
Journal of Information Processing Vol.20 No.2 358–365 (Apr. 2012)

[DOI: 10.2197/ipsjjip.20.358]

Regular Paper

Autonomous L3 Cache Technolgy
for High Responsiveness

Hironao Takahashi1,2,a) KhalidMahmoodMalik2,b) KinjiMori1,c)

Received: May 30, 2011, Accepted: November 7, 2011

Abstract: Web services and cloud computing paradigms have opened up many new vistas. The data intensive cloud
applications usually require huge amounts of data to input and output from secondary storage systems. The outstanding
progress in area of network communications has enabled high speed networks and therefore, communication latency
bottleneck in cloud and other web applications has been shifted to node/storage level. Moreover, existing cloud so-
lutions focused mainly on the efficient utilization of computing resources through virtualization and issues of storage
bottleneck did not receive much attention. Moreover, virtualization based implementation ensures equal priority to
all hosted applications, thus, real time applications in cloud environment can’t meet their requirements. To meet the
demand of overall low latency in cloud and other web services; and particularly to reduce I/O bottleneck at storage
level, novel idea of autonomous L3 cache technology is proposed. Autonomous L3 cache technology utilizes local
memory space as dedicated block device cache for certain specific application, thus prioritizing it over rest of hosted
ones. Evaluation shows performance improvement of 5–8 times in terms of timeliness in given setup.

Keywords: autonomous L3 cache technology, low latency

1. Introduction

Cloud Computing is normally considered as collection of vir-
tualized computational and memory resources [1]. Based on this
virtualization, the cloud computing paradigm allows tasks to be
deployed and scaled-out quickly through the rapid provisioning
of virtual machines or physical machines [2]. While virtualiza-
tion enables a more efficient utilization of existing computing
resources, it’s the automated self-provisioning aspect that really
makes clouds run. More specifically, virtualization mainly fo-
cuses on efficient utilization of processors and does not bring into
consideration application characteristics for storage management.
Therefore, due to data intensive nature of most of today’s enter-
prise and business applications in the cloud environment, it leads
to broken business processes and huge revenue loss. Such real-
life applications of cloud mostly belong to insurance industry and
investment banks [4], [5], [23]. These data intensive cloud appli-
cations usually require huge amounts of data to input and output
from secondary storage systems [3], [7]. Conventional technolo-
gies like Unified Buffer Cache (UBC) and virtualization based
implementation of cloud don’t consider application characteris-
tics/ prioritization and evenly distribute the traffic to all available
resources which results in poor timeliness for data intensive ap-
plications. In order to regulate the system resources with respect
to requirements of application approaches like centralized load

1 Department of Computer Science, Tokyo Institute of Technology,
Meguro, Tokyo 152–8550, Japan

2 DTS, Inc., Taitou, Tokyo 110–0015, Japan
a) Hiro@dts-1.com
b) Malik@dts-1.com
c) mori@cs.titech.ac.jp

balancer systems in cloud data center can be employed. How-
ever, they not only will prove to be single point of failure but also
don’t guarantee timeliness [6].

To achieve low latency for application requiring high I/O, au-
tonomous L3 cache technique is proposed. To prioritize few ap-
plications over others, the L3 cache for more than one application
at each node can be created. Each server node in Autonomous
Decentralized Multi-Layer Cache (ADMLC) [18], [19] system
in cloud data center, makes all decisions and controls all oper-
ation autonomously. Moreover, each node in ADMLC system
supports two logical data fields to communicate with other two
nodes in trio-configuration architecture. Overall, Trio-node based
ADMLC architecture not only ensures the timeliness but also the
reliability.

The rest of paper is structured as follows: Section 2 discusses
the related works while Section 3 describes the basic concepts
of the ADMLC. Section 4 narrates the architecture of ADMLC.
Section 5 describes autonomous L3 Cache technology in detail
while evaluation is outlined in Section 6. Section 7 concludes the
paper.

2. Related Works

There have been a number of efforts to improve I/O perfor-
mance of the memory hierarchy at various levels of abstraction
in computing systems. In Ref. [8], the author proposed Unified
Buffer Cache (UBC) with the focus to unify the file system and
virtual memory data to improve I/O transactions. In Ref. [9] I/O-
Lite caching system tries to unify all buffering and caching in
the system. UBC and I/O-Lite has their own APIs, which need
to be explicitly called by the application requiring high I/Os.

c© 2012 Information Processing Society of Japan 358



Journal of Information Processing Vol.20 No.2 358–365 (Apr. 2012)

Application-Buffer Cache described in Ref. [10] makes cache at
the application-level; and it achieves high I/Os for a particular
application that uses “Application-Buffer Cache API”.

