
Electronic Preprint for Journal of Information Processing Vol.20 No.2

Regular Paper

Efficient Shape Recognition of Dynamic Event Regions
Using Wireless Sensor Networks

Satoshi Fujita1,a) Yang Yang1

Received: September 29, 2011, Accepted: January 13, 2012

Abstract: In this paper, we consider the problem of recognizing the shape of dynamic event regions in wireless sensor
networks (WSNs). A key idea of our proposed algorithm is to use the notion of distance field defined by the hop count
from the boundary of event regions. By constructing such a field, we can easily identify several critical points in each
event region (e.g., local maximum and saddle point) which could be effectively used to characterize the shape and the
movement of such event regions. The communication cost required for the shape recognition of dynamic event regions
significantly decreases compared with a naive centralized scheme by selectively allowing those critical points to send
a certification message to the boundary of the event region and a notification message to the data aggregation points.
The performance of the proposed scheme is evaluated by simulations. The simulation results indicate that: 1) the num-
ber of messages transmissions during a shape recognition significantly decreases compared with a naive centralized
scheme; 2) the accuracy of shape recognition depends on the density of the underlying WSN, while it is robust against
the lack of sensors in a particular region in the field, and 3) the proposed event tracking scheme correctly recognizes
the movement of an event region with small number of message transmissions compared to a centralized scheme.

Keywords: wireless sensor network, shape recognition, distributed algorithm

1. Introduction

Along with recent advancements in microelectronics and wire-
less communication technologies, wireless sensor networks
(WSNs) have been attracting considerable attention in the fields
of network computing and distributed processing [2], [8], [14].
The primary task of a WSN is to continuously monitor the sur-
rounding environment (e.g., the temperature and the density of
NOx in the atmosphere) to report changes in status to an appropri-
ate data aggregation point such as a meteorological observatory,
in either an event-driven or a query-based fashion.

A typical WSN is composed of a number of tiny devices called
sensor nodes (or nodes), each of which is capable of conducting
simple arithmetical operations, communicating wirelessly with
nearby nodes, and sensing the status of the surrounding environ-
ment. In the multi-hop version of WSNs [11], [13], which is the
target of the current paper, each (sensor) node plays the role of a
message router in addition to the role of a sensing device. Note
that in such a multi-hop WSN, all participant nodes should col-
laborate with each other in order to report their status to a data
aggregation point in an efficient and timely manner. A number
of pervasive applications automatically deploy sensor nodes pro-
viding a continuous and/or periodic snapshot of the environment,
such as habitat monitoring [3], target tracking [15], aquatic obser-
vations [6], and surveillance [19].

There are several key issues in designing an available envi-
ronment monitoring system (EMS) over WSNs. The first issue

1 Department of Information Engineering, Graduate School of Engineer-
ing, Hiroshima University, Hiroshima 724–8527, Japan

a) fujita@se.hiroshima-u.ac.jp

we need to address is how to convey a faithful representation of
the signal field to an aggregation point while keeping the amount
of utilized resources sufficiently low. In general, an “event” to
be monitored may spread over a wide region in the given field.
For example, consider the detection of gas leakage in a given
field. We should first consider a WSN which is expected to report
“which region in the field has a gas concentration exceeding a
certain threshold.” Once gas leaks out, the system should contin-
uously monitor all points in the field to observe the spread of the
gas. In a centralized approach, each node reports its status to the
aggregation point as soon as it detects a change in the gas density.
However, such a naive scheme does not scale, since it consumes
a large amount of network resources for the communication with
the aggregation point, such as CPU time, communication band-
width, and electric power. This indicates that in order to achieve
a highly scalable EMS based on WSNs, we have to develop a dis-

tributed data aggregation scheme such that nodes covered by an
event region autonomously organize themselves and conduct an
appropriate local computation to determine an extent of the re-
gion before sending a report to the aggregation point. The second
issue we have to consider is concerned with the trade-off between
time-criticalness and the accuracy of the monitored information.
In fact, certain events in real applications such as gas leakage
and fires are highly time-critical, while it is generally sufficient to
know an approximated direction of the event region. On the other
hand, there are other type of events which are not time-critical
but require precise location information, e.g., plants growth [18]
and habitat changes [10]. In such applications, we need a precise
location of target events in order to reflect the acquired data to
(sometimes political) decisions.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

Motivated by those considerations, a variety of data aggrega-
tion methods for WSNs have been proposed in the literature, to
acquire statistical attributes of sensed data, such as min, max, and
average [7] as well as robust statistics such as median and quan-
tiles [16]. Unfortunately however, most of those techniques have
merely focused on numerical statistics and did not pay attention
to the geometric shape of the event region, although such infor-
mation is generally useful to intuitively grasp an overview of the
monitored event.

