
IPSJ Transactions on Programming Vol.5 No.2 16–24 (Mar. 2012)

Regular Paper

A Sound Type System for Typing Runtime Errors

Akihisa Yamada1,a) Keiichirou Kusakari1 Toshiki Sakabe1

Masahiko Sakai1 Naoki Nishida1

Received: September 30, 2011, Accepted: December 30, 2011

Abstract: Dynamically typed languages such as Scheme are widely adopted because of their rich expressiveness.
However, there is the drawback that dynamic typing cannot detect runtime errors at compile time. In this paper, we
propose a type system which enables static detection of runtime errors. The key idea of our approach is to introduce a
special type, called the error type, for expressions that cause runtime errors. The proposed type system brings out the
benefit of the error type with set-theoretic union, intersection and complement types, recursive types, parametric poly-
morphism and subtyping. While existing type systems usually ensure that evaluation never causes runtime errors for
typed expressions, our system ensures that evaluation always causes runtime errors for expressions typed with the error
type. Likewise, our system also ensures that evaluation never causes errors for expressions typed with any type that
does not contain the error type. Under the usual definition of subtyping, it is difficult to syntactically prove the sound-
ness of our type system. We redefine subtyping by introducing the notion of intransitive subtyping, and syntactically
prove the soundness under the new definition.

Keywords: type systems, dynamically typed languages

1. Introduction

In dynamically typed languages like Scheme, types are not as-
serted at compile time. In general, dynamically typed languages
are more expressive than statically typed languages; program-
mers can use functions or variables to range over any values of
any types. For example, the following Scheme program defines
the function SAT that computes satisfiability of curried boolean
functions of any arity:
(define (SAT x) (if (boolean? x)

x

(or (SAT (x #t)) (SAT (x #f)))))

A typical input of SAT is

t1 := (lambda (y) (lambda (z) (or (not y) z)))

SAT works in a straightforward way; if the argument x is a
boolean value, then it is satisfiable iff x = #t so x is returned.
Otherwise SAT considers x to be a boolean function, and returns
true if either (x #t) or (x #f) is satisfiable. The expression
(SAT t1) evaluates to #t because ((t1 #f) #t) evaluates to #t.
Such programming is not allowed in usual statically typed lan-
guages, because the variable x does not have a fixed type.

The price for the expressiveness is the difficulty in debugging;
erroneous expressions are detected only when their evaluation
fails with runtime errors. In the example above, for uncurried
version of t1:

t2 := (lambda (y z) (or (not y) z))

the expression (SAT t2) always raises a runtime error, but it will
1 Graduate School of Information Science, Nagoya University, Nagoya,

Aichi 464–8603, Japan
a) ayamada@sakabe.i.is.nagoya-u.ac.jp

not be rejected by the compiler. Thus, to produce bug-free pro-
grams, developers need a careful test scenario to detect all possi-
ble runtime errors.

Our work is motivated to help programmers of a dynamically
typed language to make bug-free programs by (1) accepting ex-
pressions whose evaluation never causes runtime errors, (2) re-
jecting expressions whose evaluation always causes runtime er-
rors, and (3) by still retaining the expressiveness of dynamically
typed languages. In this paper, we will present a sound type sys-
tem that provides enough expressive power for this triple goal.
We concentrate on the theory, and a type inference algorithm will
not be presented here.

The key idea of our work is to allow types to express the situa-
tion where runtime errors occur. For this purpose we introduce a
special error type, denoted by E, representing runtime errors. Us-
ing E in type expressions, erroneous situations can be expressed;
e.g., τ → E is the type for functions that cause runtime errors
for inputs of type τ. The type system assures that (1) evalua-
tion never causes errors for expressions typed with any type that
does not contain E (defined later precisely). (2) evaluation always
causes runtime errors (or it diverges) for expressions typed with
E. To retain the expressiveness of dynamically typed languages,
(3) untyped expressions should be evaluated with runtime checks
as usual.

To bring out the full benefit of E, our system has a certain ex-
pressive power including intersection type [7], [20] σ ∩ τ, set-
theoretic union type [3], [17]σ∪τ, complement type [11], [24] τC,
universal quantification [13], [14], [18] ∀α. τ, existential quantifi-

cation*1 ∃α. τ, and recursive type [17] μα. τ, together with sub-

*1 We follow MacQueen et al. [17] and quantifications do not have a con-
struct such as pack or open.

c© 2012 Information Processing Society of Japan 16

IPSJ Transactions on Programming Vol.5 No.2 16–24 (Mar. 2012)

typing σ ⊆ τ. Using these type constructions, SAT is typed as
follows:

SAT : (τ1→ Bool) ∩ (τC1 → E)

where τ1 = μα. Bool ∪ (Bool → α). This typing means that
SAT returns a boolean value for any curried boolean functions
and boolean inputs, and always causes a runtime error for other
inputs.

In the existing formalization employing semantics for types
and/or expressions, it is essential for soundness that erroneous
expressions should not have a type. Since we give the new type
E for erroneous expressions, a different approach is required to
prove the soundness of our system.

The syntactic approach inspired by Wright et al. [26] does not
depend on semantics; however, their approach cannot be easily
extended for subtyping. Suppose we are trying to prove some
predicate P on functional types by induction on the height of
the subtyping proof. Transitivity of subtyping allows a deduction
such as:

	 σ→ τ ⊆ ρ 	 ρ ⊆ σ′ → τ′
(⊆-trans)

	 σ→ τ ⊆ σ′ → τ′

The induction hypothesis applies for P(σ→ τ), but not for P(ρ)
because ρ is not always a functional type. Even worse, ρ may be
more complex than σ′→τ′ e.g., (σ→τ)∩ρ, (σ→τ)∩ρ∪(σ→τ),
μα.(σ→ τ) ∩ ρ ∪ (σ→ τ), and so on.

To overcome this problem, we introduce a non-transitive re-
lation � called intransitive subtyping, and define subtyping ⊆ as
the transitive closure of �. Under this definition, we show that
syntactically complex subtypes can be ignored for typing values,
which is the key to our soundness proof.

The rest of this paper is organized as follows: Section 2
presents our target functional language and Section 3 introduces
the type system. Section 4 proves the subject reduction property
of the system and Section 5 presents soundness theorems. Sec-
tion 6 demonstrates how the system works using the SAT example.
Section 7 describes related works, and Section 8 gives concluding
remarks.

2. Expressions

In this section, we define the functional language we consider.
Definition 1 Let X be a set of variables, C be a set of con-

stants, F be a set of built-in functions, and e be a special symbol
representing a runtime error. The set Λ of expressions and the set
Val of values are defined by the following grammar:

t ::= x | c | f | (t, t) | t t | λx. t | e (Λ)

v ::= c | f | (v, v) | λx. t | e (Val)

We use meta-variables x, y, z for variables, c for a constant, f for
a function, r, s, t for expressions, and u, v for values.