The concept of Ramdisk for Linux/windows is quite prevalent
but it is simply virtual drive on top of local memory and does not
involve any cache management technique [11]. In contrast, the
proposed platinum cache is a block-layer cache and any applica-
tion can use it [12]. To gain performance, applications just need to
be installed on top of L3 cache. L3 cache employs 64 MB internal
cache and reserves disjoint memory area from kernel. The Au-
tonomous L3 Cache Technology employs the concept of Ramdisk
with efficient caching algorithm at memory level. This paper uses
L3 cache at level 3 (L3) for the realization of the proposed au-
tonomous L3 cache node architecture.

The importance of cache on top of HDD has also been recog-
nized somewhat late and the size of the cache on current HDD is
about few megabytes [13], [14], [15]. Here the focal point is to
improve the performance and power of Windows Vista through
built-in cache on HDD. In Ref. [16], requirement for large size
cache of the size of few Gigabytes has been emphasized. The
current small size cache on HDD does not provide noticeable per-
formance improvement. L4 cache is a block level cache on HDD.
Our focal point is the L3 cache memory computing architecture
in autonomous node with the off-chip large size cache with the
order of gigabytes.

Modern microprocessors support at least two level caches
above the main memory but the gap between CPU and memory
hierarchy has been increasing over the past four decades [3], [17].
Reference [3] presents the results for memory hierarchy perfor-
mance measurement of commercial dual-core desktop proces-
sors. The results show the significance of on-chip caches and their
impact on the processors’ performance. The size of the on-chip
and off-chip caches on HDD is relatively very small as compared
to the data size of data intensive applications, and cannot meet
the I/O requirements. In the above literature survey, the focus is
on file level cache or application level cache to improve the per-
formance of specific applications. On-chip multilevel cache im-
proves processor performance mainly. Similar to the concept that
processor needs multilevel cache to improve its performance, this
paper emphasizes that HDD needs multilevel and overall large
size cache to improve its performance. None of the above pa-
pers have focused on the optimization of the various parameters
at system level such as number of cache levels, large size cache
on HDD, and cache size at various levels.

This paper addresses these issues and contributes in following
ways 1) Firstly, it shows balanced cache computing system model
based on two levels off-chip cache. 2) Secondly, it analyzes the
behavior of off-chip cache on top of HDD, and its impact on per-
formance of the computing system. 3) Lastly, it investigates the
off-chip cache behavior in the computing system, and presents the
performance analysis of autonomous L3 cache node technology.
In proposed technology cache is implemented as block device and
it lies at the block layer of OS [18]. File system layer works above
the block layer, and it receives data request from the applications.
File system layer keeps track of data: from which application the
read or write request is initiated and whether the request is of

read-type or write-type. The file system layer separates the read
and write request. After extracting application specific informa-
tion, the file system layer forwards the request to block layer on
which our proposed L3 cache technology works.

3. Multi-Level Cache System: Concepts

Cache system design space optimization requires reduced hit
time, miss penalty and miss rate. Multilevel caches reduce miss
penalty while large cache size and large block size reduce miss
rate [13]. The basic thesis of this paper is to design balanced
computing system architecture through multilevel cache, with an
ample overall cache storage space to achieve these goals. In the
broader context of the L3/L4 cache, every low level device is
cache for higher-level device, and higher-level cache is mounted
on low level device. The cache at level “i” enhances the perfor-
mance of the computing system that can be calculated according
to Amdahl’s law as follows:

Gi =
1

1 −Ci +
Ci

Xi

m∏
j=1

Li, j (1)

Where
Gi = Gain due to cache at level i

Ci = Cache size ratio (hit rate) at level i

Li, j = overhead factor j, at cache level i,

Xi = Cache speed ratio of lower level storage media to higher-

level storage media at level i

For instance if access time for HDD Td4=9 ms, and cache ac-
cess time at local memory Td3=0.045 ms, then X3=200. Here
value of i is 3 to represent cache at level 3. Considering m=2,
i.e. j=1, 2 Li, j means that this paper considers two overhead fac-
tors, namely cache search overhead and synch data communica-
tion overhead. In general Amdahl’s law ignores overhead factors
but in order to have more realistic model, this paper incorporates
these in the system (Eq. (1)). Cache misses are a large cost for
modern processors, therefore to improve miss penalty and miss
rate, the paper proposes two levels cache in the computing system
and overall large cache size improves the hit rate significantly.