In this paper, we consider the problem of recognizing the shape
of an event region in WSNs. The first idea of our algorithm is
to focus on a distance field defined by the hop count from the
boundary of an event region. By constructing such a virtual field
in the given space, we can easily identify several critical points in
the event region (e.g., local maximum and saddle point), which
well characterize the shape of the region. The communication
cost required for shape recognition is significantly lower than the
naive centralized scheme because it selectively allows those crit-
ical points to send a message to the aggregation point. After re-
ceiving such location information, the host behind the aggrega-
tion point can estimate the actual shape of the event region with
some heuristics. The reader should note that a similar idea to
identify critical points in WSNs has already been proposed in the
literature [21], although it gave no experimental evaluation con-
cerning the time and message complexity. In addition, the authors
of the paper merely proposed a distributed scheme to identify
critical points in static event regions and point out possible ap-
plications of the scheme including efficient message routing and
facility location; i.e., they did not extend the idea to the track-
ing of dynamic event regions. The second idea of our algorithm
is to extend the above scheme to the recognition of the move of
an event region in the given space. More concretely, by flooding
an inquiry message from each critical point, nodes on the bound-
ary can certify that whether the point is still a critical one or not.
Thus, if the region moves in the field, a node on the boundary
can locally check the facts of the movement, and can notify it to
the (former) critical point with necessary information such as the
direction and the distance of the move. After receiving such noti-
fications from the boundary nodes, a (former) critical point hands
over the role of critical point to an appropriate node in the field,
to achieve efficient tracking of the move of event region. The per-
formance of the proposed scheme was experimentally evaluated
by simulation. The result of the simulations is summarized as
follows: 1) the number of messages transmitted during a shape
recognition significantly decreases by applying the scheme com-
pared with a naive centralized scheme; 2) the accuracy of shape
recognition depends on the density of the underlying WSN, while
it is robust against the lack of sensors in a particular region in the
field, and 3) the proposed event tracking scheme correctly recog-
nizes the move of event region with a small number of transmitted
messages compared with a centralized scheme.

The remainder of this paper is organized as follows. Section 2
outlines related work. Section 3 describes a formal model of the
WSN. Section 4 describes a shape recognition scheme for static
event region, and Section 5 extends it to the recognition of a dy-
namic event region. The result of the simulations is shown in

Section 6. Finally, Section 7 concludes the paper with topics for
future work.

2. Related Work

Previous works on event shape recognition in WSN can be
classified into two categories by their main techniques which are
boundary detection schemes and fault-tolerant schemes.

In boundary detection schemes, the shape of an event re-
gion is recognized by providing a description of the boundary.
Chintalapudi et al. [4] proposed a classifier-based edge detec-
tion mechanism to generate a linear polynomial representing the
boundary of an event, where each node detects an edge of the re-
gion by sampling the status of its nearby nodes. Nowak et al. [12]
introduced a quadtree structure to efficiently collect detected in-
formation to a central node; i.e., it recursively partitions a given
space into four subspaces, and edges detected by a node corre-
sponding to a leaf in the quadtree are collected to the root of the
tree, in such a way that the shape of the boundary is recognized
by the node corresponding to the root. Unfortunately however,
such boundary detection schemes have a serious drawback such
that nodes detecting the boundary must form a continuous loop
to correctly recognize the shape of the overall region; i.e., it does
not allow for missing nodes on the boundary which significantly
degrades the robustness of the scheme.

Fault-tolerant schemes focus on bare analog signals received
from sensors rather than a binary representation obtained through
interpretations. Assuming that event measurements are spatially
correlated, those schemes try to distinguish fault sensor measure-
ments; i.e., disambiguate events by exchanging signals among
nearby sensors. Krishnamachari et al. [9] proposed a scheme
based on a distributed Bayesian method to detect and to correct
such faults. However, such techniques cannot be applied to gen-
eral WSNs since it requests each node to know its precise geo-
graphical location through expensive GPS or RF-based beacons.
In addition, it requests each node to autonomously identify in-
teresting output signals in order to recognize the shape of event
region merely through a collaboration among sensors.

3. Model

This section describes a model of WSN which will be used
throughout of this paper. Let V be a set of sensor nodes. Each
node in V is capable of sensing the environment via attached sen-
sor devices, communicating with nearby nodes via wireless com-
munication device, and conducting simple computations with a
tiny CPU and a small memory. In the following, we assume that
each node in V has a unique ID, is located on a two-dimensional
plane and is associated with a point in a two-dimensional coor-
dinate space. Let p(u) denote the point associated with node u.
Note that p(u) is a variable used only in the explanation of al-
gorithms and we do not allow each node u to refer to its precise
location p(u).

For each u ∈ V , let N(u) denote the set of neighbors of u which
is defined by the Euclidean distance of the corresponding points;
i.e., for any u, v ∈ V , v � u, v ∈ N(u) iff |p(u) − p(v)| ≤ 1,
where |p − q| represents the Euclidean distance between points

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

p and q *1. In the proposed scheme, we assume that each node
u knows a set of neighbors N(u), and that a message transmit-
ted by u is always received by all nodes in N(u) in a single step,
where each message has a fixed length of O(log |V |). In addition,
u detects an event occurred in the environment if the event region
covers point p(u), where the event region is a finite region in the
two-dimensional space concerned with the event (note that term
“finite” means that it has a finite boundary).

Let E
def
= {(u, v) ∈ V × V : v ∈ N(u)} be a symmetric relation

defined by the sets of neighbors. A pair of V and E naturally de-
fines an undirected graph G, where in the following we assume
that G is connected, without loss of generality. Let σ1, σ2, and
σ3 be three external nodes called sinks (note that σi � V for
each i). Those sinks are used for data aggregation and node local-
ization (detailed procedure for such operations will be described
later). Throughout this paper, we assume that each sink σi has
at least one neighbor contained in V , and knows its precise loca-
tion p(σi). In addition, sink σ1 is connected to a host via a wired
link. Users can interact with the WSN through the host or in other
words can can send queries to the host and they can receive neces-
sary information through the host. The main task of the host is to
conduct shape recognition (i.e., an approximation of the shape of
an event region) based on the information received from nodes in
the WSN. The other operations are executed by individual sensor
nodes in the WSN, in a distributed and autonomous manner.

