaluation function such as
recognition rate. On the other hand, in SBS, all features are se-
lected at the first time. The features are sequentially eliminated
from them to maximize the evaluation function.

Our work is different from these works in that we assume the
motions of any parts of the body. Our system can classify the
actions including small motions such as shaking the user’s leg
and typing. In addition, we optimize the combination of features
adaptively to each user and to the set of the activities to be recog-
nized. We also analyze the effectiveness of features for accuracy
of recognitions.

3. Activity Recognition

3.1 System Component
The component of our recognition system is shown in Fig. 1.

Our Doppler sensor node is composed of a Doppler module, am-
plifier, and low-pass filter as shown in Fig. 2. We used K-band
Doppler module NJR4261JB0916 [15], whose central frequency
is 24.1 GHz, produced by New Japan Radio. The output power of
it is 6.6 mW (8.2 dBm). Signal amplifier and low-pass filter were
applied to the amplify the Doppler signals. The Amplification
level was set to a fixed value where enough amplitude is obtained
within 1,000 times of the original signal. The voltage of the sig-
nal from the Doppler sensor took the range from 0 to 5 V. We set
the cut-off frequency of the low-pass filter to 1 kHz.

3.2 Feature Extraction and Selection
Features are extracted from each signal for classifying the ac-

tions. Then, the features are selected to optimize the combination

Fig. 1 Recognition system using Doppler sensor.
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of features. Before extracting the features, the mean value of a
signal has been subtracted in each sample. In addition, in or-
der to eliminate the noise caused by the power supply, frequency
elements in each signal around the multiples of 50 Hz are elim-
inated. In general, there are many kinds of actions. In addition,
each action has individual differences. It is difficult to manually
optimize the extraction and selection of features. Therefore, we
extract many features that are considered to characterize Doppler
signals. We extract a total of 101 features in time domain, fre-
quency domain, and time-and-frequency domain as shown in Ta-
ble 1. The five time domain features extracted were the variance,
maximum, minimum, medium, and the total value of absolute
different values between two consecutive sampled data. The 48
frequency domain features extracted were average frequency, av-
erage powers, top frequencies and mean power frequency (MPF)
in 0 to 5 Hz, 10 to 15 Hz, 15 to 20 Hz, 20 to 50 Hz, 50 to 75 Hz, 75
to 100 Hz, 100 to 150 Hz, 150 to 200 Hz, 200 to 500 Hz, and 500
to 1,000 Hz. Then, the power and its corresponding frequency
are sorted in order with high power value. We extract the av-
erage frequency, average power and MPF in the pairs of power
and frequency in top 1%, 5%, 10%, and 20% for each. In addi-
tion, we perform continuous wavelet transform and extract aver-
age and variance of absolute values of the wavelet coefficients as
the feature of 48 time-and-frequency domain when the pseudo-
frequencies are at 1 Hz, 5 Hz, and each frequency at intervals of
10 Hz from 10 to 250 Hz. The Mexican hat function was used in
wavelet transform.

After extracting the features, we selected some features out

Fig. 2 Our Doppler sensor node including Doppler sensor “NJR4261J”
produced by New Japan Radio, amplifier and low-pass filter.

Table 1 101 features extracted from a sample.

No. Feature
1 variance of amplitudes
2 maximum of amplitudes
3 minimum of amplitudes
4 medium of amplitudes
5 sum of difference of amplitudes
6 mean power frequency
7 to 39 logarithm of mean power, frequency at peak power, mean power frequency ranged from

0 to 5 Hz, 5 to 10 Hz, 10 to 15 Hz, 15 to 20 Hz, 20 to 50 Hz, 50 to 75 Hz, 75 to 100 Hz,
100 to 150 Hz, 150 to 200 Hz, 200 to 500 Hz, 500 to 1,000 Hz

40 to 41 the frequency at highest and second highest peak power
42 to 53 mean frequency, mean power, mean power frequency

in the highest 1%, 5%, 10%, 20% in the power
53 to 101 absolute mean and variance of wavelet coefficients at 1 Hz, 5 Hz, every 10 Hz from 10 Hz to 250 Hz

of them to maximize accurate recognition and reduce the data
processing overhead and prevent over-fitting. To study the
classifying ability of each feature, sequential forward selection
(SFS) [16] was used. SFS is a feature selection algorithm where
each feature is sequentially selected so as to maximize the aver-
age recognition rate. In general, the optimized combinations of
features may be different according to the kind of activities. This
is because the classifying ability of each feature depends on them.