Memory hierarchy needs to provide high IO transactions in ad-
dition to their capacity and availability requirements in the data-
intensive computing systems [10], [11], [13]. Caches at the vari-
ous levels of the memory hierarchy have been introduced in the
computing systems to bridge the gap but latency for the CPU has
been increasing for the past four decades [10]. Also performance
of caches at the various layers of the memory hierarchy in com-
puting systems does not vary much with its corresponding adja-
cent lower level of storage devices. Generally large and medium
size storage systems consist of disk arrays and associated caches
to improve the IO performance. The memory layers consist of hi-
erarchical storage media starting from L1 cache to HDD (Fig. 1).
Top level caches in the hierarchical memory systems are faster
than adjacent lower one but are small in size compared to the ad-
jacent lower level of storage devices. As shown in the Fig. 1, the
DTS (Data Transmission System) theme is to bridge data trans-
mission performance gap of the lower layer through multi level
caches in the computing systems. DTS cache concept is based on

c© 2012 Information Processing Society of Japan 359



Journal of Information Processing Vol.20 No.2 358–365 (Apr. 2012)

Fig. 1 Concept: L3 cache node vs. Normal node.

layered memory architecture for computing systems [18], [19]. In
the broader context of DTS cache, every higher layer is cache for
the lower layer in the computing systems (Fig. 1).

This paper proposes a novel concept of exploiting local mem-
ory as a block IO device to be used as cache, called DTS cache.
The proposed concept uses local memory as managed cache for
important data to be maintained for read and write in close prox-
imity to the CPU. Actually part of local memory is managed
as level 3 (L3) cache, assuming that there are two levels built-in
cache in the system. From Operating System (OS) perspective,
the cache device is a transparent layer; therefore it looks like a
device mounted on OS. In the context of distributed system, the
proposition is to use local memory on each computing system as
cache device mounted on remote storage through fast transmis-
sion block device protocols.

4. Autonomous Decentralized Multi Layer
Cache System Architecture

Autonomous L3 cache node runs on Autonomous Decentral-
ized Multi-Layer Cache System Architecture (ADMLC) [19],
[22], that has dual logical data fields and trio node model. The
system architecture is shown as Fig. 2.

The key feature of ADMLC system is its trio node configu-
ration: each node at least belongs to one group and each group
consists of three nodes (Fig. 2). Each node in the system has
two storage partitions and each partition of node is mirrored to
partition of another node of its group. Each node at data center
processes the data to be written on target and thus called P-Node.
A P-Node may be attached to another node called C-Node (fi-
nal target node) whose one or more partitions are dedicated for
storage. Of course, it is also possible that storage is also part
of P-Node. In that case, P-Node also performs function of C-
Node. In both cases, due to trio-node configuration, availability
of system is not compromised; because if one of P-Node fails,
the alternative node in trio-group have mirrored partitioned, that
acts as a backup. It is important to note that, in the proposed con-
figuration, after constant interval C-node shares the updated state
with its corresponding node in group by broadcasting the data in
Content Data Field (C-DF). Due to its cache write back policy,
Autonomous L3 cache node ensures the high I/O response for the
write request.

To meet the demand of the high I/O performance, ADMLC has

Fig. 2 Autonomous Decentralized Multi-Layer Cache System Architecture.

dual data fields with dedicated function node. The key features of
ADMLC can be summarized as follows:
• There are two Data Fields in ADMLC: one is Processing

Data Field (P-DF) while the other is a Content Data Field
(C-DF).

• Processing node (P-Node) communicates in trio group using
P-DF while the Content node (C-Node) uses C-DF.

• Data availability is achieved by dual storage disk partitions
of Content Nodes in the trio-group.

• To manage the high demand I/O, dedicated block cache is
implemented on node.

• Write speed is achieved by implementing Write Back Cache
policy on Processing Node.

• To execute Content Node application program, Processing
Node is always required. Therefore, the group creation pro-
cess is required initially.

5. Autonomous L3 Cache Technology

An Autonomous L3 Cache node has dedicated block I/O cache
space in its local memory. Unlike OS local memory and Unified
Buffer Cache UBC [13], [20], L3 cache space is storage block
address cache and it generated by cache control software with
RAM disk] driver [21]. Therefore, L3 cache is not visible from
OS: the OS can’t reallocate that memory to other programs un-
til RAM disk is un-installed. The main purpose of L3 cache is
to ensure timely write I/O t execution using Write Back Cache
policy. Each autonomous L3 Cache node mounts two partitions
on content node. The write-back L3 cache holds write-data until
dirty-data is synchronized on target drive (on content node).