4. Shape Recognition of Static Event Region

This section describes a scheme for recognizing the shape of
a static event region, which will be used as a basic procedure
in an event tracking scheme proposed in the next section. The
scheme consists of the following five parts: 1) preprocessing
(Section 4.1), 2) event detection (Section 4.2), 3) distance field
construction (Section 4.3), 4) identification of critical points (Sec-
tion 4.4), and 5) event region approximation (Section 4.5).

4.1 Preprocessing
At first, each sink broadcasts a message to initiate the calcula-

tion of the minimum hop count from the sink to each node. We
can use the Dijkstra’s method [1] as a concrete procedure for such
calculation. After completing the calculation, each node u in the
field stores tuple 〈d1(u), d2(u), d3(u)〉 to its local memory, where
di(u) denotes the minimum hop count from u to sink σi. In the
proposed scheme, such a tuple is used to approximate the location
of each node in the coordinate space by assuming that the Eu-
clidean distance is well approximated by the hop count (we will
discuss this issue in Section 4.5.2). In addition, the ith element of
the tuple is used to navigate message transmissions towards sink
σi through a shortest path; i.e., each node may simply forward
a message towards a descent direction of the ith element in the
tuples.

4.2 Event Detection
Suppose that node u detects an event with event region R. Af-

*1 We assume that the transmission radius of wireless communication de-
vice is a unit distance, for simplicity.

ter letting r(u) := true, node u notifies the fact to sink σ1 through
a shortest path as described above, where r(u) is a local vari-
able representing whether u is covered by an event region. Upon
receiving a notification, sink σ1 sends a Reply message along
the above forwarding path in the reversed direction. Let u∗ be
the final receiver of the Reply message. Note that r(u∗) = true

must hold valid since it is the originator of a notification mes-
sage. In the proposed scheme, even if σ1 receives several noti-
fication messages from different originators, it sends exactly one
Reply message to those notifications assuming that R consists of
a single connected region (a generalization to the case of several
connected regions is left as a future work).

In general, several nodes covered by a region may try to send
a notification at almost the same time. In practice, such redun-
dant message transmissions could be reduced by using the fol-
lowing rules: 1) two notifications are merged if they encounter
each other; and 2) a message is suppressed at a node if the node
has already forwarded another notification. The reader should
note that such merger of notifications does not increase the length
of messages since each intermediate node may simply notify its
ID to a node on the shortest path to the sink to receive a Reply

message.

4.3 Distance Field Construction
Let h(u) denote the height of node u with respect to event re-

gion R, which is defined as follows:

h(u)
def
=

⎧⎪⎪⎨⎪⎪⎩
0 if r(u) = false, and
minv∈N(u){h(v)} + 1 otherwise.

h(u) represents the minimum hop count from the boundary of R

to node u (we say that node u is at the boundary if h(u) = 1). A
concrete procedure to calculate the height of nodes is described
as follows:
• Initialization: If r(u) = true then node u initializes h(u) to

one, and otherwise initializes it to zero. (Each node conducts
this operation when it detects an event.)

• Trigger: Let u∗ be the final receiver of a Reply message is-
sued by sink σ1. After receiving a Reply message, u∗ broad-
casts Inside message to all nodes in N(u∗) to start a calcula-
tion of the height of nodes.

• Propagate: If node v receives Inside message from its
neighbor for the first time, and if r(v) = true, then it broad-
casts Inside to N(v).

• Update: If node v receives Inside message from all nodes in
N(v) and if h(v) = 1, then it updates h(v) to two, and broad-
casts Height(2) message to N(v). Similarly, for each i ≥ 2,
if v receives Height(i) message from all nodes in N(v) and if
h(v) = i, then it updates its height to i + 1, and broadcasts
Height(i + 1) message to N(v).

4.4 Identification of Critical Points
The basic idea of our scheme is to recognize the shape of an

event region through identifying a collection of critical points in
the distance field. More concretely, we adopt local maxima and
saddle points as the critical points characterizing the shape of the
event region.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

Fig. 1 Critical points in an event region. A saddle point is represented as a big red dot, and nodes with
larger h-values than the saddle point are denoted by dark colors.

A node can easily recognize itself as a local maximum if the
height of the node is h and it does not receive a Height(h + 1)
message from its neighbor (or if the height of the node is one and
it does not receive an Inside message from its neighbor) for a cer-
tain period of time. In contrast, identifying saddle points is not as
easy as identifying local maxima since since a saddle point is si-
multaneously adjacent with a node with higher h-value and a node
with lower h-value; i.e., each node cannot decide whether it is a
saddle point or not, by merely observing h-values in its neighbor-
hood. Figure 1 illustrates a saddle point in an event region where
the large red dot represents a saddle point.

In order to overcome such difficulty in calculating saddle
points, we apply a sweep method proposed by Skraba et al. [17]
Let U (⊆ V) be a set of identified local maxima, and G(U) be a
subgraph of G induced by U. For each connected component in
G(U), we select an arbitrary node in the component as an initia-
tor of the sweep process (note that we can use a unique ID given
to each node for such an arbitration). Let U′ be the set of initia-
tors. At first, each initiator u ∈ U′ broadcasts a Sweep message
containing the name and the height of node u, to all neighbors
in N(u). This message is propagated to all nodes covered by the
same event region R, by forwarding the message towards a de-
scending direction of the h-value. Note that each node that re-
ceived a Sweep message knows the name and the height of the
corresponding local maximum. If v receives at least two sweep
messages originating from different local maxima, v recognizes
itself as a candidate of saddle point, and executes the follow-
ing operations in order to certify whether it is an actual saddle
point: 1) stop the forwarding of received Sweep messages to the
next node; and 2) broadcast a message containing h(v) to nodes in
N(v). Any candidate saddle point v that does not receive a broad-
cast message containing an h-value not smaller than h(v) from its
neighbor, it can recognize itself as an actual saddle point.