4. Performance Evaluation

4.1 Outline
A Doppler sensor was set at the 0.8 m height of the stand as

shown in Fig. 3. The distance between the subject and the sensor
was set to 1 m. In healthcare services, it is necessary to recognize
many activities in human daily life. In this paper, we select eight
actions as a set of basic performance indexes, although a huge va-
riety of motion sets would be likely to occur in a human daily life.
When actions are performed exactly with reference to a clock or
a ruler in the experiment, it does not reflect the variations in an
actual action. Therefore, the subjects did the actions consciously
operated so that the cycle and the range of motion are the same
during one motion. Eight actions are as follows:

( 1 ) Rotating: rotating the subject’s right arm back and forth to-
wards the Doppler sensor

( 2 ) Slow: slowly moving the subject’s right hand toward the
Doppler sensor and away from it

( 3 ) Fast: shaking fast the subject’s hand in front of the face
( 4 ) Shaking: shaking the subject’s leg
( 5 ) Walking: walking around the Doppler sensor
( 6 ) Typing: typing the keyboard of a laptop PC
( 7 ) Still: Sitting still in a chair
( 8 ) Nobody: the subject is out of sensing range

“Rotating,” “slow,” “fast,” and “typing” are performed while

Fig. 3 Experiment environment.
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(a) subject “A” (b) subject “B” (c) subject “C”

Fig. 4 Signal of “rotating.”

(a) subject “A” (b) subject “B” (c) subject “C”

Fig. 5 Power spectrum of “rotating.”

(a) subject “A” (b) subject “B” (c) subject “C”

Fig. 6 Signal of “slow.”

Table 2 Parameter settings in performance evaluation.

Parameter Value
Sampling rate 2.5 kHz
Signal out put range 0 to 5 V
Acquired data range −10 to +10 V
Resolution 16 bit
Sensing time per sample 3.2768 sec (8,192 points)
Number of samples per action 400

sitting a chair. In “typing,” a laptop PC on a desk was set in the
front of the user. Next, we got the signals of the actions, and their
power spectrums by executing fast Fourier transform (FFT) from
the results of multiplying signal and Humming window.

Main parameters in the experiment are shown in Table 2. First,
we did the experiment for acquiring data of three subjects (subject
“A,” “B” and “C”) and obtained 400 samples in each action (3,200
samples in total) of three subjects by shifting 512 points (0.2048
second interval). We used them as training data for SVM. Sec-
ond, we did 10-fold cross validation in the training data and se-
lected the optimized features training the data using SFS. Third,
we did the experiment for acquiring test data in another day simi-
larly to acquiring training data. Finally, we obtained 400 samples
from them and used them as test data, and evaluated the recogni-
tion rates.

We used LIBSVM [17] to classify the activities. The parame-
ters of it were set to default values. The recognition rate is defined
as the ratio between the total number of samples correctly classi-
fied and the total number of samples.

4.2 Signal and Power Spectrum
The signals from the Doppler sensor and their power spectrums

in each action by three subjects “A,” “B,” and “C” are shown in
Fig. 4 to Fig. 19. In the figures of power spectrum in “still” and
“nobody,” y-axis scales of them are different from those of the
other actions to see the weak spectrums. In general, the frequency
depends on the velocity of the body. On the other hand, the ampli-
tude depends on the size of the moving part, range of motion and
the distance between the sensor and the object. In addition the
subject’s actions include intentional operation and unconscious
operation. For example, in “typing,” a subject is sitting on a chair
and moving the fingertips. On the other hand, in “still,” his body
may happen to move unconsciously although he tries to be still.
At the time, the signal magnitude may become greater than that
in typing because the body has a large reflective surface while the
motions of fingers in typing are small.

In Fig. 4, we can see that the amplitudes in “rotating” change
from time to time because of the positions of the arm of each
subject. In Fig. 5, the power spectrums mainly range from 0 to
20 Hz, because the velocities are different according to the parts
of the arms.

In Fig. 6 and Fig. 8, the frequencies in “slow” are changing
throughout the time while those in “fast” are comparatively con-
stant.

In Fig. 7 and Fig. 9, the peak frequencies in “slow” are lower
than in those in “fast.”

In Fig. 10 and Fig. 11, the maximum amplitudes and the pow-
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(a) subject “A” (b) subject “B” (c) subject “C”

Fig. 7 Power spectrum of “slow.”

(a) subject “A” (b) subject “B” (c) subject “C”

Fig. 8 Signal of “fast.”

(a) subject “A” (b) subject “B” (c) subject “C”

Fig. 9 Power spectrum of “fast.”

(a) subject “A” (b) subject “B” (c) subject “C”

Fig. 10 Signal of “shaking.”

(a) subject “A” (b) subject “B” (c) subject “C”

Fig. 11 Power spectrum of “shaking.”

ers in “shaking” are lower than those of “fast.” This is because
the ranges of motions and the size of moving parts of the body in
“shaking” are lower than those in “fast.”

