
IPSJ Transactions on Programming Vol.5 No.2 88–96 (Mar. 2012)

Regular Paper

Verification of Substitution Theorem Using HOL

Takayuki Koai1,a) Makoto Tatsuta1,b)

Received: October 3, 2011, Accepted: January 16, 2012

Abstract: Substitution Theorem is a new theorem in untyped lambda calculus, which was proved in 2006. This theo-
rem states that for a given lambda term and given free variables in it, the term becomes weakly normalizing when we
substitute arbitrary weakly normalizing terms for these free variables, if the term becomes weakly normalizing when
we substitute a single arbitrary weakly normalizing term for these free variables. This paper formalizes and verifies
this theorem by using the higher-order theorem prover HOL. A control path, which is the key notion in the proof, ex-
plicitly uses names of bound variables in lambda terms, and it is defined only for lambda terms without bound variable
renaming. The lambda terms without bound variable renaming are formalized by using the HOL package based on
contextual alpha-equivalence. The verification uses 10119 lines of HOL code and 326 lemmas.

Keywords: lambda calculus, theorem proving, HOL, Substitution Theorem

1. Introduction

Automated theorem proving has been actively studied. For ex-
ample, the verification of the four color theorem by Coq was a
surprising result [3]. The theorem provers such as Coq, Agda
and HOL have been intensively developed. Its applications for
hardware verification and software verification has been widely
discussed.

Theorem proving for theorems in λ-calculus has been also ac-
tively studied. Church-Rosser theorem was verified by Ref. [6].
Several properties in pure type systems were formalized and ver-
ified by Ref. [5]. The contextual α-equivalence was proposed by
Ref. [4] to formalize the α-conversion in λ-calculus in a better
way. Nominal logic was introduced by Ref. [9] in order to give a
better formalization of λ-calculus and he verified several proper-
ties including Church-Rosser theorem.

Substitution Theorem is a new theorem for untyped λ-calculus,
which was proved in 2006 [7]. This theorem states that for a
given λ-term and given free variables in it, the term becomes
weakly normalizing when we substitute arbitrary weakly normal-
izing terms for these free variables, if the term becomes weakly
normalizing when we substitute a single arbitrary weakly normal-
izing term for these free variables. The statement of the theorem
is simple, but its proof uses complicated techniques that are hid-
den in the statement. Substitution Theorem is a part of deep re-
sults given in Ref. [7]. Since this theorem is new and significant,
it is worth to verify.

In this paper we formalize and verify Substitution Theorem by
using higher-order theorem prover HOL. We faithfully formal-
ize mathematical content in Ref. [7]. To handle λ-terms without
renaming bound variables, we use the contextual α-equivalence
with the package in Ref. [4].

1 National Institute of Informatics, Chiyoda, Tokyo 101–8430, Japan
a) koai@nii.ac.jp
b) tatsuta@nii.ac.jp

There have been several results for verification of properties
of λ-terms without bound variable renaming [4], [5], [6], [9].
They developed new methods for handling α-equivalence and ap-
plied them to verification of several properties of λ-terms without
bound variable renaming. However, most of them verified only
well-known theorems such as Church-Rosser theorem. On the
other hand we verify a new and significant theorem using λ-terms
without bound variable renaming.

Our verification shows that the idea of the contextual α-
equivalence given in Ref. [4] and the HOL package based on it
are actually good at formalizing λ-terms without bound variable
renaming. In Ref. [4] he applied his idea to verification of Church
Rosser theorem. However, there have not been other results for
application of his idea. In this paper, we use his HOL package for
verification of a new and significant theorem, and it shows that
his idea works well.

We have six challenges in our verification. First, we formal-
ize and verify a new and significant theorem. Since untyped λ-
calculus has been fully developed and it is difficult to obtain a
new theorem, a new theorem in this field is often subtle and diffi-
cult. A significant theorem often requires difficult proofs. Indeed
the proof of Substitution Theorem is complicated and uses subtle
notions and difficult techniques.

Secondly, we verify proofs that require λ-terms without bound
variable renaming as well as λ-terms with bound variable renam-
ing. The key notion in the proof of Substitution Theorem is a
control path, which is defined by using names of bound vari-
ables. Hence our formalization has to handle λ-terms without
bound variable renaming.

Thirdly, we introduce the notion PWNS for a set S of bound
variable names, in order to solve difficulty of variable capturing.
This replaces persistently weak normalization used in Ref. [7],
and simplifies substitution caused by β-reduction when we show
that some term has this property. Unless this notion, our formal
proof would be much more complicated.

c© 2012 Information Processing Society of Japan 88

IPSJ Transactions on Programming Vol.5 No.2 88–96 (Mar. 2012)

Fourthly, we use the technique of choosing an appropriate in-
duction variable to verify the preservation of control paths by
substitution. This property was implicitly used without proofs
in Ref. [7], but its formal proof is difficult, because a control path
is a notion defined for λ-terms without bound variable renaming,
on the other hand substitution is a notion defined for λ-terms with
bound variable renaming, and hence the formal statement of this
property uses both styles of λ-terms in a mixed way. In order
to solve this difficulty, we move an inner variable hidden in the
statement to the top level and use it as our induction variable.

Fifthly, we introduce some predicate to express the negation of
the existence of adjacent control paths. A faithful formalization
of the existence of adjacent control paths does not correctly repre-
sent its implicit free variable condition. When we use its negation
in assumptions, a formal proof cannot go further for this reason.
In order to solve this problem, we introduce some predicate to ex-
press its negation so that it correctly represents the free variable
condition.

Sixthly, we formalize the notion of adjacent control paths for
ordinary λ-terms with α-conversion. Both the definition of con-
trol paths and the definition of adjacent variable occurrences re-
quire bound variable names. However we find that we can di-
rectly define adjacent control paths without using them. This
definition works for the proof of Lemma 2.8 and simplifies our
formalization.

For this verification of the proof given in Ref. [7], we use 10119
lines of HOL code and 326 lemmas Our HOL source code is
available at http://research.nii.ac.jp/˜tatsuta/hol.

Section 2 describes the mathematical statement of Substitution
Theorem and its mathematical proof as well as basic definitions
for λ-terms. Section 3 explains the contextual α-equivalence.
Section 4 gives our formalization of the theorem, and Section 5
discusses its formal proofs. Section 6 explains our challenges in
this work, and Section 7 concludes.

2. Substitution Theorem

In this section, we give the statement of Substitution Theorem
and its complete proof, which are taken from Ref. [7]. This sec-
tion explains only mathematical contents, and all of them will be
formalized after Section 4.

Substitution theorem is interesting, since it implies that if MXX

is weakly normalizing for all weakly normalizing term X, then
MXY is also weakly normalizing for all weakly normalizing
terms X,Y .