Although the above scheme certainly identifies several critical
points in a fully distributed manner, it often (mis)identifies sev-
eral (non-critical) nodes as local maxima if the density of nodes
is low. More specifically, it does not guarantee that node v al-

ways has a neighbor u such that h(u) = h(v) + 1 when v is not
local maximum; i.e., v may (mis)identify itself as a local maxi-
mum when each neighbor w of v has the same (or lower) height
with v, and when it has the same height with v, it is adjacent with
a node with height h(v) + 1. Such a (mis)identification could be
partially resolved in the following manner (in the following, we
call it a pruning process): For each node u, if it identifies itself
as a local maxima, it transmits a LocalMax message including
h(u) to N(u) (more precisely, a LocalMax message should be di-
vided into several packets since we are assuming that the length
of each message has a fixed length). Upon receiving a LocalMax

message, node v transmits an NG message to u, if there are any
w ∈ N(v) such that h(w) > h(u). If node u receives an NG mes-
sage, it excludes itself from a set of local maxima.

4.5 Event Region Approximation
After recognizing itself as a critical point, node u transmits an

Event message towards sink σ1 in order to notify the following
information to the host: 1) tuple 〈d1(u), d2(u), d3(u)〉 indicating an
approximated location of node u; 2) the height h(u) of node u, and
3) if u is a saddle point, it designates local maxima corresponding
to the saddle point.
4.5.1 Outline

After collecting Event messages received from critical points
through sink σ1, the host conducts a shape approximation in the
following three steps:
• Step 1: At first, the host imaginarily associates each criti-

cal point u to a point p̃(u) in the two-dimensional coordinate
space. Recall that since we are assuming that no node in V

knows its precise location, the host must estimate the loca-
tion of each node from a tuple of hop counts to three sinks
from the node (a concrete procedure for the estimation will
be described later).

• Step 2: For each local maximum u, the host utilizes a phan-
tom circle centered at p̃(u) with radius (h(u) − 1) × α, where
α (≤ 1) is an expected distance covered by each communi-
cation hop (see Section 4.5.2 for the details), and regards the

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

area spanned by such circles as an approximation of event
region R.

• Step 3: Finally, the host conducts an adjustment of the re-
sultant shape by using saddle points in the following man-
ner: 1) let w be a saddle point corresponding to local max-
ima u and v; 2) it considers a circle of radius (h(w) − 1) × α
centered at point p̃(w); and 3) includes the minimum convex
region containing circles corresponding to w and u to the rec-
ognized shape, and conducts the same operation for circles
corresponding to w and v.

Example: Suppose that the host receives the following three
Event messages from critical points u, v, and w:

(u, 〈6, 5, 11〉, 4,−), (v, 〈12, 10, 6〉, 5,−),

and (w, 〈10, 8, 9〉, 3, 〈u, v〉).
The first field in the message represents the originator of the mes-
sage, and the second field represents the approximated location
of the originator. The third field represents the height of the orig-
inator, and the fourth field designates a list of corresponding local
maxima, which is empty if the originator is a local maximum.

After receiving those messages, the host conducts the follow-
ing operations. In Step 1, it associates three nodes u, v, and w to
points in the two-dimensional space. Second, it calculates a union
of circles centered at local maxima or in other words calculates a
circle of radius (h(u)−1)×α = 3α centered at point p̃(u), a circle
of radius (h(v) − 1) × α = 4α centered at point p̃(v), and regards a
union of them as an approximation of the event region. Finally, it
adjusts the resultant shape by using saddle point w.
4.5.2 Location Estimation

Let p(σi) be the coordinate point associated to sink σi, and
let p̃(u) be a variable representing an approximated coordinate
point of node u ∈ V . In our model of WSN, two nodes can di-
rectly communicate with each other if and only if the Euclidean
distance between them is smaller than or equal to one. Thus,
di(u) ≥ |p(u) − p(σi)|, and the difference between di(u) and the
Euclidean distance increases as the density of the nodes in the
field diminishes. In order to tolerate such an inaccuracy, we pro-
pose following operation in the location estimation step:
• At first, we estimate the Euclidean distance between u and
σi as di(u) × α, where α is an expected Euclidean distance
covered by a single hop which is estimated by sampling the
Euclidean distance between sinks; i.e., it is calculated as:

α =
1
6

∑

i� j

|p(σi) − p(σ j)|
di(σ j)

Recall that the value of α is also used to estimate the radius
of circles centered at critical points.

• Let pi, j(u) and p′i, j(u) be two points at distance di(u)×α from
σi and at distance d j(u)×α fromσ j (note that pi, j(u) = p′i, j(u)
if and only if the Euclidean distance between those sinks is
equal to (di(u)+d j(u))×α). Let Q = {pi, j(u), p′i, j(u) | 1 ≤ i <

j ≤ 3}. In order to calculate a point corresponding to node u,
the host first conducts a clustering of points contained in Q

using a nearest neighbor method with an appropriate thresh-
old. If we have a cluster of size three or more, we regard the
centroid of those points as a candidate for p̃(u), where if we

have two such clusters, we cannot determine which is an ap-
propriate candidate in our model; i.e., it outputs two points
as the candidate for p̃(u) (in the following experiments, for
simplicity we assume that it can always determine a unique
candidate as a result of the clustering).