In Fig. 12, the maximum amplitudes in “walking” are the high-
est of all actions. In Fig. 13, the power spectrums contain vari-
ous frequency components. That is because the Doppler sensor
catches the reflection of radio waves from the many moving parts

of the body.
In Fig. 14, we can see that the amplitudes change when the fin-

gers move. In Fig. 15, amplitudes of the signal in “typing” are
lower than that in “shaking.” That is because the size of moving
parts in “typing” is generally smaller than that in “shaking.”

In Fig. 16, the small motions of the body such as respiration
are detected even if the user is trying to be still. In Fig. 17, we

c© 2012 Information Processing Society of Japan 400



Journal of Information Processing Vol.20 No.2 396–405 (Apr. 2012)

(a) subject “A” (b) subject “B” (c) subject “C”

Fig. 12 Signal of “walking.”

(a) subject “A” (b) subject “B” (c) subject “C”

Fig. 13 Power spectrum of “walking” of subject “C.”

(a) subject “A” (b) subject “B” (c) subject “C”

Fig. 14 Signal of “typing.”

(a) subject “A” (b) subject “B” (c) subject “C”

Fig. 15 Power spectrum of “typing.”

(a) subject “A” (b) subject “B” (c) subject “C”

Fig. 16 Signal of “still.”

can observe the small spectrums below 10 Hz because of them.
We can see the peak at 100 Hz. This originates in the humming
noise caused by the power supply. These humming noises are
also observed in all the actions.

In Fig. 18 and Fig. 19, almost no amplitudes and no spectrums
are detected except for the humming noises.

As a result, we can see that the amplitudes and frequencies are

different among the subjects even in the same actions. Each sig-
nal has different features that depend on the actions.

4.3 The Number of Features and Average Recognition Rate
in Training Data

Figure 20 shows the relation between the number of the fea-
tures and the average recognition rates in the feature selection
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(a) subject “A” (b) subject “B” (c) subject “C”

Fig. 17 Power spectrum of “still.”

(a) subject “A” (b) subject “B” (c) subject “C”

Fig. 18 Signal of “nobody.”

(a) subject “A” (b) subject “B” (c) subject “C”

Fig. 19 Power spectrum of “nobody.”

Fig. 20 Number of features and average recognition rate in training data.

using the training data that are gathered in one day. The average
recognition rates of subject “A,” “B,” and “C” increase until the
number of features are 25, 23, and 8 for each. The maximum av-
erage recognition rates of subjects “A,” “B,” and “C” are 98.8%,
99.0%, and 100% for each. The number of features required to
maximize the average recognition rate depends on the variances
of data by each action and each subject. However, the average
recognition rates tend to decrease or keep constant after that. That
is because, although features are effective to classify actions until
the average recognitions become the highest, over-fittings may be

caused when the numbers of features increase after those points.
Figure 21 to Fig. 23 show the relations between the number

of features and recognition rates by each action in the feature se-
lection using the training data for each subject. The recognition
rates of eight actions increase until around 10 and are almost con-
stant after that. The pattern of increasing and decreasing of the
rate in each action is different from those of other actions. This is
because effective features for recognition are different with each
action and each subject.

Table 3 to Table 5 show the ten earliest features selected in
training data by each subject. The features selected by SFS early
are effective for classification of activities. The features selected
are different with each subject. We can see that absolute mean
wavelet coefficients around 10 to 30 Hz are selected in all the sub-
jects.

In order to study the distributions of values in features that are
effective to classify, we show the distributions of values in two
most effective features for subject “A” for classifying that are se-
lected by SFS. In each feature, the values of it are standardized
within the minimum 0 and the maximum 1. The bottom and the
top of each line shows the minimum value and the maximum
value of the feature. The bottom and top of each box, and the
center line around the box show the quarter order value, the three
quarters order value and the median value.

Figure 24 shows the distributions of the mean absolute values
of the wavelet coefficients at the frequency of 40 Hz. The distri-
bution of the feature in “walking” has the most different distribu-
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Fig. 21 Number of features and recognition rate of each action of subject
“A.”

Fig. 22 Number of features and recognition rate of each action of subject
“B.”

Fig. 23 Number of features and recognition rate of each action of subject
“C.”