We assume the standard definitions of λ-calculus and β-
reduction. We use x, y, z, w, t, u, v, . . . to range over variables, and
M,N, L, P, X,Y, . . . to range over λ-terms. We define Λ as the set
of λ-terms. We use vector notations. �M denotes the sequence
M1,M2, . . . ,Mn for n ≥ 0 and �M is empty when n = 0. λ−→x .M−→N is
an abbreviation for λx1 . . . xn.MN1 . . .Nm where −→x is x1, . . . , xn (n
could be 0). −→N is N1, . . . ,Nm. �M ∈ C means N ∈ C for all N ∈ �M
where C is a set of λ-terms. By M[x1 := N1, . . . , xn := Nn] and
M[−→x := −→N] we denote simultaneous capture-free substitutions.
We use lh() to denote the vector length. For reduction→β is one
step of β-reduction and→∗β is the transitive reflexive closure of the
relation→β. We use = to denote syntactical equality. We use NF

to denote the set of β-normal forms. We assume the Barendregt
convention [1] (page 26), that is, we assume that all names of
bound variables are different from each other and different from
those of the free variables.

Bound variable renaming is a transformation of a λ-term by
renaming bound variables in it. For example, λx.xxy is trans-
formed into λw.wwy by bound variable renaming. Bound vari-
able renaming is also called α-conversion. Variable capturing is
the following situation: when we substitute a λ-term t for some
variable in λ-term u and obtain u′, some free variable in t be-
comes bound variables in u′. For example, when we substitute
zx for y in λx.xxy, we get λx.xx(zx), where x in the term zx is a
free variable of zx, and x in the subterm zx of the term λx.xx(zx)
is a bound variable of the term λx.xx(zx). Since the substitution
with variable capturing is not meaningful, one usually uses bound
variable renaming before substitution to avoid variable capturing.
For example, first one transforms λx.xxy into λw.wwy, and then
one substitutes zx for y in λw.wwy to get λw.ww(zx).
λ-term is weakly normalizing if it reduces to some β-normal

form. Let WN be the set of weakly normalizing λ-terms.
Definition 2.1 We say a λ-term M is persistently weakly

normalizing if for all n and for all X1, . . . , Xn ∈ WN we get
MX1 . . . Xn ∈ WN. We denote the set of persistently weakly nor-
malizing λ-terms by PWN.

The next is our main theorem in this section.
Theorem 2.2 (Substitution Theorem for WN) If M[xi :=

X, x j := X] ∈ WN for all X ∈ WN and for all i, j (1 ≤ i, j ≤ n),
then M[x1 := X1, . . . , xn := Xn] ∈ WN for all X1, . . . , Xn ∈ WN.

By taking n to be 2 in this theorem, we can show that ∀X ∈
WN(MXX ∈WN) implies ∀XY ∈WN(MXY ∈WN).

A useful relation between WN and PWN is that the application
of a λ-term in WN to a λ-term in PWN is a λ-term in WN.

Lemma 2.3 If M ∈ WN and N ∈ PWN then MN ∈ WN.

This is proved by induction on M.
We introduce the notions of control path and adjacent control

paths.
When we define control paths and adjacent variable occur-

rences, we do not allow α-conversion on β-normal forms: this
helps us to denote bound variable occurrences by their names.
Although we use these conventions in our proofs, our results hold
also for usual λ-calculus with α-conversion.

Definition 2.4 (Control Paths) Assume that M is in NF, x

and y are variable occurrences in M, where they may be bound.
The relation x �1 y in M is defined to hold if M has the subterm
x−→N(λ−→y .L) where the variable occurrence x is the one explicitly
shown in this subterm, the variable occurrence y is in L, and the
variable y is in −→y .
A control path in M is defined as the sequence (x1, . . . , xn) of
variable occurrences in M where n ≥ 1, xi �1 xi+1 in M for
1 ≤ i < n, and x1 is a free variable occurrence in M. For a set S
of free variable occurrences of M, we say a control path from S
in M if it is the control path (x1, . . . , xn) in M for some x1 ∈ S.
The relation x � y in M is defined to hold if there exists some
control path (x, x1, . . . , xn, y) in M.

Note that the relation x � y in M is the reflexive transitive
closure of z �1 w in M with x free in M. For simplicity, we will

c© 2012 Information Processing Society of Japan 89

IPSJ Transactions on Programming Vol.5 No.2 88–96 (Mar. 2012)

often use x � y to denote (x, x1, . . . , xn, y).
Example 2.5 Let N = λw.x(λv.vvy)(λt.t(λuz.xz)). We have

x � x and x � v. Moreover we have x � z since x �1 t

and t �1 z hold and its control path is (x, t, z). All the relations
x �1 y in N are: x �1 v, x �1 t, and t �1 z.

Definition 2.6 (Adjacent Control Paths) Suppose M is in
NF and x and y are two variable occurrences in M where they
may be bound and their variables may be the same.
The variable occurrences x and y are called adjacent in M if M has
the subterm x−→N(λ−→z .y−→L) where the variable occurrences x and y
are those explicitly shown in this subterm.
Two control paths (x1, . . . , xn) and (y1, . . . , ym) in M are called
adjacent control paths in M if the variable occurrences xn and ym

are adjacent in M.
Example 2.7 Let N = λw.x(λv.vvy)(λt.t(λuz.xz)). v and y are

adjacent, so x � v and y � y are adjacent control paths. More-
over the first occurrence v and the second occurrence v in N are
adjacent, so x � v and x � v are adjacent control paths. The
other adjacent control paths in N are represented by: x � x and
x � v; x � x and x � t; x � t and x � x; x � x and
x � z.

Lemma A13 in Ref. [2] gave the following lemma.
Lemma 2.8 If there are adjacent control paths from x in

N ∈ NF then there is X ∈ WN such that N[x := X] � WN.

We can show that some weak normalization condition implies
the non-existence of adjacent control paths.

Lemma 2.9 If N is in NF and for all X ∈ WN we have

N[x := X, y := X] ∈ WN, then there are no adjacent control

paths from {x, y} in N.

Proof. To show its contraposition, assume that there are adja-
cent control paths from x, y in N. By letting N be N[y := x]
in Lemma 2.8, since there are adjacent control paths from x in
N[y := x], we have X � WN such that N[y := x][x := X] � WN,
that is, N[x := X, y := X] �WN. �

The key lemma for proving Substitution Theorem is the reverse
of Lemma 2.9.

Lemma 2.10 (Key Lemma) If there are no adjacent control

paths from �x in N ∈ NF, then N[�x := �X] ∈ WN for all �X ∈ WN.

Proof. The proof is by induction on N. Let �x = x1, . . . , xn and
N = λ�y.z�L. We will write U′ as short for U[−→x := −→X].

Case 1. z � �x. We have N′ = λ�y.z�L′. Since there are no ad-
jacent control paths from �x in Li (1 ≤ i ≤ lh(�L)), by induction
hypothesis we have L′i ∈WN. So N′ is in WN.