5. Event Tracking Scheme

5.1 Overview
In this section, we propose a distributed scheme to track the

movement of an event region using the shape recognition scheme
described in the last section. In this section, we assume that the
shape of a given region is convex, and it does not change dur-
ing the computation. In the proposed scheme, an identified local
maximum periodically verifies its maximality, and if it detects
that it is no longer a local maximum, it hands over the role of
local maximum to an appropriate node in the field. More specif-
ically, it periodically transmits a short message towards nodes at
the boundary of the event region, and if a node receiving the mes-
sage detects the change of the boundary, it notifies that fact to the
(former) local maximum.

Key points of such a verification-based scheme are as follows:
1) how to disseminate a verification message towards the bound-
ary of a region and how to collect notification from them; 2) how
to detect the change of the boundary merely by referring to the
local information; and 3) how to estimate the direction and the
distance to the new local maximum from the collected notifica-
tion messages. In the following explanation, we use symbol R to
denote the region before a change, and R′ to denote the region af-
ter the change. Recall that h(v) denotes the height of node v in R.
In the following, a new type of message Height(i, j) is introduced
to notify that the height of a node is i in R and is changed to j in
R′, where j takes one of the following three values: 1) j = 0 if
the node is no longer covered by R′; 2) j = 1 if it is a boundary
node in R′; and 3) j = ∞ if it is inside of R′ but is not a boundary
node.

5.2 Update of the Boundary
Recall that U denotes a set of local maxima which transmit

Event messages to sink σ1, and U′ (⊆ U) denotes a set of nodes
who initiated a sweep process to identify saddle points. In the
following, for simplicity, we assume U = U′ or in other words
that U is an independent set of graph G.

Propagation: After transmitting an Event message, each u ∈
U′ waits for a certain time τ, and then starts verifying the event
region R. More concretely, it transmits an Update message to
N(u), which is propagated to nodes covered by R, in a descent
direction of h-values, or namely in a similar way to the sweep
message while it is not blocked at saddle points. If it receives
an Update message from a neighbor with a positive h-value for
the first time, node v transmits a copy of the message to N(v) with
Boolean variable r′(v) which indicates whether v is covered by the
new event region R′. Note that by collecting all Update messages
received from neighbors, v can identify itself as a boundary node
or not; i.e., if it receives an Update message with r′(w) = false

from neighbor w and if r′(v) = true, then it identifies itself as a
boundary node in R′.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

Note that during the propagation of Update messages, each
node v knows a neighboring node with higher h-value than v in
R. In the proposed scheme, we regard such a node as a parent
of v in the distance field, where a saddle point has several parent
nodes.

Collection: After receiving Update messages from all neigh-
bors, node v at either the boundary of R or the boundary of an in-
tersection of R and R′ transmits a Height message to N(v) which
will be forwarded to the initiator of the Update message along
a tree used for the propagation in the reverse direction (note that
each node received an Update message has known its parent in
the delivery tree). More concretely, 1) node v transmits message
Height(h(v), 0) if h(v) ≥ 1 and it becomes an outside node of R′,
2) transmits Height(h(v), 1) if h(v) ≥ 1 and it becomes a bound-
ary node in R′, and 3) transmits Height(1,∞) if h(v) = 1 and it
becomes an interior node in R′ besides the boundary.

In order to reduce the communication cost, during such trans-
missions several redundant messages are discarded at interme-
diate nodes, according to the following rules: 1) for any i and
j, Height(i, j) is transmitted at most once, i.e., latter ones are
simply discarded; 2) if a node receives both Height(i, 0) and
Height(i′, 1), then the former one is discarded; and 3) if it re-
ceives both Height(i, 1) and Height(i′, 1), i < i′, then the former
one is discarded.

5.3 Event Tracking
After receiving Height message from all neighbors, local max-

imum u of event region R conducts the following operations:
Case 1: If it receives Height(1, 1) from all nodes in N(u), u

recognizes R′ = R, and notifies the fact to the host. It then starts
the next verification process after waiting for τ time.

Case 2: If it receives Height(i, 1) and Height(1,∞) from dif-
ferent nodes in N(u), u recognizes that the local maximum cor-
responding to u moves to a node u′ in event region R′, and that
node u′ exists in the direction of a node who sent Height(1,∞)
to u. Thus, it tries to hand over the role of local maximum to u′

according to the procedure described below.
Case 3: Otherwise, node u gives up to find its successor in R,

and asks the host to start a new shape recognition process.
Detailed procedure for Case 2 is described as follows. Let i∗

be the maximum value of i contained in messages Height(i, 1)
which are received by u from its neighbors. In the proposed event
tracking scheme, we use i∗ − 1 as the hop count from u to u′,
where u′ is the successor of u in R′. The direction of u′ from u is
determined by constructing a distance field from terminals of an
“arc of nodes” that transmitted a Height(1,∞) message towards
node u. More concretely, a node who transmitted Height(1,∞)
is regarded as a terminal of the arc, if it receives a Height(1, 1)
message from its neighbor in the collection phase. If there are
several nodes satisfying the above condition in its neighbor, the
node with a largest ID is selected as the terminal node. Since we
are assuming that R is convex, there exist at most two terminals
on the arc (if it can identify no terminal, node u gives up try-
ing to find its successor, and asks the host to start the next shape
recognition process as in Case 3). Let w1 and w2 be two termi-
nals of the arc. After transmitting their Height(1,∞) messages,

those nodes initiate construction of a distance field by transmit-
ting a short message, which will be forwarded by nodes who have
already forwarded a Height(1,∞) message, towards node u.