Table 3 The earliest selected features for subject “A.”

rank feature name
1 absolute mean wavelet coefficients at 40 Hz
2 mean power frequency
3 logarithm of mean power from 200 to 500 Hz
4 absolute mean wavelet coefficient at 1 Hz
5 mean frequency in the highest 10% power
6 logarithm of mean power from 5 to 10 Hz
7 logarithm of mean power from 0 to 5 Hz
8 mean power frequency from 200 to 500 Hz
9 logarithm of mean power from 15 to 20 Hz
10 mean power frequency from 0 to 5 Hz

Table 4 The earliest selected features for subject “B.”

rank feature name
1 absolute mean wavelet coefficients at 20 Hz
2 mean power frequency
3 absolute mean wavelet coefficients at 90 Hz
4 mean power frequency in the highest 5% power
5 mean power frequency from 200 to 500 Hz
6 logarithm of mean power from 500 to 1,000 Hz
7 logarithm of mean power from 15 to 20 Hz
8 mean power frequency from 500 to 1,000 Hz
9 mean power frequency from 10 to 15 Hz
10 logarithm of mean power from 0 to 1 Hz

Table 5 The earliest selected for subject “C.”

rank feature name
1 absolute mean wavelet coefficients at 30 Hz
2 logarithm of mean power from 0 to 5 Hz
3 mean power frequency 0 to 5 Hz% highest power
4 mean power frequency in the highest 10% power
5 mean power frequency from 5 to 10 Hz
6 logarithm of mean power from 20 to 50 Hz
7 frequency at peak power 0 to 5 Hz
8 logarithm of mean power from 15 to 20 Hz
9 mean power frequency in the highest 1% power
10 logarithm of mean power from 5 to 10 Hz

Fig. 24 Distributions of absolute mean wavelet coefficients at 40 Hz.

Fig. 25 Distributions of mean power frequency (MPF).

tion among those in eight actions. For this reason, the recognition
rates in it reach 100% when only this feature is used. On the other
hand, there is little difference in the distributions of the features in
“still” and “nobody.” This causes the misclassifying among them.

Figure 25 shows the distributions of MPF. “Still” and “no-
body” have the most different distributions with each other.
Therefore, the feature improves the recognition rates in them
when this feature is additionally used. These actions include very
small motions or no motion and they are very influenced by high
frequency noises. Therefore, the MPFs of them are higher than
those of the other actions.
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Table 6 Confusion matrix of subject “A” (%).

Classified class Rotating Slow Fast Shaking Walking Typing Still Nobody Recogni-
Actual class tion rate
Rotating 98.8 1.3 98.8
Slow 100 100
Fast 2.5 97.5 97.5
Shaking 100 100
Walking 100 100
Typing 100 100
Still 1.3 98.8 98.8
Nobody 12.3 57.3 30.5 30.5

Table 7 Confusion matrix of subject “B” (%).

Classified class Rotating Slow Fast Shaking Walking Typing Still Nobody Recogni-
Actual class tion rate
Rotating 100 100
Slow 99.0 1.0 99.0
Fast 100 100
Shaking 99.0 1.0 99.0
Walking 100 100
Typing 7.5 92.5 92.5
Still 1.0 99.0 99.0
Nobody 1.0 46.3 52.8 52.8

Table 8 Confusion matrix of subject “C” (%).

Classified class Rotating Slow Fast Shaking Walking Typing Still Nobody Recogni-
Actual class tion rate
Rotating 97.8 2.3 97.8
Slow 100 100
Fast 9.8 25.0 65.3 65.3
Shaking 100 100
Walking 100 100
Typing 93.0 6.8 0.3 93.0
Still 1.8 6.8 57.8 33.8 57.8
Nobody 4.5 2.8 92.8 92.8

4.4 Recognition Rate in Each Action in Test Data
Table 6 to Table 8 show the classified results of actions by

three subjects for each subject when using the combination of
features where the average recognition rate is highest in the train-
ing data. The sum of the rates of classified results for each subject
does not become 100% because they are rounded off.

The average recognition rates of subjects “A,” “B,” and “C” are
90.7%, 92.8% and 88.3% for each. They are lower than those us-
ing only training data. This is caused by the differences in the
same actions and the same subjects between the training data and
the test data. We can see that actions of “walking” by three sub-
jects are correctly classified as “walking.” On the other hand,
“typing,” “still” and “nobody” are misclassified among them.
This is because the differences in the amplitudes or frequencies
in these actions are too small to be distinguished.

5. Conclusion

In this paper, we propose an activity recognition system using
a microwave Doppler sensor for a human activity monitoring ser-
vice. Our system can recognize human activities including both
large and small motions without body-attached sensors. It ex-
tracts several features from the signals of a Doppler sensor and
uses an optimized combination of features for the recognition.
As a result of performance evaluation, we found that the average
recognition rate in three subjects is 90.6%. In future works, we
will use multiple Doppler sensors to get more robust recognition
under a noisier environment caused by moving and/or vibrant de-

vices, radio interferences, motions of other people, optimizing
parameters in SVM, and so on. We also plan to recognize more
complicated actions and states of a person for developing many
types of applications.
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