Case 2. z = xh (1 ≤ h ≤ n). Suppose Ll = λ�u.v�P ∈ �L (1 ≤
l ≤ lh(�L)) with lh(�u) = m. We can observe that v is free in Ll.
Otherwise xh � xh and xh � v would be adjacent control paths
from {xh} in N. Moreover there are no adjacent control paths from
{ui, u j} (1 ≤ i, j ≤ m) in v�P. Otherwise we would have ui � a

and u j � b for some adjacent a, b in v�P and xh � a and xh � b

would be adjacent control paths from {xh} in N, since xh � ui and
xh � u j. Lastly there are no adjacent control paths from {xi, u j}
(1 ≤ i ≤ n, 1 ≤ j ≤ m) in v�P. Otherwise we would have xi � a

and u j � b for some adjacent a, b in v�P and xi � a and xh � b

would be adjacent control paths from {xi, xh} in N, since xh � u j.
Thus there are no adjacent control paths from �x, �u in v�P. There-
fore by induction hypothesis for all X1, . . . , Xn,U1, . . . ,Um ∈WN

we get v�P[�x := �X, �u := �U] ∈ WN. Then we get L′l ∈ PWN,
since L′lU1 . . .UmV1 . . .Vk reduces to v�P[�x := �X, �u := �U]�V ∈WN
for all U1, . . . ,Um,V1, . . . ,Vk ∈ WN. From Lemma 2.3, we get
Xh�L′ ∈WN. Hence we have N′ = λ�y.Xh

−→
L′ ∈WN for all n and all

X1, . . . , Xn ∈WN. �

We can now show the Substitution Theorem.
Proof of Theorem 2.2. (1) Let −→x = x1, . . . , xn and N be the
β-normal form of M. By Lemma 2.9 there are no adjacent con-
trol paths from any {xi, x j} (1 ≤ i, j ≤ n) in N. Hence there
are no adjacent control paths from −→x . By Lemma 2.10 we get
N[�x := �X] ∈ WN for all −→X ∈ WN. Since M[�x := �X] reduces to
N[�x := �X], we have M[�x := �X] ∈WN for all −→X ∈WN. �

3. Contextual α-Equivalence

This section mathematically describes the contextual α-
equivalence, pre-λ-calculus, and pure λ-calculus. They are taken
from Ref. [4]. Their formalization will be given after Section 4.

In order to handle λ-calculus without bound variable renam-
ing, in Ref. [4] he gave the contextual α-equivalence as well as
two kinds of λ-calculi. One is the pre-λ-calculus and the other
is the pure λ-calculus. The pre-λ-calculus handles λ-terms with-
out renaming variables. The contextual α-equivalence is defined
for pre-λ-calculus in order to defined the α-equivalence. The
pure λ-calculus is the quotient of the pre-λ-calculus by the α-
equivalence.

The pre-λ-calculus can handle a control path as well as other
notions that do not assume bound variable renaming. On the
other hand, the pure λ-calculus can handle substitution and the
β-reduction.

Definition 3.1 (Pre-λ-Calculus) We use c for constants, and
v for variables. We define terms t of pre-λ-calculus by t ::=
c|v|tt|λv.t. We will use Λ1 to denote the set of terms of pre-λ-
calculus.

The context α-equivalence enables us to define the α-equiva-
lence. We use (a =def b) to say that a is defined as b.

Definition 3.2 (α-Equivalence) The contextual α-equiv-
alence x xs

var ≡ysα y for variables x, y and variable lists xs, ys is
defined as follows.

w x::xs
var ≡y::ysα z =def

(w = x ∧ z = y ∧ ||xs|| = ||ys||) ∨ (w � x ∧ z � y ∧ w xs
var ≡ysα z),

w []
var ≡[]

αz =def (w = z).

The contextual α-equivalence t xs ≡ysα u for terms t, u and variable
lists xs, ys is defined as follows.

x xs ≡ysα y =def x xs
var ≡ysα y,

t1u1
xs ≡ysα t2u2 =def t1 xs ≡ysα t2 ∧ u1

xs ≡ysα u2,

λx.t1 xs ≡ysα λy.t2 =def t1 x::xs ≡y::ysα t2.

The α-equivalence t ≡α u for terms t, u is defined as follows.

t ≡α u =def t [] ≡[]
α u.

The relation t1 xs ≡ysα t2 means that t1 is α-equivalent to t2 when
each variable in the list xs is replaced by the corresponding vari-
able in the list ys.

Definition 3.3 (Pure λ-Calculus) We define the set Λ of

c© 2012 Information Processing Society of Japan 90

IPSJ Transactions on Programming Vol.5 No.2 88–96 (Mar. 2012)

terms of pure λ-calculus as the quotient Λ1/≡α of the set of terms
of pre-λ-calculus by the α-equivalence relation.
We use t� to denote the equivalence class of t. We assume a fixed
representative for each equivalence class. We use �T � to denote
the representative of the equivalence class T .

4. Formalization

This section formalizes Sections 2 and 3. We will give formal-
ization of the goal formula, λ-calculus, and control paths.

4.1 Goal Formula
This subsection will give our formalization of the statement of

Substitution Theorem.
We faithfully formalize all the mathematical contents given in

Section 2. This means that our work verifies the whole proof of
Substitution Theorem for weak normalization given in Ref. [7].
We have also verified Lemma 2.8 except basic properties of λ-
calculus, which are Lemmas 2, 6, 11, 12, 13, 15, 16, and 18 of
Section 2, and the lemmas of Sections 4 and 5 except Lemma 41
in Ref. [8]. The formalization of the proof of Lemma 2.8, which
is Lemma A13 of Ref. [2], is given in Ref. [8] and the details of
its verification will be fully discussed in another paper.

We give the statement of Substitution Theorem (Theorem 2.2)
for comparing it with its formalization.

Substitution Theorem for WN: If M[xi := X, x j := X] ∈ WN
for all X ∈ WN and for all i, j (1 ≤ i, j ≤ n), then M[x1 :=
X1, . . . , xn := Xn] ∈WN for all X1, . . . , Xn ∈WN.

We formalize it in HOL as follows.

g ‘ (˜(xl = ([]:(var list)))) ==>

((LIST_TO_SET xl) SUBSET (FV M)) ==>

(CF M) ==>

(!X xi xj.