The set FV(t) of free variables of t is defined as usual. We
assume bound variables are renamed to avoid capture. The sub-

stitution of x by s in t is defined as usual and written t[x �→ s].
Definition 2 The one-step reduction relation −−−→ is defined

in Fig. 1. The reduction relation −−−� is the reflexive transitive

(λx. t) v −−−→ t[x �→ v] (βv)

f v −−−→ δ(f , v) (δ)

c v −−−→ e (u1, u2) v −−−→ e e v −−−→ e (ε)

s −−−→ s′

s t −−−→ s′ t

t −−−→ t′

s t −−−→ s t′
s −−−→ s′

(s, t) −−−→ (s′, t)

t −−−→ t′

(s, t) −−−→ (s, t′)

Fig. 1 Rules for one-step reduction.

closure of −−−→.
The rule (βv) represents the call-by-value β-reduction. The rule

(δ) reduces applications of built-in functions whose interpreta-
tions are given by a total function δ : F ×Val→Val. Note that
δ is total; if f should be interpreted as a partial function which
is not defined for input v, then δ(f , v) should be defined to be the
error symbol e. An application of non-function is also reduced to
e by (ε).

Note that our definition allows values to contain errors. In or-
der to exclude such situations, we introduce the notion of safe

values:
Definition 3 (Safe Values) The set Valsafe of safe values is

the least set satisfying:
• c, f , λx. t ∈ Valsafe

• v1, v2 ∈ Valsafe =⇒ (v1, v2) ∈ Valsafe

3. The Type System

Definition 4 Let B be a set of base types and XT be a set of
type variables. The set T of types is defined by the following
grammar:

τ ::= α | ι | τ→ τ | τ×τ | τ ∩ τ | τ ∪ τ | τC | ∀α. τ |
∃α. τ | μα. τ |E

We use meta-variables α, β, for type variables, ι for a base type
and ρ, σ, τ for types.
Parentheses are added to avoid ambiguity with precedence in or-
der ◦C,×,∩,∪,→ and binding operators. Notions of free type
variables, renaming of bound type variables and type substitution
are defined analogously to expressions.

Definition 5 For every base type ι, we assume the set Cι ⊆ C
is given. A subtyping environment Γ is a set of subtyping assump-
tions written α1 � α′1, · · · , αn � α′n for distinct αi and α′i . A
formula in form Γ 	 τ � τ′ is called intransitive subtyping, whose
validity is defined by the rules in Fig. 2. Subtyping Γ 	 τ ⊆ τ′ is
defined as the transitive closure of the intransitive subtyping.

We write the type ∃α. α by �, and ∀α. α by ⊥. � is the maxi-
mum and ⊥ is the minimum type w.r.t. subtyping.

Definition 6 For each f ∈ F , we assume a set Ty(f) of types
in form σ→ τ is given. A type environment Δ is a set of assump-
tions in form x1 : τ1, · · · , xn : τn for distinct xi. A formula in
form Δ 	 t : τ is called a type judgment, whose validity is defined
by the rules in Fig. 3.

The function Ty gives the basis for typing built-in functions. To
ensure type preservation under δ-reduction, we assume the fol-
lowing:

Assumption 7 (δ-typability) For all f ∈ F and σ → τ ∈
Ty(f), we assume

c© 2012 Information Processing Society of Japan 17

IPSJ Transactions on Programming Vol.5 No.2 16–24 (Mar. 2012)

Basic:
Γ 	 τ � τ (�-ref)

Γ, α � α′ 	 α � α′ (�-ass)

Γ 	 σ′ � σ Γ 	 τ � τ′

Γ 	 σ→ τ � σ′ → τ′
(�-→)

Γ 	 ι � ι′ if Cι ⊆ Cι′ (�-B)

Γ 	 σ � σ′ Γ 	 τ � τ′

Γ 	 σ×τ � σ′×τ′
(�-×)

Intersection and Union:
Γ 	 τ � τ ∩ τ (�-∩I)

Γ 	 τ1 ∩ τ2 � τ1 (�-∩E)

Γ 	 τ1 � τ′1 Γ 	 τ2 � τ′2
Γ 	 τ1 ∩ τ2 � τ′1 ∩ τ′2

(�-∩C)

Γ 	 τ1 � τ1 ∪ τ2 (�-∪I)

Γ 	 τ ∪ τ � τ (�-∪E)

Γ 	 τ1 � τ′1 Γ 	 τ2 � τ′2
Γ 	 τ1 ∪ τ2 � τ′1 ∪ τ′2

(�-∪C)

Distribution:
Γ 	 σ ∩ (τ1 ∪ τ2) � (σ ∩ τ1) ∪ (σ ∩ τ2) (�-∩∪)

Γ 	 (σ→ τ1) ∩ (σ→ τ2) � σ→ (τ1 ∩ τ2) (�-→∩)

Γ 	 (σ1→ τ) ∩ (σ2→ τ) � (σ1 ∪ σ2)→ τ (�-∪→)
Recursion:

Γ 	 τ[α �→ μα. τ] � μα. τ (�-μI) Γ 	 μα. τ � τ[α �→ μα. τ] (�-μE)

Γ, α � α′ 	 τ � τ′

Γ 	 μα. τ � μα′. τ′
if α � FV(Γ, τ′) and α′ � FV(Γ, τ) (�-μC)

Universal and Existential Quantification:
Γ 	 ∀α. τ � τ[α �→ σ] (�-∀E) Γ 	 τ[α �→ σ] � ∃α. τ (�-∃I)

Complementation:

Γ 	 ι � ι′C if Cι ⊆ C \ Cι′ (�-BC)

Γ 	 σ→ τC � (σ→ τ)C (�-→C)

Γ 	 σC×τ � (σ×τ′)C
Γ 	 σ×τC � (σ′×τ)C (�-×C)

Γ 	 ι � (σ→ τ)C (�-B→C) Γ 	 ι � (σ×τ)C (�-B×C)

Γ 	 σ→ τ � ιC (�-→BC) Γ 	 σ→ τ � (σ′×τ′)C (�-→×C)

Γ 	 σ×τ � ιC (�-×BC) Γ 	 σ×τ � (σ′ → τ′)C (�-×→C)

Γ 	 E � ιC (�-EBC) Γ 	 E � (σ→ τ)C (�-E→C)

Γ 	 E � (σ×τ)C (�-E×C)

Γ 	 �C � ⊥ (�-�C) Γ 	 � ⊆ ⊥C (�-⊥C)

Γ 	 τ1
C ∪ τ2

C � (τ1 ∩ τ2)C (�-∩C)

Γ 	 τ1
C ∩ τ2

C � (τ1 ∪ τ2)C (�-∪C)

Γ 	 τ′ � τ
Γ 	 τC � τ′C

(�-CC)

Subtyping:

Γ 	 τ � τ′

Γ 	 τ ⊆ τ′
(⊆-�)

Γ 	 τ ⊆ τ′ Γ 	 τ′ ⊆ τ′′

Γ 	 τ ⊆ τ′′
(⊆-tr)

Fig. 2 Subtyping and intransitive subtyping.