A. Main Operations: Summary
L3 cache technique firstly involves interception of the incom-

ing OS request and breaks it into our block size (currently 8 K)
parts. We then write all these parts of the request to L3 cache that
is RAMDISK residing in the system’s physical memory. This
request is marked as PENDING, queued in our internal list, and
STATUS PENDING status is sent to kernel. Note that when write
request arrives, P-node implements L3 write back cache with no
data flushing policy. However, the other node with mirrored par-
tition in trio-group does not implement write-back policy. The
intercepted request is dealt by L3 cache technique in following

c© 2012 Information Processing Society of Japan 360



Journal of Information Processing Vol.20 No.2 358–365 (Apr. 2012)

way:
Firstly it removes the queued requests from the List and checks

for the request type (Read/Write). If the request is read then it
calculates the number of blocks involved in the request. Next, for
each block it searches the block in INDEX LIST. If it is found
then the request is fulfilled. Otherwise, in case of cache miss, we
allocate a new block & update the INDEX LIST and fetch the
data from target to fulfill the request. Conversely, if the request
type is write then we calculate the number of blocks involved in
the request. Next, for each block we search the block in Index-
List. If it is found then data is written in the block. Otherwise,
new block is allocated, Index-List is updated and data is written
to the corresponding block.

B. Key Parameters and Functions
The important parameters of L3 cache are as follows:

a) Synch buffer Size Synch buffer size (ψ) is mainly dependent
on the difference of speed of L3 and target drive. The bigger the
difference between speed of source and target, the significance of
larger size of synch buffer increases. Note that, this parameter
is useful when write back policy is employed. For write through
this parameter is non-effective.
b) Synch Timeout Value Upon expiry of synch timeout (ϕ) event
the dirty data is transferred from our L3 cache to the target drive
on content node. That is if constant n seconds elapsed and no
new dirty block is added to the dirty list, synching process starts.
We employ this parameter to enhance the reliability of data. Note
that for write through caching, this parameter is non-effective.
Our experimental analysis shows that this parameter affects the
read process slightly because occasionally the time based synch
may start during the read process.
c) Dirty Transfer Box Percentages These percentages namely
red (Upper Watermark) and green (Lower Watermark) of dirty
transfer box control the overall operations of L3 cache. We be-
gin our synch process for target drive on red percentage and end
it when the green percentage is reached. This parameter is used
when the user is using the write back as the writing policy. For
write through this parameter is non-effective. The synchroniza-
tion is a heavy process in terms of processing and it may some-
times result in performance degradation due to handing of the
incoming write requests. Note that by synch we mean transfer-
ring the dirty block (block on cache only; not written to target
yet) from cache to target only. It does not mean that the synched
block will be removed from the cache also. The block will be
removed according to our flushing policy.
d) Flush Transfer-Box Percentages Similar to the dirty transfer
box we have red and green percentages for the flush transfer box.
By flushing we mean removing some blocks from the cache to
make room for the incoming requests in cache. This parameter is
used for both write-through and write-back policies. Flushing the
blocks is normally a light weight process which does not involve
many operations. A block can be flushed from the cache when it
is neither locked nor dirty. The caching algorithm that is used to
manage the blocks in cache is important. For this paper we use
Least Recently Used (LRU) policy for managing blocks in cache.
Normally we set the red and green percentages for this transfer

Fig. 3 Autonomous L3 cache node.

box to be too high in 90 s - say red percentage 95% & green per-
centage 95% so as to keep most of the blocks in cache to maintain
a high hit rate to improve performance of read requests.
e) Pre-Caching in L3 Cache For improving the performance of
sequential read cases we implemented the policy of pre-caching
in L3 Cache. In this policy we read data of a specific size, depend-
ing on the cache size from a specific offset in target. This helps
in improving the sequential read of Platinum Cache for a file in
proportion to the size of the cache used. The higher the size of
the cache, the more data for the file can be pre-loaded from the
target to the cache resulting in the better performance when that
file is read. If the blocks are not used for reading then we may
need to flush out these blocks from the cache. Note this flushing
is not a heavy process in terms of processing.
f) L3 Cache Size While it is quite possible to manage creating
large L3 cache size from the memory external to the system, this
requires restriction of the system memory and a system reboot.
Also there might be some conflicts in using this external system
memory because this memory is not controlled by the system and
it may be possible that the same memory area be used by two
different drivers resulting in data corruption. In order to resolve
these issues we tried to create a L3 cache from system internal
memory. Now the other issue was to increase the size of this in-
ternal L3 cache. Using different memory allocation mechanisms
we manage to create a L3 cache of about 1 GB from system in-
ternal memory. The greater the size of the cache the greater there
is a chance of cache hit resulting in better performance for read
requests.
g) Merge block size
Whenever there is request for read data from the target or write
data to the target we employ merging technique. For example if
during a read process some blocks are missing from cache and
if the block size currently is 8 K then instead of generating three
to four requests of 8 K each, we make one 32 K read request to
the target if possible. Similarly when the synch process is going
on, we transfer the data in big chunks like 1 MB etc. The overall
structure of Autonomous L3 cache is shown in Fig. 3.