CF X /\ WN X /\ MEM xi xl /\ MEM xj xl ==>

WN (M <[[(xi,X); (xj,X)])) ==>

!XL. EVERY WN XL /\ (LENGTH xl = LENGTH XL) ==>

WN (M <[(ZIP(xl,XL)))‘;

It has the following meaning. We assume the list of variables
xl is not empty, the set of members of xl is a subset of the free
variables of the λ-term M, and M does not contain any constants.
Assume that for any λ-term X, any variables xi and xj, if X does
not contain any constants and is weakly normalizing, and xi and
xj are members of xl, then the λ-term obtained from M by substi-
tuting X for xi and xj in M is weakly normalizing. For every list
XL of λ-terms, if all members of XL are weakly normalizing and
the lengths of xl and XL are the same, then the λ-term obtained
from M by substituting each member of XL for the corresponding
member of xl in M is weakly normalizing.

The code (LIST_TO_SET xl) represents the set of the mem-
bers of the list xl. The code (FV M) represents the set of the free
variables of λ-term M. The code (s SUBSET t) represents that
the set s is a subset of t. The code (CF M) represents that λ-term
M does not contain any constants. The code (WN X) represents
that λ-term X is weakly normalizing. The code (M <[[(xi,X);
(xj,X)]) represents the substitution which replaces xi with X
and xj with X in M. The code (M <[(ZIP(xl,XL))) represents
the substitution which replaces each member of xl with the cor-
responding member of XL.

4.2 λ-Calculus
In this subsection, we will give formalization of pre-λ-calculus,

pure λ-calculus, and β-reduction. This formalization is taken
from the HOL package by Ref. [4].

The λ-terms in pre-λ-calculus are defined in HOL as follows.
They have the type term1 with constructors Con1, Var1, App1
and Lam1.
val _ = Hol_datatype

‘ term1 = Con1 of ’a

| Var1 of var

| App1 of term1 => term1

| Lam1 of var => term1 ‘ ;

The code (ALPHA N M) represents the α-equivalence N ≡α M

for pre-λ terms N and M. The theorem ALPHA_EQUIV says that
ALPHA is an equivalence relation.
val ALPHA_EQUIV = |- EQUIV ALPHA : thm

Pure λ-calculus is formalized by the following codes with
the function define_quotient_types for quotient types. This
function takes the type term1 and the equivalence relation
ALPHA, and creates a new type term which is isomorphic to the
quotient set of the type term1 by ALPHA.

val [...] =

define_quotient_types

{types = [{name = "term", equiv = ALPHA_EQUIV}], ... };

This creates term as a new type for Λ. The functions Con,
Var, App and Lam are the corresponding constructor functions.
For the pre-λ-term t, the notation t� is represented by the code
(term_ABS t). For the pure λ-term T, the notation �T � is repre-
sented by the code (term_REP T).

The code (t <[[(x1,t1); ... ; (xn,tn)]) represents
the pure λ-term which is obtained from the pure λ-term t by
substituting the pure λ-terms t1,. . . ,tn for the free variables x1,
. . .,xn respectively. The substitution is defined as a function
which has the following property. To avoid variable capturing,
the function changes names of bound variables before substitu-
tions.

|- (!a s. Con a <[s = Con a) /\ (!x s. Var x <[s = SUB s x) /\

(!t u s. App t u <[s = App (t <[s) (u <[s)) /\

!x u s.

Lam x u <[s =

(let x’ = variant x (FV_subst s (FV u DIFF {x})) in

Lam x’ (u <[(x,Var x’)::s))

The code (RED1 R t1 t2) represents that there is a 1-step R-
reduction t1→R t2 for the pure λ-terms t1 and t2. This code is
defined so that the following holds.

|- (!R t1 t2. R t1 t2 ==> RED1 R t1 t2) /\

(!R t1 u t2. RED1 R t1 t2 ==> RED1 R (App t1 u) (App t2 u)) /\

(!R t u1 u2. RED1 R u1 u2 ==> RED1 R (App t u1) (App t u2)) /\

!R x t1 t2. RED1 R t1 t2 ==> RED1 R (Lam x t1) (Lam x t2)

The code (RED R t1 t2) represents that there is a R-reduction
t1→∗R t2 for the pure λ-terms t1 and t2 where→∗R is the transi-
tive reflexive closure of the relation→R. This code is defined so
that the following holds.

|- (!R t1 t2. RED1 R t1 t2 ==> RED R t1 t2) /\

(!R t1. RED R t1 t1) /\

!R t1 t3. (?t2. RED R t1 t2 /\ RED R t2 t3) ==> RED R t1 t3

The code (REQUAL R t1 t2) means that the pure λ-terms t1
and t2 are R-equivalent. This relation is defined as the smallest

c© 2012 Information Processing Society of Japan 91

IPSJ Transactions on Programming Vol.5 No.2 88–96 (Mar. 2012)

equivalence relation which includes→∗R. This code is defined so
that the following holds.

|- (!R t1 t2. RED R t1 t2 ==> REQUAL R t1 t2) /\

(!R t2 t1. REQUAL R t1 t2 ==> REQUAL R t2 t1) /\

!R t1 t3. (?t2. REQUAL R t1 t2 /\ REQUAL R t2 t3)

==> REQUAL R t1 t3

The code (NORMAL FORM R N) means that the pure λ-term N is
an R-normal form, that is, there is no 1-step R-reduction from the
term N. This code is defined so that the following holds.
|- !R a. NORMAL_FORM R a = !a’. ˜RED1 R a a’

The code (NORMAL FORM OF R N M) means that the pure λ-term
N is an R-normal form of the pure λ-term M, that is, M is R-
equivalent to N, and N is an R-normal form. This code is defined
so that the following holds.

|- !R a b. NORMAL_FORM_OF R a b = NORMAL_FORM R a /\ REQUAL R b a

The code (BETA R N M) means that the pure λ-term M is the re-
sult of a contraction of the β-redex N that is a pure λ-term. This
code is defined so that the following holds.

|- !x u t. BETA_R (App (Lam x u) t) (u <[[(x,t)])

By using these predefined functions in the package, we de-
fine our formalization of weak normalization. The code (WN N)
means that the pure λ-term N is weakly normalizing, that is, it is
β-equivalent to some β-normal form. This code is defined so that
the following holds.
|- !M. WN M = ?N. NORMAL_FORM_OF BETA_R N M

4.3 Control Paths
In this subsection we will explain our formalization of control

paths and adjacent control paths.
The code (FV1 N) is defined in the package as the set of names

of the free variables of the pre-λ-term N. We define the following
in Λ1. The code (BV1 N) means the set of names of the bound
variables of N. The codes (mApp1 X Nl) and (mLam1 yl M) mean
terms like X �N and λ�y.M where Nl and yl represent �N and �y re-
spectively.

In order to formalize the notion of a subterm, we introduce an
indicator, which is a list of natural numbers. For a given pre-λ-
term, we use this number to denote one of its maximal proper
subterms. If M is λx.N, then 0 denotes N. If M is NL, then 0 de-
notes N and 1 denotes L. The indicator (n1, . . . , nk) in M denotes
the subterm obtained from M by taking the subterm denoted by
n1, and then taking its subterm denoted by n2, . . . , and then tak-
ing its subterm denoted by nk. For example, let M = t(λuz.xz).
The indicator (1,0,0,1) denotes the subterm z in M. The code
(SUBTERM1 M p = N) represents that the indicator p in the pre-λ-
term M denotes the subterm N.