Δ, x : τ 	 x : τ (ass)

Δ, x : τ 	 s : σ
Δ 	 λx. s : τ→ σ

(→I)

Δ 	 t : τ1 Δ 	 t : τ2

Δ 	 t : τ1 ∩ τ2
(∩I)

Δ 	 c : ι if c ∈ Cι (base)

Δ 	 s : τ→ σ Δ 	 t : τ
Δ 	 st : σ

(→E)

Δ, x : σ1 	 t : τ Δ, x : σ2 	 t : τ
Δ, x : σ1 ∪ σ2 	 t : τ

(∪L)

Δ 	 f : σ→ τ if σ→ τ ∈ Ty(f) (prim)

Δ 	 t1 : τ1 Δ 	 t2 : τ2

Δ 	 (t1, t2) : τ1×τ2
(×I)

Δ 	 t : τ
Δ 	 t : ∀α. τ

if α � FV(Δ) (∀I)

Δ, x : σ 	 t : τ

Δ, x : ∃α. σ 	 t : τ
if α � FV(Δ) ∪ FV(τ) (∃L)

Δ 	 t : τ

Δ 	 t : τ′
if 	 τ � τ′ (�) Δ 	 e : E (E)

Δ 	 s : (�→�)C Δ 	 t : τ

Δ 	 st : E
(→CE)

Fig. 3 Rules for type judgment.

Δ 	 v : σ =⇒ Δ 	 δ(f , v) : τ.

First we show some admissible rules we use freely in the latter
discussion.

Proposition 8 The following rules are admissible in our sys-
tem:
Δ 	 t : τ
Δ 	 t : τ′

if 	 τ ⊆ τ′ (⊆)

Δ, x : σ 	 t : τ

Δ, x : σ′ 	 t : τ
if 	 σ′ � σ (�L)

Proof

(⊆). Obvious by recursively applying (�).
(�L). In the deduction of Δ, x : σ 	 t : τ, every occurrence of the

axiom

(ass)
Δ, x : σ 	 x : σ

can be replaced by the deduction

(ass)
Δ, x : σ′ 	 x : σ′

(�)
Δ, x : σ′ 	 x : σ

and we get the proof of Δ, x : σ′ 	 t : τ. �
Remark 9 One may wonder why we distinguish � and ⊆ de-

spite the admissibility of (⊆). The question is: Is 	 τ ⊆ τ′ derived
in our system if and only if it is derived in the system where �
and ⊆ are identified? This is not trivial because of the rule (�-μC)

where a condition of free type variables must be satisfied in one-

step of �. Though we expect a positive result, the problem is left
open at the time of writing.

Remark 10 The following rule (∪E) is proposed by Mac-
Queen et al. [17]:

Δ, x : σ1 	 t : τ Δ, x : σ2 	 t : τ Δ 	 s : σ1 ∪ σ2

Δ 	 t[x �→ s] : τ
(∪E)

Our system adopts (∪L), which Barbanera [3] showed to be
strictly weaker than (∪E). Nonetheless, a restricted form of (∪E),
where s is assumed to be a value, can be derived with help of
Lemma 13 latter stated. This result is enough to prove type
preservation under call-by-value βv-reduction. The restriction
seems to be reasonable for further extension, e.g., (∪E) is shown
to break subject reduction property in conjunctive-disjunctive λ-

calculi [9].

4. Subject Reduction Property

In this section we prove the main property to the soundness of
our system, i.e., the subject reduction: If 	 t : τ and t −−−→ t′,
then 	 t′ : τ.

As mentioned earlier, subtyping becomes a problem in a
straightforward approach. The problem is (�), where the premise
may be more complex in syntax than the conclusion, because of
the rules (�-∩E), (�-∪E), (�-μE) and (�-∀E). By following two
lemmas we show that such inversion can be shortcut under the

c© 2012 Information Processing Society of Japan 18

IPSJ Transactions on Programming Vol.5 No.2 16–24 (Mar. 2012)

restriction of expressions to values.
Lemma 11 Let α, α′ � FV(Γ), α � FV(τ′) and α′ � FV(τ).

If Γ 	 σ � σ′ and Γ, α � α′ 	 τ � τ′, then Γ 	 τ[α �→ σ] �
τ′[α′ �→ σ′].
Proof By induction on the height of the proof of Γ, α � α′ 	
τ � τ′. See Appendix for details. �

Lemma 12 If Δ 	 v : τ has a proof with height h, then there
exists a proof shorter than h for:
(1) both Δ 	 v : τ1 and Δ 	 v : τ2 if τ = τ1 ∩ τ2,
(2) either Δ 	 v : τ1 or Δ 	 v : τ2 if τ = τ1 ∪ τ2,
(3) Δ 	 v : σ[α �→ μα. σ] if τ = μα. σ,
(4) Δ 	 v : σ[α �→ ρ] if τ = ∀α. σ.
Proof By simultaneous induction on the proof of Δ 	 v : τ.
Lemma 11 is used for statement 3. See Appendix for details. �

The following two lemmas help us to prove type preservation
under βv-reduction. Thanks to Lemma 12, both can be proved in
a straightforward induction. The detailed proofs are shown in the
Appendix.

Lemma 13 (Substitution) Let x � Dom(Δ). If Δ, x : σ 	 t :
τ and Δ 	 v : σ, then Δ 	 t[x �→ v] : τ.
Proof By induction on the proof of Δ, x : σ 	 t : τ. �

Lemma 14 (Abstraction) If Δ 	 λx. t : σ→ τ, then Δ, x :
σ 	 t : τ.
Proof By induction on the proof of Δ 	 λx. t : σ→ τ. �

For ε-reductions, we need some negative statements.
Lemma 15 None of the following judgments hold:

(1) Δ �	 c : σ→ τ
(2) Δ �	 (u1, u2) : ι, Δ �	 (u1, u2) : σ→ τ
(3) Δ �	 e : σ→ τ, Δ �	 e : ι, Δ �	 e : σ×τ
(4) Δ �	 c : E, Δ �	 f : E, Δ �	 λx. t : E, Δ �	 (u1, u2) : E

Proof By contradiction. Let Δ 	 v : ρ has the shortest proof
for the pair v and ρ from some of the statements above. By their
form, only (∪L), (∃L) and (�) are applicable and (∪L) and (∃L)
require a shorter proof. Lemma 12 applies for the form of v, and
it is easy to show that (�) also requires a shorter proof of the same
form. �

Theorem 16 (Subject Reduction) If Δ 	 t : τ and t −−−→ t′,
then Δ 	 t′ : τ.
Proof By induction on the proof of Δ 	 t : τ.

