
IPSJ Transactions on Programming Vol.5 No.1 17–25 (Mar. 2012)

Regular Paper

Design and Implementation of a High Productivity
Language with Communication Aggregation for

Parallel Scientific Computation

Katsuaki Ikegami1,a) Kenjiro Taura1

Received: June 27, 2011, Accepted: November 8, 2011

Abstract: Message passing model is a popular programming model in which users explicitly write both “send” and
“receive” commands in programs and locate shared data on each process’s local memory address. Consequently, it is
difficult to write a program with complicated algorithms using a message passing model. This problem can be solved
using a partitioned global address space (PGAS) model, which can provide virtual global address space and users can
effortlessly write programs with complex data sharing. The PGAS model hides the network communication as im-
plicit global memory access. This leads to better programmability, but there can be additional network communication
overhead compared to a message passing model. We can reduce the overhead if programs read or write global mem-
ory in bulk, but this complicates writing programs. This paper presents the programming language and its runtime to
achieve both the programmability and the performance with automatic communication aggregation. The programmer
can write global memory accesses in the normal memory access style; then, the compiler and runtime aggregate the
communication. In particular, the most time-consuming network accesses are placed in loops, and therefore, this paper
suggests how the compiler detects global memory accesses in loops and aggregates them and how to implement that
idea.

Keywords: PGAS, parallel programming, communication optimization

1. Introduction

1.1 Background
Scientific computing is one of the main applications of cur-

rent parallel computing systems. Typical large-scale scientific ap-
plications include earthquake, weather, and fluid dynamics sim-
ulations. These applications are computed using numerical al-
gorithms, for example, the finite element method or the particle
method. When these simulations are executed in parallel, prob-
lems are usually divided into multiple areas that are assigned
to processors. For example, in the finite element method, the
problem domain is partitioned into small elements and connec-
tions between elements, and each process handles some elements.
Connections between elements are static, but they are not al-
ways as simple as a grid, and therefore, element access patterns
for computing an element force can be irregular. In the particle
method, we divide the problem area into many small particles and
compute forces between particles. Since connections between
particles are dynamic, access patterns during computation are not
only irregular but also dynamic.

One of the most popular libraries for parallel programming
is the Message Passing Interface (MPI), which is based on the
message passing programming model. Data are stored in local
memory, which is only readable by the owner processor. When
data need to be shared among processes, users have to explicitly

1 The University of Tokyo, Bunkyo, Tokyo 113–8656, Japan
a) liquid@logos.ic.i.u-tokyo.ac.jp

write message send and receive API calls in both sender and re-
ceiver processes. Furthermore, a sender must specify the data to
be sent and the receiver, and a receiver must specify the buffer
to store received data and the sender of the data. In this com-
plicated programming model, a programmer must handle all the
pair of senders and receivers explicitly, which is a difficult task
in dynamic or irregular computation. The shared memory pro-
gramming model is different from this programming model. For
instance, users only have to access memory space where data are
shared in the shared programming model.

Accordingly, writing programs with the message passing
model is much harder than that with the shared memory program-
ming model. However, many parallel systems, such as a clus-
ter, are distributed memory systems that do not provide a shared
memory interface. This is the main reason why the message pass-
ing model is mostly used. To improve programmability, the parti-
tioned global address space (PGAS) [1] programming model has
been studied. The PGAS model provides a shared memory in-
terface, and the message communications between processes are
hidden by runtime. Automatic parallelization of sequential pro-
grams or completely transparent distributed parallel shared mem-
ory has been previously studied, but the PGAS model is char-
acterized by data locality. In the PGAS model, users explic-
itly specify the place (node or process) of data. Thus, using the
PGAS model makes it easy to implement algorithms because of
the shared memory interface, and high performance with explicit
data affinity can also be achieved.

c© 2012 Information Processing Society of Japan 17

IPSJ Transactions on Programming Vol.5 No.1 17–25 (Mar. 2012)

However, current implementations of PGAS model languages
suffer from a trade-off between programmability and perfor-
mance. When a program accesses the data in the global shared
address space, the process that performs an access and the data
owner process need to communicate with each other. In a dis-
tributed system, processes on different nodes cannot communi-
cate through memory but must do so through the network. How-
ever, network latency is much higher than that of memory, and
thus, frequent access to the global address space over the net-
work can cause significant overhead and performance degrada-
tion. Therefore, the global address space should be accessed in
bulk to achieve better performance. This fact leads us to write
a program with the following characteristics: the program reads
the necessary data from the global address space, computes us-
ing local memory, and then writes back the results to the global
address space. In this programming style, users have to manage
which local buffer address corresponds to the original global ad-
dress; this becomes a nontrivial problem when the access pattern
to the global address space is irregular, in which case users cannot
easily write programs even with PGAS.

1.2 Objective
In this paper, we propose a programming language based on the

PGAS model and its runtime that provides high productivity with
complete global address access even in a distributed system, as
well as achieving high performance comparable to existing run-
time based on the message passing interface model. Using our
language, the runtime aggregates accesses to the global address
space into bulk accesses, and thus, programmers can write access
to global address space in a consistent style.