The code (FVo1 N) means the set of indicators which denote the
free variable occurrences in the pre-λ-term N. The code (CF1 N)
means that the pre-λ-term N does not contain any constants. We
use it since our λ-calculus given in Ref. [7] does not contain any
constants and on the other hand the HOL package defines λ-
calculus with constants. The code (BC OK N) means that the pre-λ-
term N satisfies Barendregt convention, that is, all names of bound
variables are different from each other and different from those of

the free variables.
We add the following for Λ. The codes (mApp X Nl) and

(mLam yl M) mean terms like X �N and λ�y.M where Nl and yl rep-
resent �N and �y respectively.

In the following definitions, the code M is a pre-λ-term. The
relation x �1 y is represented by the code (control1 M x y) as
follows.

val control1 =

Define

‘control1 M xo yo =

(NORMAL_FORM BETA_R (term_ABS M)) /\

(?M1 Nl L yl x y.

((SUBTERM1 M xo = (Var1 x))

/\(SUBTERM1 M yo = (Var1 y))

/\(SUBTERM1 M M1 =

(App1 (mApp1 (Var1 x) Nl) (mLam1 yl L)))

/\(xo=(M1++[0]++(MAP (\x.0) Nl)))

/\(?yo_in_L.

((yo=(M1++[1]++(MAP (\x.0) yl)++yo_in_L)) /\

(yo_in_L IN (FVo1 L)))

)

/\(MEM y yl))

)‘;

Section 2 defines the relation x � y in M to hold if there exists
some control path (x, x1, . . . , xn, y) in M. We formalize this notion
for the path (x, x1, . . . , xn, y) instead of the variables x, y. The fol-
lowing code (control path M (x, x1, . . . , xn, y)) represents that
the sequence (x, x1, . . . , xn, y) is a control path in M.

val control_path =

Define

‘control_path M xol =

(NORMAL_FORM BETA_R (term_ABS M)) /\

(LENGTH xol >= 1) /\

(!i.

(0 <= i /\ i < (LENGTH xol - 1))

==> (control1 M (EL i xol) (EL (SUC i) xol))

) /\

((EL 0 xol) IN (FVo1 M))‘;

The following code (control path from S M (x0, . . . , xn−1))
represents that the sequence (x0, . . . , xn−1) is a control path from
S in M.

val control_path_from =

Define

‘control_path_from s M xol =

(s SUBSET (FV1 M)) /\

(control_path M xol) /\

?x.((SUBTERM1 M (EL 0 xol) = (Var1 x)) /\ (x IN s))‘;

The following code (adjacent M x y) represents that the vari-
able occurrences x and y are adjacent in M.

val adjacent =

Define

‘adjacent M xo yo =

(NORMAL_FORM BETA_R (term_ABS M)) /\

(?M1 Nl Ll zl x y.

((SUBTERM1 M xo = (Var1 x)) /\

(SUBTERM1 M yo = (Var1 y)) /\

(SUBTERM1 M M1 =

(App1 (mApp1 (Var1 x) Nl)

(mLam1 zl (mApp1 (Var1 y) Ll)))

) /\

(xo=(M1++[0]++(MAP (\x.0) Nl))) /\

(yo=(M1++[1]++(MAP (\x.0) zl)++(MAP (\x.0) Ll)))

)

)‘;

The following code (adjacent control paths M (x0, . . . ,

xn−1) (y0, . . . , ym−1)) represents that the sequences (x0, . . . , xn−1)
and (y0, . . . , ym−1) are adjacent control paths in M.

c© 2012 Information Processing Society of Japan 92

IPSJ Transactions on Programming Vol.5 No.2 88–96 (Mar. 2012)

val adjacent_control_paths =

Define

‘adjacent_control_paths M xol yol =

(control_path M xol) /\

(control_path M yol) /\

(adjacent M (LAST xol) (LAST yol))‘;

The following code (adjacent control paths from S M (x0,

. . . , xn−1) (y0, . . . , ym−1)) represents that the sequences (x0, . . . ,

xn−1) and (y0, . . . , ym−1) are adjacent control paths from S in M.
Section 2 does not explicitly define adjacent con-

trol paths from S in M. We define the predi-
cate adjacent_control_paths_from by combining
control_path_from and adjacent_control_paths as
follows: Two control paths (x0, . . . , xn−1) and (y0, . . . , ym−1) from
S in M are called adjacent control paths from S in M if the two
paths (x0, . . . , xn−1) and (y0, . . . , ym−1) are adjacent control paths
in M.
val adjacent_control_paths_from =

Define

‘adjacent_control_paths_from s M xol yol =

(control_path_from s M xol) /\

(control_path_from s M yol) /\

(adjacent_control_paths M xol yol)‘;

In order to prove the key lemma (Lemma 2.10), we have to sep-
arately define its negation as follows. We will explain the reason
in Section 6.5.

val no_adjacent_control_paths_from =

Define

‘no_adjacent_control_paths_from s M =

˜(?yol zol.

((adjacent_control_paths M yol zol) /\

(?y.((SUBTERM1 M (EL 0 yol) = (Var1 y)) /\

(y IN s) /\

(y IN FV1(M))

)) /\

(?z.((SUBTERM1 M (EL 0 zol) = (Var1 z)) /\

(z IN s) /\

(z IN FV1(M))

))

)

)‘;

5. Formal Proofs

This subsection explains our formal proofs.
Lemma 2.8 is formalized as follows. Note that this is the

lemma 2.7 in Ref. [7].

val lem_2_7 =

mk_thm ([],

‘‘!N.

(CF1 N ==>

(NORMAL_FORM BETA_R (term_ABS N)) ==>

(?yol zol.adjacent_control_paths_from {x} N yol zol) ==>

?X.

((WN X) /\ (CF X) /\ ˜(WN ((term_ABS N) <[[(x,X)]))))‘‘);

Lemma 2.9 is formalized as follows.

g ‘!N.

(CF1 N) ==>

(BC_OK N) ==>

(NORMAL_FORM BETA_R (term_ABS N)) ==>

(!X.

(

((WN X) /\ (CF X)) ==>

(WN ((term_ABS N) <[[(x,X); (y,X)]))

)

) ==>

˜(?vol wol.adjacent_control_paths_from {x;y} N vol wol)‘;

Lemma 2.10 is as follows: If there are no adjacent control paths
from �x in N ∈ NF, then N[�x := �X] ∈WN for all �X ∈WN.