Cases (ass), (base), (prim) or (E). Not applicable because t is
irreducible.

Cases (→I), (×I), (�) or (∀I). Obvious from the I.H.

Case (→E)
Δ 	 r : σ→ τ Δ 	 s : σ

Δ 	 rs : τ
with t = rs. We prove

this case by induction on t −−−→ t′.
Case r −−−→ r′ and t′ = r′s. By the I.H. we have
Δ 	 r′ : σ→ τ and applying (→E) we get Δ 	 r′s : τ.

Case s −−−→ s′ and t′ = rs′. Analogous.
Case (βv) r = λx. t′′, s = v and t′ = t′′[x �→ v]. By

Lemma 14, we have Δ, x : σ 	 t′′ : τ. Applying
Lemma 13 we get Δ 	 t′′[x �→ v] : τ.

Case (δ) r = f , s = v and t′ = δ(f , v). This case is ensured
by the δ-typability.

Case (ε) t′ = e and r is in form c or (u, v) or e. It contra-
dicts because �	 r : σ→ τ by Lemma 15.

Case (→CE) t = rs, Δ 	 r : (�→�)C, Δ 	 s : σ and τ = E.

If t′ = r′s or t′ = rs′ with r −−−→ r′ or s −−−→ s′, it is obvious
from the I.H.
Otherwise r must be a value. By the form and Lemma 12,
we have to consider only (�-→C), i.e., 	 r : �→ �C. Now
the proof proceeds to a case analysis of t −−−→ t′.

Case (βv) r = λx. t′′ and t′ = t′′[x �→ s]. By Lemma 14,
we have Δ, x : � 	 t′′ : �C. Using (�L) with 	 σ � �,
we get Δ, x : σ 	 t′′ : �C, and using (⊆) with 	 �C ⊆ E,
we get Δ, x : σ 	 t′′ : E. By Lemma 13, Δ 	 t′ : E.

Case (δ). This case is ensured by δ-typability.
Case (ε). We have t′ = e and Δ 	 t′ : E by (E). �

5. Types of Expressions That Always/Never
Cause Runtime Errors

As a corollary of the subject reduction theorem, the strong
soundness is immediately obtained:

Theorem 17 (Strong Soundness) If 	 t : τ and t −−−� v, then
	 v : τ. �

The following error soundness ensures that expressions typed
with E always cause runtime errors whenever they are evaluated.

Theorem 18 (Error Soundness) If 	 t : E and t −−−� v, then
v = e.
Proof By the strong soundness theorem, we have Δ 	 v : E.
Lemma 15–4 denies every possible form of v but e. �

Since our system types erroneous expressions, the usual rea-
soning of “typed expressions are safe” is of course unsound. To
ensure the safety of typed expressions, we must restrict their types
to safe types, which are not inhabited by e and pairs containing e.

Definition 19 (Safe Types) The set Tsafe of safe types is the
least set satisfying:
• ι, σ→ τ ∈ Tsafe for any type σ and τ
• τ1, τ2 ∈ Tsafe =⇒ τ1×τ2, τ1 ∪ τ2, τ1 ∩ τ2 ∈ Tsafe

• τ ∈ Tsafe =⇒ μα. τ,∀α. τ ∈ Tsafe

Note that we consider σ→τ to be always safe, because any func-
tion does not raise a runtime error until it is applied. On the other
hand, since a pair containing an error should be treated as an er-
ror, τ1×τ2 is safe only if both τ1 and τ2 are safe.

Lemma 20 If τ is safe, then τ[α �→ σ] is also safe.
Proof Obvious by structural induction on τ. �

Lemma 21 If 	 v : τ for a safe type τ, then v is a safe value.
Proof By induction on the height of the proof of 	 v : τ. By the
definition we have following cases of the form of τ:
• ι or ρ→ σ. By Lemma 15, v must be in form c or λx. t, thus
v ∈ Tsafe.

• σ1×σ2 with σ1 and σ2 safe. In this case v must be in form
(u1, u2) with 	 ui : σi for both i ∈ {1, 2}. By the I.H. ui is a
safe value, thus so is (u1, u2).

• σ1 ∩ σ2 or σ1 ∪ σ2 with σ1 and σ2 safe. By Lemma 12 we
get a shorter proof of 	 v : τ′ for either or both of τ′ = σ1

and σ2. Thus by the I.H., v is safe.
• μα. σ or ∀α. σ with σ safe. By Lemma 12 we have a shorter

proof of 	 v : τ′ for τ′ = σ[α �→ μα. σ] or σ[α �→ ρ]. In
either case, τ′ is also safe by Lemma 20 and v is safe by the
I.H. �

Theorem 22 (Weak Soundness) If 	 t : τ and t −−−� v for a
safe type τ, then v is a safe value.

c© 2012 Information Processing Society of Japan 19

IPSJ Transactions on Programming Vol.5 No.2 16–24 (Mar. 2012)

D :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ass)
· · · 	 f : τ→ τ

(ass)
· · · 	 x : μα. α→ τ

(ass)
· · · 	 x : μα. α→ τ (�-μE)

· · · 	 x : (μα. α→ τ)→ τ(→E)
· · · 	 xx : τ(→E)

· · · , x : μα. α→ τ 	 f (xx) : τ (→I)
Γ, f : τ→ τ 	 λx. f (xx) : (μα. α→ τ)→ τ

in

D
�

�
�
�

· · · 	 λx. f (xx) : (μα. α→ τ)→ τ

D
�

�
�
�

· · · 	 λx. f (xx) : (μα. α→ τ)→ τ(�-μI)
· · · 	 λx. f (xx) : μα. α→ τ(→E)

Γ, f : τ→ τ 	 (λx. f (xx))(λx. f (xx)) : τ (→I)
Γ 	 λ f .(λx. f (xx))(λx. f (xx)) : (τ→ τ)→ τ

Fig. 4 Admissibility of axiom (Y).

(Y)
	 Y : ((τC1 → E)→ τC1 → E)→ τC1 → E

(prim)
· · · 	 bool? : BoolC→ False

(ass)
· · · 	 x : τC1 (�)

· · · 	 x : (Bool ∪ (Bool→ τ1))C
(�)

· · · 	 x : BoolC ∩ (Bool→ τ1)C
(�)

· · · 	 x : BoolC
(→E)

· · · 	 bool? x : False (→E)
· · · 	 if (bool? x) : ∀αβ. α→ β→ β(⊆)
· · · 	 if (bool? x) : τC1 → E→ E

(ass)
· · · 	 x : τC1 (→E)

· · · 	 if (bool? x) x : E→ E

(prim)
· · · 	 or : (Bool×Bool)C→ E

(ass)
· · · 	 f : τC1 → E

(ass)
· · · 	 x : τC1 (�)

· · · 	 x : (Bool ∪ (Bool→ τ1))C
(�)

· · · 	 x : BoolC ∩ (Bool→ τ1)C
(�)

· · · 	 x : BoolC ∩ (Bool→ τC1)
(�)

· · · 	 x : Bool→ τC1
(base)

· · · 	 true : Bool
(→E)

· · · 	 (x true) : τC1
· · · 	 f (x true) : E

.