C. Key Features
There are three key features of autonomous L3 cache node.

c© 2012 Information Processing Society of Japan 361



Journal of Information Processing Vol.20 No.2 358–365 (Apr. 2012)

Table 1 Hash based quick search.

a) Firstly, it converts part of local memory into I/O block device
cache, and mounts this on Content Node/target device. b) Second
important feature is choice of appropriate cache policy as per the
application requirement. Since the local memory is transformed
to a block I/O device to behave as a cache layer, it ensures high
I/O transactions and significantly improves so much so that IO
speed is equal to the speed of local memory for the application
for which L3 layer is created. c) The third prominent feature of
the L3 block cache technology is search algorithm to look for
data on the L3 block cache efficiently. A cache search algorithm
quickly searches required block of data for I/Os to further reduce
the latency of time. Unlike linear searching that searches for each
element, the L3 block cache consisting of blocks is divided into
groups where each group contains number of blocks as shown as
Table 1. The jumping algorithm first points to the required group
for which that sector corresponds and then finds out the required
block of data in the group. If there are total ‘n’ elements then
the cost of linear searching is O(n) while jumping algorithm is a
special form of Hash based (Open Hashing Data) searching. The
time complexity of hash based jumping algorithm is O(1+n/D)
where ‘n’ is the total number of elements and ‘D’ is the number of
buckets. In best case (n=D) the complexity is O(1). Experimental
analysis reveals that on average jumping algorithm enhances 30%
search time than standard sequential search technique for sequen-
tial requests. If the requests are randomly distributed, then more
advantage is expected than standard search and average reaches
60%. Investigation for the value of number of column for block
I/O data is carried out. Currently we set the value to be 32, but
If CPU performance is higher, then 64 or 128 may be selected
as this tradeoff depends upon the CPU specifications. In order to
elaborate searching mechanism, consider following sample code:
1. IRP Offset = 0;
2. IRP length = 2,048;
3. NrBlocks = ((offset + NrSectors − 1)>> *(targetDisk

->SectorPerBlock2)) + 1;
4. NrBlocks = ((0 + 4 − 1)>> 3) + 1;
5. Index = (ULONG) ((blockSector.QuadPart) % (targetDisk

->NrBlocks));
6. Index = 1 % 100 = 1;
7. RowIndex = (Index / (targetDisk->index Columns));
8. ColumnIndex = 0 % 32 = 0;
9. Block = SearchBlock (targetDisk, blockSector, RowIndex,

Column Index);
10. Block = SearchBlock (targetDisk, 0, 0, 0);
Hashing technique is useful for large size data but it is weak for
small set of data. Also when the data address has conflict, open
address method is used to resolve the issue.

6. Evaluation

This section describes the evaluation of L3 cache technology.
We evaluate the system with respect to IOPS, data rate both at
single node as well as in network. In future we will extend the
evaluation for trio-node based configuration.

A. Theoretical Evaluation

The information access behavior follows principle of locality
on computing systems and Internet applications such as Web ser-
vices. Assuming that this principle of information usage follows
“standard normal distribution” model, then probability distribu-
tion can be considered as standard distribution as follows:

f (x) =

(
1√
2πσ

) ∫
exp

((−(x − m)2

2

)
σ2

)
dt

Let us consider the value of σ as 1 mainly because present fi-
nancial based cloud services require high IO demand. Once the
behavior of the Autonomous L3 cache reaches stable stage of read
operation in L3 cache, the response time will be equal to SDRAM
based L3 cache.

In other words following the principle of locality, if majority
of the users/requests, say 80% users, will access only 20% of the
total data then probability of average existing data in one hour on
L3 cache is 20%/24 hours = 0.83% of total storage capacity. Let
us consider that the capacity of total mounted storage is 250 GB.
In this scenario, necessary L3 cache size is 250 GB * 0.83% =
2.07 GB. Therefore, 2.07 GB data passes on system such as Web
server of data center, within one hour. As IO request processing
time consists of CPU time plus storage IO access time. Hence if,
Total execution/process time = T (dts)
If local SDRAM memory is L3 cache device, and target storage
is HDD, access time of storage is as follows:
T(SDRAM) = 45 μs = 0.045 ms
T(HDD) = 9 ms (seek time + overhead)
Ratio between them (X) = 200.
Therefore, expected cache hit ratio is (R) = 20%.
According to Amdahl’s Law:
T(dts) = T(non cache)/T(cache)
= Part T(non cache)/(Part T(non cache) + Part T(cache)/x)
= 1/(1 − R + R/x) =>1/(1 − 0.8 + 0.8/200)
= 4.90 times of T(non cache)
The expected performance scenario for L3 cache is T(L3 cache) =
1.92 ms. Once L3 cache is in stable phase, the IO performance
should reach equals SDRAM one:
Ratio of Speed = T(HDD)/T(SDRAM) = 200.
Therefore, the total ratio of expected speed gain with L3 cache
over HDD is 200 times faster IO transactions. This is best-case
scenario ignoring different overheads.