To prove this lemma smoothly, we have to change it in two
points. First, in order to use Lemma 6.2, we have to assume
Barendregt convention as well as the condition that for all Xi in
�X, Xi must not have any bound variables of N as its free variables.
Secondly, for the reason explained in Section 6.5, we have to
use no_adjacent_control_paths_from in its formalization.
Then we reach the next lemma and its formalization.

Lemma 5.1 (New Key Lemma) Assume there are no adja-

cent control paths in N ∈ NF from �x, and each x in �x is not in

the set of the bound variables of N. For all �X, if for all X in �X,

X ∈ WN, and the set of the bound variables of N and the set of

the free variables of X are disjoint, then N[�x := �X] ∈ WN.

This is formalized as follows.

g ‘!N xl.

(BC_OK N) ==>

(CF1 N) ==>

(NORMAL_FORM BETA_R (term_ABS N)) ==>

((BV1 N) INTER (LIST_TO_SET xl) = EMPTY) ==>

(no_adjacent_control_paths_from (LIST_TO_SET xl) N) ==>

!XL.

((EVERY WN XL) /\

(LENGTH xl = LENGTH XL) /\

(EVERY (\X.((BV1 N) INTER (FV X) = EMPTY)) XL)

==> (WN ((term_ABS N) <[(ZIP (xl,XL))))

)‘;

For the entire verification of Substitution Theorem, we used
326 lemmas and we wrote 10119 lines of HOL code. The whole
verification takes 28 minutes by HOL4 Kananaskis 3, and 1 hour
49 minutes by HOL4 Kananaskis 7, on IBM ThinkPad G41 with
Mobile Intel Pentium4 Processor 552 (3.46 GHz), 1.0 GB Mem-
ory, 80 GB HDD (5,400 rpm), and Microsoft Windows XP Pro-
fessional SP3.

6. Challenges

In this section, we explain several challenges in our verifica-
tion.

6.1 Verification of New and Significant Theorem in λ-
Calculus

Substitution theorem is a new theorem in untyped λ-calculus.
Since untyped λ-calculus has been fully developed and it is diffi-
cult to obtain a new theorem, a new theorem in this field is often
subtle and difficult.

The statement of Substitution Theorem is simple. However, its
proof is complicated and uses subtle notions and difficult tech-
niques, which are hidden in the statement. Substitution Theorem
is a part of deep results given in Ref. [7], which solved some open
question on the modelHL∞, and it is sufficiently significant. One
of our main challenges in our verification is to formalize and ver-
ify a new and significant theorem.

6.2 λ-Terms Without Bound Variable Renaming
The key notion in the proof of Substitution theorem is a control

path. This notion is defined by using names of bound variables.
Hence this notion is meaningful only for λ-terms without bound
variable renaming. In our formalization, we have to handle λ-

c© 2012 Information Processing Society of Japan 93

IPSJ Transactions on Programming Vol.5 No.2 88–96 (Mar. 2012)

terms without bound variable renaming.
Control paths are defined for bound variable occurrences and

bound variable names. Even though we formalize bound variable
occurrences by natural number sequences by standard technique,
we have to use bound variable names, since only bound variable
names can describe which λ-abstraction captures a given bound
variable occurrence. In our work we do not take an approach by
coding of variables such as de Bruijn indexes, since bound vari-
able names are more readable.

Substitution requires bound variable renaming in order to avoid
variable capturing. β-reduction is defined by using substitution.
Hence substitution and β-reduction are notions only for λ-terms
with bound variable renaming.

In our formalization, we use the contextual α-equivalence, and
two kinds of λ-terms. One is pre-λ-terms that do not have bound
variable renaming, and the other is pure λ-terms that have bound
variable renaming. A pure λ-term is an equivalence class of pre-
λ-terms with respect to α-equivalence.

We formalize a control path as a notion for pre-λ-terms, and
we formalize substitution and β-reduction as a notion for pure λ-
terms. Verifying properties across these two kinds of λ-terms is
complicated and challenging.

6.3 Parametrized Persistent Weak Normalization
It is difficult to show that N ∈ PWN in our subgoals, because

of variable capturing. In order to solve this difficulty, we intro-
duce the notion PWNS for a set S of variable names. Since S

gives some conditions for free variables, we can avoid variable
capturing. The set PWNS is a superset of PWN, but this set is
sufficient for our verification. We will explain this in details in
this subsection.

Persistent weakly normalizing terms PWN is defined in Defi-
nition 2.1 as follows: We say a λ-term M is persistently weakly
normalizing if for all n and for all X1, . . . , Xn ∈ WN we get
MX1 . . . Xn ∈ WN. We denote the set of persistently weakly nor-
malizing λ-terms by PWN.

Lemma 2.3 states that if M ∈ WN and N ∈ PWN then
MN ∈ WN. When we use this lemma to show MN ∈
WN, we have to show N ∈ PWN, that is, we have to show
∀L1 . . . Ln ∈WN(NL1 . . . Ln ∈WN). When we show ∀L1 . . . Ln ∈
WN(NL1 . . . Ln ∈ WN), we use β-reduction for NL1 . . . Ln. This
β-reduction may cause some substitution with variable capturing,
and hence it is difficult to handle this situation.

In order to solve this difficulty, we introduce the notion PWNS

for a set S of variable names. The notion PWNS is weaker
than PWN. When we show N ∈ PWNS , it is sufficient to show
NL1 . . . Ln ∈WN for only terms L1 . . . Ln ∈WN whose free vari-
ables are not in S . By taking S to be some set of the bound
variables in N, we can avoid variable capturing in β-reduction for
NL1 . . . Ln.

Definition 6.1 (PWNS) Assume S is a set of variable names.
We say a λ-term M S -free persistently weakly normalizing λ-
term if for all n and X0, . . . , Xn−1 ∈ WN such that FV(X0) ∩ S =

. . . = FV(Xn−1) ∩ S = ∅, we get MX0 . . . Xn−1 ∈WN.
We denote the set of S -free persistently weakly normalizing λ-
terms by PWNS .

The set PWNS is formalized as follows. The formula
(PWN_c S M) represents M ∈ PWNS .

val PWN_c = Define

‘PWN_c s M =

!XL.

(

((EVERY WN XL) /\ (EVERY (\X.(((FV X) INTER s) = EMPTY)) XL))

==>

(WN (mApp M XL))

)‘;

Instead of Lemma 2.3, we use the next lemma.
Lemma 6.2 (New Lemma for PWNS) Assume S is a finite

set of variable names. If FV(M) ∩ S = FV(N) ∩ S = ∅, M ∈ WN,

and N ∈ PWNS , then we have MN ∈ WN.

This lemma is formalized as follows.

g ‘(WN M) /\ (FINITE s) /\ (PWN_c s N) /\

(((FV M) INTER s) = EMPTY) /\ (((FV N) INTER s) = EMPTY)

==> (WN (App M N)) /\ (((FV (App M N)) INTER s) = EMPTY)‘;

This improvement enables us to prove Lemma 5.1 in a feasible
way. We explain an example of some subgoal in our formal proof
of the lemma. The next is one of our subgoals, where ... shows
some abbreviation for assumptions.