.

.

· · · 	 f (x false) : E(×I)
· · · 	 (f (x true), f (x false)) : E×E (⊆)

· · · 	 (f (x true), f (x false)) : (Bool×Bool)C

(→E)
· · · 	 or(f (x true), f (x false)) : E(→E)

f : τC1 → E, x : τC1 	 t0 : E
(→I)

f : τC1 → E 	 λx. t0 : τC1 → E
(→I)

	 λ f x. t0 : (τC1 → E)→ τC1 → E
(→E)

	 Y λ f x. t0 : τC1 → E

Fig. 5 Derivation of SAT : τC1 → E.

(�-→BC)
	 (Bool×Bool)C→ E � BoolC

(�-B×C)
	 Bool � (Bool×Bool)C

.

.

.

	 E ⊆ τC1 (�-→)
	 (Bool×Bool)C→ E ⊆ Bool→ τC1

	 ((Bool×Bool)C→ E) ∩ ((Bool×Bool)C→ E) ⊆ BoolC ∩ Bool→ τC1
	 (Bool×Bool)C→ E ⊆ BoolC ∩ Bool→ τC1

	 (Bool×Bool)C→ E ⊆ τC1

Fig. 6 Derivation of 	 τ2 ⊆ τC1 .

Proof By the strong soundness, we have 	 v : τ. Since τ is
assumed safe, Lemma 21 ensures that v is a safe value. �

6. Examples

In this section we demonstrate how our type system detects
runtime errors by taking the Scheme function SAT in the intro-
duction, for example. To express SAT in our language, we need a
fixpoint operator Y := λ f .(λx. f (xx))(λx. f (xx)).

Proposition 23 The following axiom is admissible:

Δ 	 Y : (τ→ τ)→ τ (Y)

Proof This is originally shown by MacQueen et al. [17] The
proof tree for our system is shown in Fig. 4. �

Using Y, SAT is represented in Λ by Y λ f x. t0 where

t0 = if(bool? x) x (or(f (x true), f (x false)))

For function symbols appearing here, we only consider their
types:

Ty(if) =

⎧
⎪⎪⎨
⎪⎪⎩

True→ (∀αβ. α→ β→ α)
False→ (∀αβ. α→ β→ β)

Ty(or) =

⎧
⎪⎪⎨
⎪⎪⎩

Bool×Bool→ Bool
(Bool×Bool)C→ E

Ty(bool?) =

⎧
⎪⎪⎨
⎪⎪⎩

Bool→ True
BoolC→ False

where True, False and Bool are base types withCTrue = {true},
CFalse = {false} and CBool = CTrue ∪ CFalse. Now we can de-
duce 	 SAT : (τ1→Bool)∩(τC1→E) for τ1 = μα. Bool∪(Bool→
α), as the following proof tree shows:

...

	 SAT : τ1→ Bool

Fig. 5

�
��

�
��

	 SAT : τC1 → E
(∩I)

	 SAT : (τ1→ Bool) ∩ (τC1 → E)

The subproof for 	 SAT : τ1
C → E is presented in Fig. 5. As de-

scribed in the introduction, this typing means that SAT returns a
boolean value for any curried boolean function and boolean input,
and always causes a runtime error for other inputs.

An uncurried binary boolean function t2 should have following
type τ2:

τ2 = (Bool×Bool→ Bool) ∩ ((Bool×Bool)C→ E)

We have 	 τ2 ⊆ τC1 as shown in Fig. 6, thus we can deduce
	 SAT t2 : E. This typing means that the evaluation of SAT t2
causes a runtime error.

7. Related Works

Intersection types were introduced by Coppo et al. [7] and Pot-
tinger [20]. They showed that reduction preserves typing (often
called Subject Reduction after Curry), and that an expression is

c© 2012 Information Processing Society of Japan 20

IPSJ Transactions on Programming Vol.5 No.2 16–24 (Mar. 2012)

Table 1 Expressiveness of types.

σ ∩ τ σ ∪ τ ∀α. τ ∃α. τ μα. τ σ ⊆ τ τC E Type Inference Algorithm

Hindley/Milner [14], [18]
√ √

Intersection Types [7], [20]
√

Barendregt et al. [4]
√ √

MacQueen et al. [17]
√ √ √ √ √

Barbanera et al. [3]
√ √ √

Soft Typing [5]
√ √ √ √ √

Amadio et al. [2]
√ √ √

Damm [8]
√ √ √ √

Aiken et al. [1]
√ √ √ √

*2

Semantic Subtyping [11]
√ √ √ √ √ √

*3

Hosoya et al. [15]
√ √ √ √ √ √ √

*3

Our system
√ √ √ √ √ √ √ √

typable if and only if it is strongly normalizing. This means that
a complete type inference algorithm does not exist for intersec-
tion types.

Milner [18] presented a soundness theorem for Hindley/Milner
style polymorphism by means of denotational semantics. Types
are interpreted as downward-closed and directed-complete sets
(ideals) in the semantic domain of expressions. He also presented
the famous type inference algorithmW which is complete w.r.t.
first rank polymorphism.

MacQueen et al. [17] extended the ideal model for recursive

types, and additionally introduced unquoted existential quantifi-

cation and set-theoretic union types. They formalized the seman-
tics of a recursive type as the unique fixpoint of corresponding
contractive mapping on ideals. They restricted the types to be for-

mally contractive in order to ensure the fixpoint is unique. (This
harmless restriction was eliminated anyway in our system.)

Subtyping on intersection types was presented by Barendregt
et al. [4], and later extended for intersection and union types by
Barbanera et al. [3].

Amadio et al. [2] formalized subtyping on recursive types with
the help of regular tree expressions, and the system was extended
for union, intersection and recursive types by Damm [8]. Subtyp-
ing on union and recursive types is also presented by Cartwright
et al. [5].

Frisch et al. [11], [12] introduced semantic subtyping. They
presented a set-theoretic model of types independent from the
semantics of expressions, and defined the subtyping relation by
the set inclusion relation on this model. The semantic subtyping
method allowed set-theoretic interpretation of complement type

τC, which was not possible in the ideal model [6]. Hosoya et
al. [15] extended the semantic subtyping for parametric polymor-
phism.

Our system covers all the notions described above, except that
we have not yet proposed a type inference algorithm. These re-
sults are summarized in Table 1.