B. Evaluation Parameters for Experimental Setup

Table 2 highlights values for all parameters used in au-
tonomous L3 cache technology. The values remain same for all
experiments unless otherwise stated.

c© 2012 Information Processing Society of Japan 362



Journal of Information Processing Vol.20 No.2 358–365 (Apr. 2012)

Table 2 Parameters for Experimental Setup.

Fig. 4 Autonomous L3 cache node Bonnie benchmark IO performance
evaluation results.

C. CPU Utilization

Autonomous L3 cache node evaluation has been carried out
on Linux Kernel 2.4.25, Redhat-9 based server by Bonnie bench-
mark test program. In this test, standard HP Blade CPU with Intel
Pentium CPU 2.7 GHz, 4 GB local memory, 1 Gbps Ethernet net-
work and 2 Gbps FC storage system has been used. In this setup,
2 GB local memory is used as Autonomous L3 cache and it is
mounted on Fiber Channel RAID storage system as target storage
device. The results of the experiments using Bonnie benchmark
tool are shown in Fig. 4. The experiment has been carried out
using Bonnie benchmark. Bonnie command is first executed for
the Normal autonomous node and then for autonomous L3 cache
node:

#./Bonnie −d /home −s <data size

The results show how to manage local memory as effective
cache for computing systems. Normal node memory is unified
memory space, which is managed by OS. It does not keep par-
ticular IO block data in managed way on this memory area even
when memory capacity is available. However Autonomous L3
cache node transforms local memory into block device to be used
as cache, it enhances IO request on the local memory space and
introduces efficiency for both read and write operations. It is ob-
served that write back local memory cache technology is effective
to enhance CPU utilization. This means, computer resources can
be used more effectively in highly IO intensive applications. The
behavior of cache exhibits locality of reference, therefore if block
data is larger than the cache size, the performance decreases. The
most likely size of data is very sharp normal distribution profile,
where most of the access hit is in the L3 cache.

D. IO Performance on single node

In this section evaluation has been carried out using IOmeter
with the setup consisting of Linux RedHat AS EL 3, Write Back
policy, 2.5 GB L3 cache and 1.5 GB OS memory. The experi-
ment has been performed for various IO data size (blocks) for
Autonomous L3 cache node and Normal node.

Fig. 5 IOPS experimental performance evaluation.

Initially, the performance in Fig. 5 (a) and Fig. 5 (b) show the
effect of the OS and device characteristics. Device characteristics
means when there is no cache hit the read Performance solely de-
pends on the device characteristics provided by the device manu-
facturer since no effect is visible at this point. The effect of our L3
cache is most appealing for the case 1,024 block of data so much
so that it performs 100 times faster IO random read as compared
to Normal node IOs using conventional HDD (Fig. 5 (b)). The re-
sults reveal that IOPS are inversely proportional to the block size
of the test. As the block size of the test increases, fewer requests
of that block size can be fulfilled resulting in the deterioration of
IOPS. However, the results for 512 block size is not following the
above principle due to built in behavior of Unified Buffer Cache
(UBC) in Linux OS.

For further analysis, the test was performed for random write
case. Figure 6 compares the IOPS and data transfer rate for the
case of random write for both L3 cache node and normal node.
Performance analysis clearly depicts that L3cache performs al-
most 7–8 times better than normal node.

E. Network performance evaluation

In this section we evaluate the performance, in terms of data
rate/network speed, considering trio configuration of autonomous
L3 cache nodes. The nodes are connected using NFS. The perfor-
mance of the cache is checked using different block sizes. Fig-
ure 7 shows the maximum transfer size from 4 KB to 128 MB.
Transfer performance is measured from the time taken by the
packet to reach from source L3 cache node to the destined L3
cache node. In case of relatively small packets there is no big

c© 2012 Information Processing Society of Japan 363



Journal of Information Processing Vol.20 No.2 358–365 (Apr. 2012)

Fig. 6 Data transfer rate and IOPS experimental performance evaluation.

Fig. 7 NFS network transfer rate evaluation.

impact on the overall performance. For example at 4 KB, the
network speed is 1 MBPS with L3 cache node to L3 cache node
while it is 0.479 MBPS with no L3 cache node scenario. Like-
wise at 64 K, the network speed is 6.8 MBPS with L3 cache node
to L3 cache node while it is 4.9 MBPS with no L3 cache node
situation. With large file transfers the performance difference is
very much apparent. For example at 1 MB data size, the network
speed is 99.25 MBPS with L3 cache node to L3 cache node while
it is 31.3 MBPS with no L3 cache node situation. The visible
performance difference here is about three times.