PWN_c (BV1 (mApp1 (Var1 z) Ll))

(term_ABS (mLam1 yl’ (mApp1 (Var1 v) Ll’)) <[ZIP (xl,XL’))

...

: proof

By some tactics including expansion of the definition of PWN_c,
this subgoal is transformed into the next subgoal. We obtain the
assumption 33 from the new condition added to PWN_c.

REQUAL BETA_R

(mApp

(mLam yl’ (mApp (Var v) (MAP term_ABS Ll’) <[ZIP (xl,XL’)))

XL1

)

(mApp (Var v) (MAP term_ABS Ll’) <[ZIP (xl ++ yl’,XL’ ++ XL1))

...

33. EVERY (\X. FV X INTER BV1 (mApp1 (Var1 z) Ll) = {}) XL’’

...

: proof

The term (mApp (mLam yl’ (mApp (Var v) (MAP
term_ABS Ll’) <[ZIP (xl,XL’))) XL1) represents
(λy1 . . . yn.u)t1 . . . tn where yl’ represents y1, . . . , yn,
the code XL1 represents t1, . . . , tn, and the code
(mApp (Var v) (MAP term_ABS Ll’) <[ZIP (xl,XL’))

represents u. The assumption 33 guarantees that there is no
variable capturing by y1, . . . , yn when we β-reduce the redex
(λy1 . . . yn.u)t1 . . . tn. This improvement enables us to prove the
subgoal.

6.4 Preservation of Control Paths by Substitution
In our verification, it is difficult to prove the subgoal that states

that a control path is preserved by substitution. This property
seems mathematically trivial and Section 2 uses it without proofs.
However, its formal proof is difficult because a control path is
a notion defined for pre-λ-terms, that is, λ-terms without bound
variable renaming, and on the other hand substitution is a notion
defined for pure λ-terms, that is, λ-terms with bound variable re-
naming. Hence the formal statement of this property uses both
styles of λ-terms in a mixed way, and it is difficult to find an
appropriate induction. A naive formalization of this property is

c© 2012 Information Processing Society of Japan 94

IPSJ Transactions on Programming Vol.5 No.2 88–96 (Mar. 2012)

given as follows.

|- !N x y vo wo.

BC_OK N ==>

˜(x IN BV1 N) ==>

˜(y IN BV1 N) ==>

control1 N vo wo ==>

control1 (term_REP (term_ABS N <[[(y,Var x)])) vo wo

: thm

This formalization means the following. Assume the Baren-
dregt convention. If v �1 w in N, then v �1 w in �N�[y := x]�,
where N is a pre-λ-term, N� is a pure λ-term that is the α-
equivalence class of N, and �N�[y := x]� is a pre-λ-term that
is a representative of the equivalence class N�[y := x].

The direct way of proving it is by induction on N. However, it
is difficult to use induction hypothesis, since N is inside the nest
of �.� and .�. In order to solve this difficulty, we produce the
following lemma.

|- !M1 N x y vo wo Nl L yl x’ y’ yo_in_L.

BC_OK N ==>

˜(x IN BV1 N) ==>

˜(y IN BV1 N) ==>

NORMAL_FORM BETA_R (term_ABS N) /\

(SUBTERM1 N vo = Var1 x’) /\

(SUBTERM1 N wo = Var1 y’) /\

(SUBTERM1 N M1 =

App1 (mApp1 (Var1 x’) Nl) (mLam1 yl L)) /\

(vo = M1 ++ [0] ++ MAP (\x. 0) Nl) /\

(wo = M1 ++ [1] ++ MAP (\x. 0) yl ++ yo_in_L) /\

yo_in_L IN FVo1 L /\ MEM y’ yl ==>

?Nl L yl x’ y’.

(SUBTERM1 (term_REP (term_ABS N <[[(y,Var x)])) vo =

Var1 x’) /\

(SUBTERM1 (term_REP (term_ABS N <[[(y,Var x)])) wo =

Var1 y’) /\

(SUBTERM1 (term_REP (term_ABS N <[[(y,Var x)])) M1 =

App1 (mApp1 (Var1 x’) Nl) (mLam1 yl L)) /\

(vo = M1 ++ [0] ++ MAP (\x. 0) Nl) /\

(wo = M1 ++ [1] ++ MAP (\x. 0) yl ++ yo_in_L) /\

yo_in_L IN FVo1 L /\ MEM y’ yl : thm

It is equivalent to the previous lemma, and we can prove it by
induction on the indicator M1. This technique solves our difficulty.

6.5 Negation of Existence of Adjacent Control Paths
A mathematician defines some notion first, and then he de-

fines another notion by using the first notion. Some condi-
tions for free variables are often subtle and implicit. It may
happen that the first notion assumes some free variable condi-
tion and the second notion implicitly assumes another free vari-
able condition. This difficulty happens for the definition of
adjacent_control_paths_from. This definition works when
we use it positively in assumptions, but it does not works when we
use its negation in assumptions, because of implicit free variable
condition. In order to solve this difficulty, we introduce the pred-
icate no_adjacent_control_paths_from to express its nega-
tion. We will explain it in details in this subsection.

Our mathematical proof in Section 2 defines “a control path
from S in M,” but it does not define “adjacent control paths from
S in M.” Following a usual way of mathematical description,
Section 2 assumes that “adjacent control paths from S in M” is
implicitly defined by combining the two notions of “a control path
from S in M” and adjacent control paths. In Definition 2.4 of “a
control path from S in M,” it assumes that S is a set of free vari-
ables.

Our formalization faithfully follows Section 2. First

we define control_path_from as follows. We assume
(s SUBSET (FV1 M)) because Definition 2.4 also includes this
condition.

val control_path_from =

Define

‘control_path_from s M xol =

(s SUBSET (FV1 M)) /\ (control_path M xol) /\

?x.((SUBTERM1 M (EL 0 xol) = (Var1 x)) /\ (x IN s))‘;

The predicate adjacent_control_paths_from

is defined by combining control_path_from and
adjacent_control_paths as follows.
val adjacent_control_paths_from =

Define

‘adjacent_control_paths_from s M xol yol =

(control_path_from s M xol) /\

(control_path_from s M yol) /\

(adjacent_control_paths M xol yol)‘;

However, the predicate adjacent_control_paths_from
does not work when we use its negation, because
control_path_from assumes the free variable condition
and this is not the free variable condition implicitly assumed for
“adjacent control paths from S in M” in Section 2. For example,
when we prove some statement that contains the negation of
“adjacent control paths from S in M” in its assumption, we have
to show some extra free variable condition, and our formal proof
does not go further.