The direction of successor u′ from u is identified by nodes
which have the same hop count to two terminal nodes. Thus,
by forwarding a hand-over message along a path consisting of
such nodes for i∗ − 1 hops, node u can successfully send a hand-
over message to a candidate node of local maximum in the new
event region R′. After receiving a hand-over message, node u′

constructs a distance field originating from it, and starts a verifi-
cation of the maximality in a similar way to the above procedure.

6. Simulation

6.1 Setup
We evaluate the performance of the proposed scheme by sim-

ulation. In the simulation, we assume that any message transmit-
ted by node u is correctly received by all nodes in N(u). To also
simplify the exposition, we assume that the host can estimate the
correct location of each critical point from the tuple received from
it (several figures estimated by the host will be shown below). In
fact, the result of the following experiments indicates that the dif-
ference between estimated and actual positions of identified crit-
ical nodes is smaller than the difference between calculated and
actual critical nodes in the given event region.

A square region of size 20 × 20 is given as the field of events
where a unit distance is defined to be the transmission radius of
each node. Coordinate points of four corners of the region are
(0, 0), (0, 20), (20, 20), and (20, 0) in a clockwise direction start-
ing from the left bottom. We then select n random points in the
field, and associate them to individual sensor nodes (note that
each point is represented as a pair of reals and we assume that
any two points are distinct, without loss of generality). Parame-
ter n is appropriately determined in the simulation in such a way
that the resultant graph is connected (i.e., an n that is too small
disconnects the underlying sensor network).

As the concrete event region, in the following experiments, we
consider the following two event regions R1 and R2, where: 1) R1

is a simple circle with radius 4.2 centered at point p1 = (12, 11);
and 2) R2 is the face of the mouse located at the center of the
square region.

6.2 Impact of Network Density
We first evaluate the impact of the density of nodes. In the

following figures, the boundary of an event region is represented
by a thick black line and each node in the field is represented by
a gray circle of radius 0.5 (see Fig. 2 for illustration). Thus, the
reader can easily check the connectivity of the resultant graph G

since two nodes are connected by an edge in G if the correspond-
ing circles have a non-empty intersection. Yellow regions shown
in Fig. 2 are outputs of the proposed scheme for event regions R1

((a) and (b)) and R2 ((c) and (d)). Red dots in the figure indicate
local maxima calculated by the scheme, and black dots indicate
saddle points each of which is identified by two sets of connected
local maxima through sweep process. Figures 2 (a) and (c) are
outputs of sparse WSN consisting of 900 nodes, and Figs. 2 (b)
and (d) are outputs of dense WSN consisting of 1,800 nodes. In

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

(a) (b)

(c) (d)

Fig. 2 The shape of event region R1 estimated by the proposed scheme with WSN consisting of (a) 900
nodes and (b) 1,800 nodes; and R2 estimated with WSN consisting of (c) 900 nodes and (d) 1,800
nodes.

the former case, each node has six neighbors on average, and
in the latter case each node has 13 neighbors on average. It is
immediate from the figures that the accuracy of the approxima-
tion increases along with the increase in density of the underlying
WSN.

The inaccuracy of the approximation for the sparse case is ap-
parently due to the lack of connectivity in the underlying graph
G. In fact, if the number of nodes is small, then the nodes in
the field cause a number of “holes” even if the overall graph G

is kept to be connected. The size and the number of such holes
increase as the number of nodes decreases. Due to the such holes,
1) several nodes calculate their height values through a long path
around the hole, and 2) several nodes are (mis)identified to be lo-
cal maxima due to the lack of nodes in their neighborhood. In
our scheme, the first effect of holes is the primary reason for the
inaccurate approximation. In Fig. 2 (a), the approximation devi-
ating outside of the boundary of R1, and in Fig. 2 (c), the over
approximation of the ears of mouse, are all due to such a reason.
On the other hand, the scheme actually (mis)identifies a number
of nodes as local maxima in both of the sparse and the dense
cases in Fig. 2. However, it is worth nothing here that even if it

could unexpectedly identify nodes as critical points, the shape es-
timated by the scheme is not significantly affected, since it takes
a union of circles centered at identified points (any node outside
the region does not identify itself as a boundary node).

6.3 Efficiency of Static Shape Recognition
Next, we evaluate the efficiency of our shape recognition

scheme in terms of the number of transmitted messages. Each
data described below is an average taken over 10 experiments
(each instance is randomly generated by selecting n random
points in the given field, while the location of sinks is fixed). Re-
call that in our scheme, a shape recognition is initiated by a node
detecting an event by transmitting a notification which will be
forwarded to sink σ1, and terminates when σ1 receives all Event

messages concerned with the event. We count the transmission
of messages with respect to the notifications, Reply messages
from σ1, Inside messages, Height messages, Sweep messages
and Event messages, and for the third scheme, we also count the
number of LocalMax and NG messages. In the following, we
assume that sink σ1 is placed at point (0, 20).