Several studies have been motivated to cover the disadvantages
of dynamically typed languages by means of static typing.
Soft typing [1], [5], [25] Soft typing introduces a static type

*2 Type inference is undecidable in their system. An incomplete algorithm
was presented [1].

*3 These algorithms are complete w.r.t. semantic subtyping, but not for the
axiomatized intersection types [11], [15].

check for dynamically typed languages. If the static type
check succeeds, the program is assured to be type-safe. In
order not to restrict the expressiveness of dynamically typed
languages, programs will not be rejected even though the
static check fails; instead, runtime checks are inserted which
are unknown to fail or not on execution. That is, soft typing
does not detect runtime errors; programmers must manually
check whether a ‘softly’ rejected program contains a bug, or
not.

Complete typing [23] Complete typing rejects provably erro-
neous programs at compile time, and is expected to help
detect real bugs from softly rejected programs. Complete
typing requires an inference system that is different from
the usual sound system, and it requires an algorithm testing
disjointness of types (i.e. emptiness of intersection types),
which is known to be undecidable [21].

Hybrid typing [10], [16] Hybrid typing is an extension of soft
typing with refinement types, and it rejects some programs
at compile time if the type check is proved to fail. How-
ever, hybrid type checking is not suitable for our purpose
because it was originally designed for a statically typed lan-
guage, and type check failure does not immediately imply a
runtime error.

8. Conclusions and Future Work

We have presented a type system that accepts expressions
whose evaluation never causes runtime errors, and rejects expres-
sions whose evaluation always causes runtime errors. The system
is proved to be sound by several soundness theorems:
Subject Reduction If an expression has a type, then its reduct

also has the same type. (Theorem 16)
Strong Soundness If an expression has a type and its evalua-

tion terminates, then the value has the same type. (Theo-
rem 17)

Weak Soundness If an expression has a safe type, then its eval-
uation never causes a runtime error. That is, the expression
should be accepted by the type checker. (Theorem 22)

Error Soundness If an expression has the type E, then its eval-
uation must cause a runtime error. That is, the expression
should be rejected by the type checker. (Theorem 18)

Though we have presented the type system, we have not yet
presented a type inference algorithm. Since our system has in-

c© 2012 Information Processing Society of Japan 21

IPSJ Transactions on Programming Vol.5 No.2 16–24 (Mar. 2012)

tersection types and higher rank polymorphism where a complete
type inference is impossible for each system [19], [22], a com-
plete type inference is apparently impossible. Thus, we need to
discover a fragment of our system where type inference becomes
possible in practical time.

Reference

[1] Aiken, A., Wimmers, E.L. and Lakshman, T.K.: Soft typing with
conditional types, Proc. 21st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’94, pp.163–173
(1994).

[2] Amadio, R. and Cardelli, L.: Subtyping Recursive Types, ACM Trans.
Prog. Lang. Syst., Vol.15, No.4, pp.575–631 (1993).

[3] Barbanera, F. and Dezani-Ciancaglini, M.: Intersection and union
types, Theoretical Aspects of Computer Software, Ito, T. and Meyer,
A. (Eds.), Lecture Notes in Computer Science, Vol.526, pp.651–674,
Springer Berlin/Heidelberg (1991).

[4] Barendregt, H., Coppo, M. and Dezani-Ciancaglini, M.: A Filter
Lambda Model and the Completeness of Type Assignment, J. Sym-
bolic Logic, Vol.48, No.4, pp.931–940 (1983).

[5] Cartwright, R. and Fagan, M.: Soft typing, Proc. SIGPLAN ’91
Conference on Programming Language Design and Implementation,
pp.278–292 (1991).

[6] Castagna, G. and Frisch, A.: A gentle introduction to semantic subtyp-
ing, Proc. 7th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, PPDP ’05, pp.198–199
(2005).

[7] Coppo, M. and Dezani-Ciancaglini, M.: An Extension of the Basic
Functionality Theory for the λ-calculus, Nortre Dame Journal of For-
mal Logic, Vol.21, No.4, pp.685–693 (1980).

[8] Damm, F.: Subtyping with union types, intersection types and recur-
sive types, Theoretical Aspects of Computer Software, Hagiya, M.
and Mitchell, J. (Eds.), Lecture Notes in Computer Science, Vol.789,
pp.687–706, Springer Berlin/Heidelberg (1994).

[9] Dezani-Ciancaglini, M., de’Liguoro, U. and Piperno, A.: Filter mod-
els for conjunctive-disjunctive λ-calculi, Theor. Comput. Sci., Vol.170,
No.1–2, pp.83–128 (1996).

[10] Flanagan, C.: Hybrid type checking, SIGPLAN Notices, Vol.41,
pp.245–256 (2006).

[11] Frisch, A., Castagna, G. and Benzaken, V.: Semantic subtyping, 17th
Annual IEEE Symposium on Logic in Computer Science, pp.137–146
(2002).

[12] Frisch, A., Castagna, G. and Benzaken, V.: Semantic subtyping: Deal-
ing set-theoretically with function, union, intersection, and negation
types, J. ACM, Vol.55, pp.19:1–19:64 (2008).

[13] Girard, J.-Y.: The system F of variable types, fifteen years later, Theor.
Comput. Sci., Vol.45, pp.159–192 (1986).

[14] Hindley, R.: The Principal Type-Scheme of an Object in Combinatory
Logic, Transactions of the American Mathematical Society, Vol.146,
pp.29–60 (1969).

[15] Hosoya, H., Frisch, A. and Castagna, G.: Parametric polymorphism
for XML, SIGPLAN Not., Vol.40, pp.50–62 (2005).

[16] Knowles, K. and Flanagan, C.: Hybrid type checking, ACM Trans.
Program. Lang. Syst., Vol.32, pp.6:1–6:34 (2010).

[17] MacQueen, D., Plotkin, G. and Sethi, R.: An ideal model for recursive
polymorphic types, Proc. 11th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’84, New York, NY,
USA, pp.165–174, ACM (1984).

[18] Milner, R.: A Theory of Type Polymorphism in Programming, J. Com-
put. Syst. Sci., pp.348–375 (1978).

[19] Pierce, B.C.: Types and Programming Languages, The MIT Press
(2002).

[20] Pottinger, G.: A type assignment for the strongly normalizable λ-
terms, To H.B. Curry : Essays on combinatory logic, lambda calculus,
and formalism, Seldin, J. and Hindley, J. (Eds.), pp.561–577, Aca-
demic Press (1980).

[21] Urzyczyn, P.: The Emptiness Problem for Intersection Types, J. Sym-
bolic Logic, Vol.64, No.3, pp.1195–1215 (1999).

[22] Wells, J.B.: Typability and type checking in System F are equivalent
and undecidable, Annals of Pure and Applied Logic, Vol.98, No.1–3,
pp.111–156 (1999).