In order to solve this difficulty, we introduce the
predicate no_adjacent_control_paths_from to sepa-
rately define the negation of adjacent_control_paths_from.
Its code is as follows:

val no_adjacent_control_paths_from =

Define

‘no_adjacent_control_paths_from s M =

˜(?yol zol.

((adjacent_control_paths M yol zol) /\

(?y.((SUBTERM1 M (EL 0 yol) = (Var1 y)) /\

(y IN s) /\

(y IN FV1(M))

)) /\

(?z.((SUBTERM1 M (EL 0 zol) = (Var1 z)) /\

(z IN s) /\

(z IN FV1(M))

))

)

)‘;

Lemma 2.10, which is the key lemma in Section 2, is an exam-
ple. Its statement contains the negation of “adjacent control paths
from S in M” in its assumption. This improvement enables us to
complete our formal proof of this lemma.

6.6 Direct Definition of Adjacent Control Paths
In the original paper [7], adjacent control paths are defined by

using control paths and adjacent variable occurrences. Both the
definition of control paths and the definition of adjacent variable
occurrences require bound variable names. However we find that
we can directly define adjacent control paths without using them.
By this technique, we formalize the notion of adjacent control
paths for ordinary λ-terms with α-conversion. This definition
works for the proof of Lemma 2.8 and simplifies our formaliza-
tion.

c© 2012 Information Processing Society of Japan 95

IPSJ Transactions on Programming Vol.5 No.2 88–96 (Mar. 2012)

For a normal pure λ-term M, a set S of variables, and a number
n, we define AC(M, S , n) by induction on n as follows:

(1) M = H[λ−→g .x−→N(λ−→u .y−→L)−→G] ∧ HP(H, s) ∧ S = {x, y} ∧
x, y � s ∪ −→g ∧ y � −→u ∧ n = 0,

or (2) M = H[λ−→g .x−→N(λ−→u j
.M∗)−→G] ∧ HP(H, s) ∧ S = {x, y} ∧

x, y � s ∪ −→g ∧ y � −→u j ∧
(x � y ∧ AC(M∗, {y, u j},m) ∧ n = m + 1 ∨
x = y ∧ M∗ = λ−→v .u j

−→L ∧ u j � −→v ∧ n = 1),

or (3) M = H[λ−→g .x−→N(λ−→u k
.M∗)−→G] ∧ HP(H, s) ∧ S = {x} ∧

x � s ∪ −→g ∧ j ≤ k ∧ u j � −→u k
j+1 ∧

AC(M∗, {u j, uk},m) ∧ n = m + 2,

where in each clause we suppose the free variables except M, S , n

are existentially quantified, and HP(H, s) means that H is a hered-
itary head normal context and s is its bound variables for the hole.

AC(M, S , n) means that there are adjacent control paths x � z

and y� q such that x, y ∈ S and the sum of the lengths of these
paths is n.

The proof of Lemma 2.8 was not given in Ref. [7] and it was
given in Ref. [2]. The proof in Ref. [2] is complicated and con-
fusing. We can simplify their proof by using AC(M, S , n).

The formula AC(M, S , n) works for ordinary λ-term with α-
conversion. Since Lemma 2.8 does not require intensive analysis
of control paths and adjacent variable occurrences, we can finish
its proof within pure λ-terms without using the notion of control
paths and adjacent variable occurrences.

7. Conclusion

We have formalized and verified Substitution Theorem for
weak normalization in Ref. [7] by using HOL. This verification
is challenging, since Substitution Theorem is a new and signifi-
cant theorem in λ-calculus. For our verification, we have handled
λ-terms without bound variable renaming as well as λ-terms with
bound variable renaming in a mixed way. We have solved several
difficulties such as parametrized persistent weak normalization,
preservation of control paths by substitution, and negation of the
existence of adjacent control paths.

We have investigated techniques for handling bound variables
and free variables in formal proofs. Our techniques may help to
verify other theorems such that bound variables and free variables
are crucial in them. In particular, our techniques can apply to the
verification of Substitution Theorem for strong normalization in
Ref. [7] and Lemma A13 in Ref. [2].

Both of them are new and deep theorems in λ-calculus, and
use the notion of control paths, which is the key notion in our
formalization. Their verification would be our future work.

Reference

[1] Barendregt, H.P.: The Lambda Calculus: its Syntax and Semantics,
North-Holland (1984).

[2] Dezani-Ciancaglini, M., Honsell, F. and Motohama, Y.: Compositional
Characterization of λ-terms using Intersection Types, Theor. Comput.
Sci., Vol.340, No.3, pp.459–495 (2005).

[3] Gonthier, G.: Formal Proof—The Four-Color Theorem, Notices of the
American Mathematical Society, Vol.55, No.11, pp.1382–1393 (2008).

[4] Homeier, P.V.: A proof of the church-rosser theorem for the lambda cal-

culus in higher order logic, Supplemental Proc. 14th International Con-
ference on Theorem Proving in Higher Order Logics (TPHOLs 2001),
pp.207–222 (2001).

[5] McKinna, J. and Pollack, R.: Pure Type Systems Formalized, Lecture
Notes in Computer Science, Vol.664, pp.289–305 (1993).

[6] Shankar, N.: A mechanical proof of the Church-Rosser theorem, JACM,
Vol.35, No.3, pp.475–522 (1988).

[7] Tatsuta, M., and Dezani-Ciancaglini, M.: Normalisation is Insensible
to lambda-term Identity or Difference, Proc. 21st Annual IEEE Sympo-
sium on Logic in Computer Science, pp.327–336 (2006).

[8] Tatsuta, M.: Formalization of Lemma for Adjacent Replacement Paths,
NII Technical Report, NII-2012-002E (2012).

[9] Urban, C.: Nominal Techniques in Isabelle/HOL, Journal of Automated
Reasoning, Vol.40, No.4, pp.327–356 (2008).

Takayuki Koai was born in 1975. He
received his M.S. from Kyoto Univer-
sity in 2002, and his withdrawal from
the doctoral program with the completion
of course Requirements from the Grad-
uate University for Advanced Studies in
2010. He was engaged in research on au-
tomated theorem proving and type theory

with National Institute of Informatics from 2007. He became a
project researcher at National Institute of Informatics in 2010.
His current research interests are automated theorem proving and
type theory.

Makoto Tatsuta was born in 1960. He
received his M.S. and Ph.D. from the Uni-
versity of Tokyo in 1987 and 1993 re-
spectively. At Tohoku University he be-
came a research associate and an asso-
ciate professor in 1989 and 1994 respec-
tively. He became an associate professor
at Kyoto University in 1996, and a profes-

sor at National Institute of Informatics in 2001. His current re-
search interests are theoretical computer science and mathemati-
cal logic, in particular, type theory and constructive logic.

c© 2012 Information Processing Society of Japan 96