Figure 3 compares the result on three schemes. The first one is

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

Fig. 3 A comparison of the total number of messages transmitted during
shape recognition procedure of centralized scheme, proposed scheme
and the improvement.

a centralized scheme, the second one is our original scheme, and
the third one is our improved (i.e., pruning) scheme. As expected,
the second scheme certainly reduces the number of messages of
the first scheme, and the third scheme further improves the sec-
ond scheme. A detailed analysis of the simulation result indicates
that the number of several messages does not change with such
improvement; for example, in both of the second and the third
schemes, as increasing n from 900 to 3,000, 1) the number of no-
tifications similarly increases from 203.7 to 842.4; 2) the number
of Reply messages takes a constant value 22.6; 3) the number
of Inside and Sweep messages increases from 127.7 to 416.6;
and 4) the number of Height messages similarly increases from
193.8 to 472.3. However, it does definitely reduce the number
of Event messages transmitted in the second scheme; namely it
reduces from 1,246.7 to 443.6 when n = 900, and it reduces from
1,244.5 to 173.6 when n = 3,000. Although LocalMax and NG

causes an additional cost such as 85.5 for n = 900 and 423.4 for
n = 3,000 (recall that those messages are newly introduced to the
third scheme, and are proportional to the number of neighbors of
each node), a significant reduction of Event makes the total cost
of the third scheme lower than the second scheme for every n.

6.4 Event Tracking Scheme
In this subsection, we evaluate the performance of the proposed

event tracking scheme. We consider a scenario in which event re-
gion is initially given as R1, and after completing a shape recog-
nition of R1, the center of the region “moves” from (12, 11) to
(10, 10). In the following, we refer to the region after the move as
R′1, and represent the height of node v in region R′1 as h′(v).

Let u be a local maximum of R1 identified by our shape
recognition scheme, and u∗ be the successor of u calculated
by our event tracking scheme (note that the scheme might not
find such u∗ if the density of the network is low). Now let
us define the accuracy of selecting u∗ as a successor of u as:
1) h′(u∗)/maxv{h′(v)} if such u∗ is identified by the scheme, and
2) 0 otherwise. Figure 4 shows how the accuracy of our proposed
scheme varies by increasing the number of nodes in the network
where each value is an average over 10 random instances as be-
fore. Although it takes a small value for small n, which is mainly

Fig. 4 Accuracy of our event tracking scheme.

Fig. 5 A comparison of the total number of messages transmitted during
the event tracking procedure of proposed scheme and centralized
scheme.

due to failure to identify the successor u∗ (recall that the accu-
racy takes value zero for such case), the accuracy gradually ap-
proaches to 0.72 for sufficiently large n; i.e., it correctly identifies
the direction of the move and at the same time, the distance to the
new local maximum is estimated almost correctly. The reason
why the accuracy for 1,800 nodes is worse than the accuracy for
1,200 nodes is that the scheme could not identify the next node
in many instances for 1,800 nodes (recall that the accuracy takes
value 0 if it could not identify the next node).

Finally, we evaluate the efficiency of the proposed event track-
ing scheme in terms of the number of all transmitted messages.
Recall that in our scheme, an event tracking is initiated by each
local maximum u by transmitting an Update message to its neigh-
bors, and terminates when the verification of maximality of suc-
cessor u′ completes. As a competitor, we consider a naive scheme
which conducts the following steps in a centralized manner:
1) sink σ1 collects location information from “all” nodes who
detect the change of the coverage by the event region (i.e., node v
can recognize itself as a member of R1−R′1 if it observes a change
of r(v) from true to false, and a member of R′1 − R1 if it observes
a change of r(v) from false to true), and 2) the host estimates the
current shape by those differential information and the previous
shape R1. Figure 5 shows the result. As shown in the figure,
the proposed scheme significantly improves the performance of

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

the naive centralized scheme; e.g., it reduces the number of mes-
sages to 36% for n = 900, and to 60% for n = 3,000, while the
cost of the boundary updating procedure is almost the same as
the verification of the maximality of u′, which takes 295.3 for
n = 900 and 1,017.9 for n = 3,000.

7. Concluding Remarks

In this paper, we propose a distributed scheme to recognize
the shape of a dynamic event region by WSNs. The proposed
scheme significantly reduces the number of transmitted messages
by identifying critical points in the given event region, and by re-
peatedly verifying the criticalness of such identified points. The
result of the simulations indicate that the proposed scheme (al-
most always) correctly identifies the direction and the distance
of a movement of event region, and the number of message trans-
missions is sufficiently small compared with a centralized scheme
which collects differential information from the nodes.

A future problem is to extend the scheme such that: 1) the
shape of the target event region is not restricted to be convex;
2) the efficiency of the scheme is further improved; and 3) the
shape of the region can change during a recognition process (the
current version allows the movement of an event region, but does
not allow a change in the shape). We are planning to implement
the proposed scheme in actual WSNs consisting of hundreds of
sensor nodes, and apply it to actual applications.

Reference

[1] Bertsekas, D. and Gallager, R.: Introduction to Algorithms, Cormen,
T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (Eds.), pp.595–601,
MIT Press and McGraw-Hill (2001).

[2] Bonnet, P., Gehrke, J.E. and Seshadri, P.: Querying the Physi-
cal World, IEEE Personal Communications, Vol.7, No.5, pp.10–15
(2000).

[3] Cerpa, A., Elson, J., Estrin, D., Girod, L., Hamilton, M. and Zhao, J.:
Habitat Monitoring: Application Driver for Wireless Communications
Technology, Proc. 2001 ACM SIGCOMM Workshop Data Communi-
cation in Latin America and the Caribbean, pp.20–41 (2001).