[23] Widera, M.: A Sketch of Complete Type Inference for Functional Pro-
gramming, International Workshop on Functional and (Constraint)
Logic Programming (WLFP 2001) (2001).

[24] Widera, M. and Beierle, C.: An Approach to Checking the Non-
Disjointness of Types in Functional Programming, Infomatik Berichte
281, FernUniversität Hagen (2001).

[25] Wright, A.K. and Cartwright, R.: A Practical Soft Type System for
Scheme, ACM Trans. Prog. Lang. Syst., Vol.19, No.1, pp.87–152
(1997).

[26] Wright, A.K. and Felleisen, M.: A Syntactic Approach to Type Sound-
ness, Information and Computation, Vol.115, pp.38–94 (1992).

Appendix

A.1 Detailed Proofs

Lemma 11 Let α, α′ � FV(Γ), α � FV(τ′) and α′ � FV(τ). If
Γ 	 σ � σ′ and Γ, α � α′ 	 τ � τ′ then Γ 	 τ[α �→ σ] � τ′[α′ �→
σ′].
Proof By induction on the height of the proof of Γ, α � α′ 	
τ � τ′.

Case (�-ass). The following two subcases are possible:
Case τ = α and τ′ = α′. Then the assumption Γ 	 σ � σ′

is equivalent to Γ 	 τ[α �→ σ] � τ′[α′ �→ σ′].
Case (β � β′) ∈ Γ with τ = β and τ′ = β′. Since α, α′ �

FV(Γ), by (�-ass) we get Γ 	 β[α �→ σ] � β′[α′ �→ σ′].

Case (�-μC)
Γ, α � α′, β � β′ 	 ρ � ρ′

Γ, α � α′ 	 μβ. ρ � μβ′. ρ′
with τ = μβ. ρ and

τ′ = μβ′. ρ′. Since α � FV(ρ′) and α′ � FV(ρ), by the I.H.
we have Γ, β � β′ 	 ρ[α �→ σ] � ρ′[α′ �→ σ′]. Applying
(�-μC), we get Γ 	 μβ. ρ[α �→ σ] � μβ′. ρ′[α′ �→ σ′].

Others. Obvious because they are independent from the sub-
typing environment and closed under type substitution. �

Lemma 12. If Δ 	 v : τ has a proof with height h, then there
exists a proof shorter than h for:
(1) both Δ 	 v : τ1 and Δ 	 v : τ2 if τ = τ1 ∩ τ2,
(2) either Δ 	 v : τ1 or Δ 	 v : τ2 if τ = τ1 ∪ τ2,
(3) Δ 	 v : σ[α �→ μα. σ] if τ = μα. σ,
(4) Δ 	 v : σ[α �→ ρ] if τ = ∀α. σ.
Proof By mutual induction on the proof of Δ 	 v : τ.

Case (∩I)
Δ 	 v : τ1 Δ 	 v : τ2

Δ 	 v : τ1 ∩ τ2
. This case applies for state-

ment 1 and it is trivial.
Cases (∪L) or (∃L). All the statements are immediate from

the I.H.

Case (∀I)
Δ 	 v : σ

Δ 	 v : ∀α. σ
with α � FV(Δ). This case applies for

statement 4. By replacing α to ρ in the proof of Δ 	 v : σ,
we can make a proof of height h − 1 for Δ 	 v : σ[α �→ ρ].

Case (�)
Δ 	 v : τ′

Δ 	 v : τ
with 	 τ′ � τ. Proof proceeds to case anal-

ysis of 	 τ′ � τ.
• The following subcases apply for all statements:

Case (�-∪E)
Δ 	 v : τ ∪ τ
Δ 	 v : τ

. By I.H. 2, Δ 	 v : τ has a

proof shorter than h − 1.

Case (�-∩E)
Δ 	 v : σ ∩ τ
Δ 	 v : τ

. By I.H. 1, Δ 	 v : τ has a

proof shorter than h − 1.

Case (�-μE)
Δ 	 v : μα. σ

Δ 	 v : τ
with τ = σ[α �→ μα. σ]. By

I.H. 3, Δ 	 v : τ has a proof shorter than h − 1.

Case (�-∀E)
Δ 	 v : ∀α. σ
Δ 	 v : σ[α �→ ρ]

with τ = σ[α �→ ρ]. By

I.H. 4, Δ 	 v : τ has a proof shorter than h − 1.
In either case above we could reduce the statements to

c© 2012 Information Processing Society of Japan 22

IPSJ Transactions on Programming Vol.5 No.2 16–24 (Mar. 2012)

where the I.H.s can be applied.
• The following subcases apply for statement 1;

Case (�-∩I)
Δ 	 v : τ1

Δ 	 v : τ1 ∩ τ1
with τ1 = τ2. Trivial.

Case (�-∩C)
Δ 	 v : τ′1 ∩ τ′2
Δ 	 v : τ1 ∩ τ2

with 	 τ′1 � τ1 and 	 τ′2 �

τ2. By I.H. 1, Δ 	 v : τ′i with a proof shorter than
h − 1, for all i ∈ {1, 2}. Applying (�) we get a proof of
Δ 	 v : τi, which is shorter than h.

• The following subcases apply for statement 2;

Case (�-∪I)
Δ 	 v : τ1

Δ 	 v : τ1 ∪ τ2
. Trivial.

Case (�-∪C)
Δ 	 v : τ′1 ∪ τ

′
2

Δ 	 v : τ1 ∪ τ2
with 	 τ′1 � τ1 and 	 τ′2 �

τ2. By I.H. 2, Δ 	 v : τ′i has a proof shorter than h − 1
for some i ∈ {1, 2}. So applying (�) gives Δ 	 v : τi a
proof shorter than h.

Case (�-∩∪)
Δ 	 v : ρ ∩ (σ1 ∪ σ2)

Δ 	 v : (ρ ∩ σ1) ∪ (ρ ∩ σ2)
with τ1 = ρ ∩

σ1 and τ2 = ρ ∩ σ2.
By I.H. 1, we have a proof shorter than h − 1 for both

Δ 	 v : ρ and (A.1)

Δ 	 v : σ1 ∪ σ2 (A.2)

By I.H. 2 on (A.2), we have a proof shorter than h − 2
for

Δ 	 v : σi for some i ∈ {1, 2} (A.3)

Applying (∩I) with (A.1) and (A.3), we get a proof
shorter than h of Δ 	 v : τi.

• The following subcases apply for statement 3;

Case (�-μI)
Δ 	 v : σ[α �→ μα. σ]

Δ 	 v : μα. σ
. Trivial.

Case (�-μC)
Δ 	 v : μα′. σ′

Δ 	 v : μα. σ
with α � FV(σ′), α′ �

FV(σ) and α′ � α 	 σ′ � σ. By Lemma 11 we have

Γ 	 σ′[α′ �→ μα′. σ′] � σ[α �→ μα. σ]. (A.4)

On the other hand, by I.H. 3 Δ 	 v : σ′[α′ �→ μα′. σ′]
has a proof shorter than h − 1.
Applying (�) with (A.4), we get a proof of Δ 	 v :
σ[α �→ μα. σ], which is shorter than h.