In second experiment, 701 MB file was transferred 4 times and
data rate was measured in each case. Figure 8 shows the re-
sult. It is obvious that, in case of L3cache trio configuration,
performance is continuously improving due to caching effect.
Also, in all four cases, data transfer speed between two nodes
using L3 cache is significantly better than data transfer speed be-
tween two non-L3 cache nodes. In case of file transfer between

Fig. 8 Autonomous L3 cache node transfer speed vs. Normal node.

L3 cache nodes the data rate varied between 70 MBPS to almost
80 MBPS; whereas in non-L3 cache scenario, it even goes as low
as 48 MBPS. The performance of non-L3 cache in 2nd attempt
is better than other three cases due to the effect of the OS buffer
cache. However, this effect is not only sporadic and is much less
effective than L3 cache one. Thus, the L3 cache technology en-
ables to take full advantage of available bandwidth in fast net-
works.

7. Conclusion

To achieve low latency, data storage systems require very high
IOPS for highly responsive cloud applications. This paper pro-
posed autonomous L3 cache node and contributes in following
ways: Firstly, it has presented the technique to transform part of
local memory into block IO device to be used as L3 cache. Next,
Autonomous L3 Cache Node architecture and detailed design in-
cluding cache management technique, and index based searching
to manage data on L3 cache were presented in detail. We have
carried out performance evaluation of the proposed technology
and the experimental results show significant improvement. The
improved IO transactions and network speed optimize utilization
of the system resources, such as local memory, CPU and network.
In case of networks, the relatively small packets do not show a
big difference in overall performance. For example at 4 KB, the
network speed is 1 MBPS with L3 cache node to L3 cache node
while it is 0.479 MBPS with no L3 cache node situation. Like-
wise at 64 K, the network speed is 6.8 MBPS with L3 cache node
to L3 cache node while it is 4.9 MBPS with no L3 cache node
situation. With large file transfers the performance difference is
very much clear. For example at 1 MB data size, the network
speed is 99.25 MBPS with L3 cache node to L3 cache node while
it is 31.3 MBPS with no L3 cache node situation. The visible
performance difference here is about three times. Thus, proposed
autonomous L3 cache technology shows very good potential for
systems requiring low latency.

The focus of this paper was to achieve timeliness while future
work will focus on availability/resiliency of the architecture in
case of failure of node and further analysis of different overheads.

Reference

[1] Leguizamo, C.P., Kato, S., Kirai, K. and Mori, K.: Autonomous
Decentralized Database System for Assurance in Heterogeneous e-
Business, Proc. COMPSAC, pp.589–595, IEEE (May 2000).

[2] IDC: The Diverse and Exploding Digital Universe, white paper (Mar.

c© 2012 Information Processing Society of Japan 364



Journal of Information Processing Vol.20 No.2 358–365 (Apr. 2012)

2008), available from 〈www.emc.com/digital universe〉.
[3] Kouzes, R.T., Anderson, G.A., Elbert, S.T., Gorton, I. and Gracio,

D.K.: The Changing Paradigm of Data-Intensive Computing, Com-
puter, pp.26–34 (Jan. 2009).

[4] Mori, K. and Shiibashi, A.: Trend of Autonomous Decntralized Sys-
tem Technologies and Their Application in IC Card Ticket System,
IEICE Trans., Vol.E92-B, No.2 (Feb. 2009).

[5] Ahmad, H.F. and Mori, K.: Autonomous Information Service Sys-
tem: Basic Concept for Evaluation, IEICE Trans. on Fundamentals
of Electronics and Computer Sciences, Vol.E83-A, No.11, pp.2228–
2235 (2000).

[6] Mori, K.: Autonomous decentralized systems: Concept, data field ar-
chitecture and future trends, Proc. ISADS, pp.28–34, IEEE (1993).

[7] Wilkins-Diehr, N., Gannon, D., Klimeck, G., Oster, S. and
Pamidighantam, S.: TeraGrid Science Gateways and Their Impact on
Science, Computer, pp.32–41 (Nov. 2008).

[8] Gorton, I., Greenfield, P., Szalay, A. and Williams, R.: Data-Intensive
Computing in the 21st Century, Computer, pp.30–32 (Apr. 2008).

[9] Chen, Y.-K. and Kung, S.Y.: Trend and Challenge on System-on-a-
Chip Designs, Journal of Signal Processing Systems Archive, Vol.53,
Issue 1-2, pp.217–229 (Nov. 2008).