[4] Chintalapudi, K.K. and Govindan, R.: Localized Edge Detection in
Sensor Fields, Proc. 1st IEEE International Workshop on Sensor Net-
work Protocols and Applications (SNPA), pp.59–70 (2003).

[5] Dey, T.K., Giesen, J. and Goswami, S.: Shape Segmentation and
Matching with Flow Discretization, Algorithms and Data Structures,
LNCS 2748, pp.25–36 (2003).

[6] Dhariwal, A., Zhang, B., Stauffer, B. and Oberg, C.: NAMOS: Net-
worked Aquatic Microbial Observing System, Proc. 2006 Interna-
tional Conference on Robotics and Automation (ICRA 06), pp.4285–
4287 (2006).

[7] Greenwald, M. and Khanna, S.: Power-Conserving Computation of
Order-Statistics over Sensor Networks, Proc. 23rd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems
(PODS), pp.275–285 (2004).

[8] Intanagonwiwat, C., Govindan, R. and Estrin, D.: Directed Diffu-
sion: A scalable and robust communication paradigm for sensor net-
works, Proc. 6th Annual ACM/IEEE International Conference on Mo-
bile Computing and Networking (MobiCom), pp.56–67 (2000).

[9] Krishnamachari, B. and Iyengar, S.: Distributed Bayesian Algorithms
for Fault-Tolerant Event Region Detection in Wireless Sensor Net-
works, IEEE Trans. Comput., Vol.53, No.3, pp.241–250 (2004).

[10] Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D. and Anderson,
J.: Wireless Sensor Networks for Habitat Monitoring, Proc. 1st ACM
International Workshop on Wireless Sensor Networks and Applica-
tions (WSNA), pp.88–97 (2002).

[11] Marcy, H.O. and Kaiser, W.J.: Wireless Integrated Network Sensors:
Low power systems on a chip, Proc. 24th European Solid State Cir-
cuits Conference, pp.9–16 (1998).

[12] Nowak, R. and Mitra, U.: Boundary Estimation in Sensor Networks:
Theory and Methods, Proc. IPSN 2003, Zhao, F. and Guibas, L. (Eds.),
LNCS 2634, pp.80–95 (2003).

[13] Rahman, R., Alanyali, M. and Saligrama, V.: Distributed tracking in
multihop sensor networks with communication delays, IEEE Trans.
Signal Processing, Vol.55, pp.4656–4668 (2007).

[14] Rosencrantz, M., Gordon, G. and Thrun, S.: Decentralized sensor fu-
sion with distributed particle filters, Proc. Conference on Uncertainty
in Artificial Intelligence (UAI), pp.493–500 (2003).

[15] Shin, J., Guibas, L. and Zhao, F.: A Distributed Algorithm for Manag-
ing Multi-target Identities in Wireless Ad-hoc Sensor Networks, Proc.
IPSN 2003, Zhao, F. and Guibas, L. (Eds.), LNCS 2634, pp.223–238
(2003).

[16] Shrivastava, N., Buragohain, C., Agrawal, D. and Suri, S.: Medians
and Beyond: New aggregation techniques for sensor networks, Proc.
2nd International Conference on Embedded Networked Sensor Sys-
tems, pp.239–249 (2004).

[17] Skraba, P., Fang, Q., Nguyen, A. and Guibas, L.: Sweeps over wireless
sensor networks, Proc. 5th International Conference on Information
Processing in Sensor Networks (IPSN), pp.143–151 (2006).

[18] Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K.,
Burgess, S., Dawson, T., Bouonadonna, P., Gay, D. and Hong, W.: A
macroscope in the redwoods, Proc. 3rd ACM Conference on Embed-
ded Networked Sensor Systems (SenSys), pp.51–63 (2005).

[19] Werner-Allen, G., Johnson, J., Ruiz, M., Lees, J. and Welsh, M.: Mon-
itoring volcanic eruptions with a wireless sensor network, Proc. 2nd
European Workshop on Wireless Sensor Networks (EWSN), pp.108–
120 (2005).

[20] Zhu, X., Sarkar, R., Gao, J., Mitchell, J.S.B.: Light-Weight Con-
tour Tracking in Wireless Sensor Networks, Proc. INFOCOM 2008,
pp.1175–1183 (2003).

[21] Zhu, X., Sarkar, R. and Gao, J.: Segmenting a sensor field: Algo-
rithms and applications in network design, ACM Trans. Sensor Net-
works, Vol.5, No.2 (2009).

Satoshi Fujita received the B.E. degree
in electrical engineering, M.E. degree in
systems engineering, and Dr.E. degree in
information engineering from Hiroshima
University in 1985, 1987, and 1990, re-
spectively. He is a Professor at Fac-
ulty of Engineering, Hiroshima Univer-
sity. His research interests include com-

munication algorithms on interconnection networks, parallel al-
gorithms, graph algorithms, and parallel and distributed computer
systems. He is a member of IEICE, SIAM Japan, IEEE, and
SIAM.

Yang Yang received the B.M. degree in
computer science (E-commerce) from
Liaoning Normal University in China in
2005, and M.E. degree in information en-
gineering from Hiroshima University in
2009. Her research interests include dis-
tributed networks and parallel algorithms.
She is a system engineer of financial solu-

tion development department in Fujitsu Limited now.

c© 2012 Information Processing Society of Japan