• No other subcases of subtyping apply because of the form
τ.

Others. Not applicable because of the form of v or τ. �
Lemma 13 (Substitution) Let x � Dom(Δ). If Δ, x : σ 	 t : τ

and Δ 	 v : σ then Δ 	 t[x �→ v] : τ.
Proof By induction on the proof of Δ, x : σ 	 t : τ.

Case (ass). If t = x, then τ = σ and t[x �→ v] = v, so Δ 	 v : σ
is the goal. Otherwise (t : τ) ∈ Δ and t[x �→ v] = t, so by
(ass) we get Δ 	 t[x �→ v] : τ.

Cases (base), (prim), (E). Trivial.

Case (→I)
Δ, x : σ, x′ : σ′ 	 t′ : τ′

Δ, x : σ 	 λx′. t′ : σ′ → τ′
with t = λx′. t′ and

τ = σ′ → τ′. Here we assumed that x′ is properly renamed
to avoid capture. By the I.H. we have Δ, x′ : σ′ 	 t′[x �→ v] :
τ′, and applying (→I), we get Δ 	 λx′. t′[x �→ v] : σ′ → τ′.

Case (∪L). There are two subcases to examine.

Case
Δ′ : x′ : σ1 : x : σ 	 t : τ : Δ′ : x′ : σ2 : x : σ 	 t : τ

Δ′ : x′ : σ1 ∪ σ2 : x : σ 	 t : τ
with Δ = (Δ′, x′ : σ1 ∪ σ2). This case is obvious from
the I.H.

Case
Δ, x : σ1 	 t : τ Δ, x : σ2 	 t : τ

Δ, x : σ1 ∪ σ2 	 t : τ
with σ = σ1 ∪

σ2. By Lemma 12–2 on Δ 	 v : σ1 ∪ σ2, we have either
Δ 	 v : σ1 or Δ 	 v : σ2. In either case, by the I.H., we
get Δ 	 t[x �→ v] : τ.

Others. Obvious from the I.H. �
Lemma 14 (Abstraction) If Δ 	 λx. t : σ→ τ then Δ, x : σ 	

t : τ.
Proof By induction on Δ 	 λx. t : σ→ τ.

Case (→I). Trivial.
Cases (∪L) or (∃L). Obvious from the I.H.
Case (�). Because of the form σ→ τ, the following subcases

are possible;

Case (�-→)
Δ 	 λx. t : σ′ → τ′

Δ 	 λx. t : σ→ τ
where 	 σ � σ′ and

	 τ′ � τ. By the I.H. we have Δ, x : σ′ 	 t : τ′.
Applying (�) and (�L) we get Δ, x : σ 	 t : τ.

Cases (�-∪E), (�-∩E) (�-μE) or (�-∀E). In either case,
Lemma 12 gives a shorter proof for Δ 	 λx. t : σ→ τ. So
by the I.H. we get Δ, x : σ 	 t : τ.

Case (�-→∩)
Δ 	 λx. t : (σ→ τ1) ∩ (σ→ τ2)

Δ 	 λx. t : σ→ τ1 ∩ τ2
.

Lemma 12 gives a shorter proof of Δ 	 λx. t : σ→ τi for
both i ∈ {1, 2}. So by the I.H. we have Δ, x : σ 	 t : τi.
Applying (∩I) we get Δ, x : σ 	 t : τ1 ∩ τ2.

Case (�-∪→)
Δ 	 λx. t : (σ1→ τ) ∩ (σ2→ τ)
Δ 	 λx. t : σ1 ∪ σ2→ τ

. Analo-

gously we have Δ, x : σi 	 t : τ. Applying (∪L) we
get Δ, x : σ1 ∪ σ2 	 t : τ.

Others. Not applicable because of the form λx. t or σ→ τ. �

Akihisa Yamada received his B.E. and
M.E. from Nagoya University in 2006 and
2008, respectively. From 2008 to 2011 he
worked for Panasonic Advanced Technol-
ogy Development Co., Ltd. Since 2011,
he has been a graduate student in the doc-
toral program of Graduate School of In-
formation Science at Nagoya University.

His research interests include type systems and term rewriting
systems. He is a student member of IPSJ.

c© 2012 Information Processing Society of Japan 23

IPSJ Transactions on Programming Vol.5 No.2 16–24 (Mar. 2012)

Keiichirou Kusakari received his B.E.
from Tokyo Institute of Technology in
1994, received M.E. and Ph.D. degrees
from Japan Advanced Institute of Sci-
ence and Technology in 1996 and 2000.
From 2000, he was a research associate
at Tohoku University. He transferred to
Nagoya University’s Graduate School of

Information Science in 2003 as an assistant professor and became
an associate professor in 2006. His research interests include term
rewriting systems, program theory, and automated theorem prov-
ing. He is a member of IEICE, IPSJ and JSSST.

Toshiki Sakabe was born in 1949. He
received his B.E., M.E. and D.E. de-
grees from Nagoya University in 1972,
1974 and 1978, respectively. He was
a research associate at Nagoya Univer-
sity during 1977–1985, and an associate
professor at Mie University and Nagoya
University during 1985–1987 and 1987–

1993, respectively. He has been a professor of Nagoya Univer-
sity since 1993. His research interests are in the field of theoreti-
cal software science including algebraic specifications, rewriting
computation, program verification, model checking and so on. He
is a member of IPSJ, IEICE, JSAI and JSSST.

Masahiko Sakai completed graduate
course of Nagoya University in 1989 and
became an assistant professor, where he
obtained a D.E. degree in 1992. From
April 1993 to March 1997, he was an
associate professor in JAIST, Hokuriku.
In 1996 he stayed at SUNY at Stony
Brook for six months as a visiting re-

search professor. From April 1997, he was an associate professor
in Nagoya University. Since December 2002, he has been a
professor. He is interested in term rewriting system, verification
of specification and software generation. He received the Best
Paper Award from IEICE in 1992 and 2011. He is member of
IEICE and JSSST.

Naoki Nishida graduated with a D.E. de-
gree from a Graduate School of Engineer-
ing at Nagoya University in 2004. He
became a research associate in Graduate
School of Information Science at Nagoya
University in 2004. From April 2007, he
has been an Assistant Professor, and he
was a visiting researcher in DSIC at Tech-

nical University of Valencia from July 2011 to December 2011.
He received the Best Paper Award from IEICE in 2011. He is
interested in program inversion, theorem proving, term rewriting,
and program verification. He is a member of IEICE, JSSST and
IPSJ.

c© 2012 Information Processing Society of Japan 24