[10] Varki, E., Merchant, A., Xu, J. and Qiu, X.: Issues and Challenges in
the Performance Analysis of Real Disk Arrays, IEEE Trans. on Paral-
lel and Distributed Systems, Vol.15, No.6, pp.559–574 (2004).

[11] Peng, L., Peir, J.-K., Prakash, T.K., Staelin, C., Chen, Y.-K. and
Koppelman, D.: Memory hierarchy performance measurement of
commercial dual-core desktop processors, Journal of Systems Archi-
tecture, Vol.54, pp.816–828 (2008).

[12] Kobayashi, D., Watanabe, A., Uehara, T. and Yokota, H.: A high-
availability software update method for distributed storage systems,
Research Articles, Systems and Computers in Japan, Vol.37, Issue 10,
pp.35–46 (2006).

[13] Silvers, C.: UBC: An efficient Unified I/O and Memory Caching Sub-
system for NetBSD, Proc. FREENIX Track: 2000 USENIX Annual
Technical Conference, San Diego, California, USA (June 2000).

[14] White Paper, Using Real-Time I/O Signature Analysis to Iden-
tify Performance Improvement Options for Database Applica-
tions, Solid Data Systems Inc. (July 2006), available from
〈http://www.soliddata.com/pdf/WP IOSignatures v2.pdf〉.

[15] Wade Tuma, Comparisons of Drive Technologies for High-
Transactions Databases, Solid Data Systems, Inc. (Aug. 2007), avail-
able from 〈http://www.soliddata.com/pdf/
WP Drive Comparison v2.pdf〉.

[16] Marburger, III, J.H. and Kvamme, E.F.: Leadership Under Challenge:
Information Technology R&D in a Competitive World, An Assess-
ment of the Federal Networking and Information Technology R&D
Program, President’s Council of Advisors on Science and Technology
(PCAST) (Aug. 2007).

[17] Bovet, D.P. and Cesati, M.: Understanding the Linux Kernel, O’reilly
Press, pp.422–498 (2001).

[18] Takahashi, H., Ahmad, H.F. and Mori, K.: Layered Memory Archi-
tecture for High IO Intensive Information Services to Achieve Time-
liness, 11th IEEE High Assurance Systems Engineering Symposium
(HASE 2008), Nanjing, China, pp.343–349 (Dec. 2008).

[19] Takahashi, H., Ahmad, H.F. and Mori, K.: Balanced Memory Archi-
tecture for High I/O Intensive Information Services for Autonomous
Decentralized System, The 9th International Symposium on Au-
tonomous Decentralized Systems (ISADS 2009), Athens, Greece (Mar.
2009).

[20] Pai, V.S., Druschel, P. and Zwaenepoel, W.: IO-Lite: A unified I/O
buffering and caching system, ACM Trans. on Computer Systems
(TOCS), Vol.18, No.2, pp.37–66 (2000).

[21] RAMDISK, available from 〈http://www.vanemery.com/Linux/
Ramdisk/ramdisk.html〉 (accessed 2009-07-20).

[22] Takahashi, H., Ahmad, H.F. and Mori, K.: The Advantage of Block
level L4 cache for NAND Flash SSD in Web Application Environ-
ment, IEICE Technical Report Web DB forum Nov 2009 in Japan,
pp.31–36 (2009).

[23] available from 〈http://gridgaintech.wordpress.com/2011/08/08/
real-time-a-new-era-of-cloud-applications/〉.

Hironao Takahashi received his M.S.
degree in MOT in 2006 Tokyo Univer-
sity of Science and received Ph.D. of
Computer Science from Tokyo Institute
of Technology in 2010. He is research-
ing High speed I/O system architecture on
Autonomous Decentralized System. He
also invented Data Transmission System

technology and he is holding nine patents of this field. He is a
member of IEEE, IEICE, IEE and IPSJ.

Khalid Mahmood Malik received his
Ph.D. degree in Computer Science in
2010 from Tokyo Institute of Technology.
He is researching Autonomous Decen-
tralized Mobile Network system, Data
Transmission System architecture at DTS,
Inc. IEEE member.

Kinji Mori received his B.S., M.S. and
Ph.D. degrees in Electrical Engineering
from Waseda University, Japan in 1969,
1971 and 1974, respectively. From 1974
to 1997 he was in System Develop-
ment Laboratory, Hitachi, Ltd. In 1997
he joined Tokyo Institute of Technology,
Tokyo, Japan as a Professor. His research

interests include the distributed computing, the fault tolerant
computing and the mobile agent. He is a Fellow of IEEE and
IEICE and a member of IPSJ and SICE, Japan.

c© 2012 Information Processing Society of Japan 365