2. Related Work

In this section, we compare the productivity of implement-
ing an irregular application among several existing programming
models. This application computes the displacement of a body
subjected to an external force and approximates the body as nodes
and static connections between nodes as shown in Fig. 1. The cir-
cles in Fig. 1 are the nodes, and the lines between circles are the
connections. We assume that the inner force acts only on the con-
nections. Each step of computation consists of a computation of
forces of each connection and a computation of displacements of
each element. The real-world applications also divide the target
problem area into small pieces and compute interaction forces
between elements and their displacements in each time step, so
this simple application is a good example of real-world scientific
applications. We assume that the problem is distributed on three
processes and clarify what program description is needed in #2
processor. In Fig. 1, the area written as #1 is the first process’s
area. Additionally, problem division is done in runtime, so static
analysis of the access pattern in compile time is not possible.

2.1 Message Passing Model
Message passing model languages provide send and receive

communication between processes on distributed systems. They
also provide typical group communication. The message passing
model is the lowest level programming model in distributed par-

Fig. 1 Irregular divided nodes.

allel programming. If we assume that the problem is computed
using the message passing model, the second process would com-
municate as shown in Fig. 2. This figure shows that the first pro-
cess will send the zeroth, first, third, and fourth elements of data
in its local buffer, and the third process will do the first, third,
and fourth. The second process will place received data from the
fourth to tenth of its local buffer. In this operation, nodes are
never accessed by the global index over nodes but the index lo-
cal in the process. The processes should handle the connections
between nodes with the local buffer index. This example illus-
trates the difficulty in implementing irregular computation with
the message passing model even for this simple application.

2.2 Global View PGAS Model
Sharing data with process-oriented addresses makes program-

ming hard. One solution is to provide global addresses; these can
be used by all the processes on each node. The PGAS model can
be used to realize this solution.
2.2.1 High-level Global View PGAS Model

First, we examine high-level PGAS languages, for example,
Chapel [2] and X10 [3]. In those languages, accesses to data on
global addresses are transparent as normal memory access, and
thus, programmers do not have to be aware of whether or not
the system is distributed. Chapel also provides a data-parallel
programming model and an object oriented programming model.
The second process in Fig. 1 can access the neighbor nodes as in
Fig. 3. In Fig. 3, the arrows mean that to-side nodes use from-side
nodes for the force computation. This figure shows that processes
can access node data on any processes using global addresses.

However, current runtime implementations of these languages
do not aggregate communication and thus do not achieve high
performance.
2.2.2 Low-level Global View PGAS Model

Consider, now, lower level PGAS languages, for instance,
Unified Parallel C (UPC) [4] or Distributed Memory Interface
(DMI) [5]. The former is an extension of the C language, and
the latter is the library providing the C language API. Both lan-
guages provide a local normal pointer and a pointer to the global
address space. Shared data are accessed via the global pointer.
With these low-level PGAS languages, users access the global
address space by copying between local memory and the global
address space explicitly. Using UPC, users can access the global
pointer directly, but this involves frequent communications and
is not usually used in critical codes. Instead, users should use
upc_memget or upc_memput to access global address space.

c© 2012 Information Processing Society of Japan 18

IPSJ Transactions on Programming Vol.5 No.1 17–25 (Mar. 2012)

Fig. 2 Communication of node data with message passing model.

Fig. 3 Sharing node data with high-level PGAS languages.

Fig. 4 Reading node data to local buffer with low-level PGAS languages.

When a user computes the problem of Fig. 1 with aggregation
of communication with these languages, all the needed nodes
should be loaded to the local buffer as shown in Fig. 4 before
actual computation begins.

This program description is easier than the message passing
model because nodes are read using a global address. However, a
programmer must handle the local buffer address during the cal-
culation phase, which makes it difficult to implement irregular
algorithms using low-level PGAS languages.

2.3 DMI
In this section, we describe the DMI, i.e., the PGAS model li-

brary. As shown above, the DMI is the C library providing the
global address space. Users can manage data consistency within
the global address space with any affinity, and also the DMI pro-
vides asynchronous read/write, read/write to/from discrete ad-
dresses, several basic synchronizations, and user-defined atomic
operations, which are useful for parallel programming. Programs
in the DMI can achieve performance as high as that of MPI pro-
grams.

Using the DMI, users cannot read/write transparently to the
global address space, but users can copy between global address
space and local memory, as shown in Fig. 5. A useful feature
of the DMI compared to UPC is that the DMI can access the
global address without specifying which address is on which
node, whereas UPC API can access the global address only on

Fig. 5 Basic concept of DMI.

one node.

2.4 PGAS Runtime Optimizations of Irregular Access
Existing PGAS languages have tried to resolve the trade-off

between ease of programming and performance. In the case of
UPC, Wei-Yu Chen optimized communication by communication
overlap and aggregation of communication [6].

Communication overlap occurs when the runtime begins to
read global address space earlier than the data are actually needed
and this delays the completion of writing the data. The read-
able points or the delayable write completion points are obtained
through a static analysis of the compiler. This technique is effec-
tive for a large amount of read or write operations.

The goal of aggregation of communication is to aggregate
communications of global accesses and reduce communication
overhead. Upon implementation, an aggregated communication
sends/receives all data covering necessary data; hence, it cannot
aggregate accesses on sparse data efficiently.

Another PGAS language, Titanium, also optimizes commu-
nications with an inspector/executor strategy [7], [8], in which
something is prepared before real computation (inspector) and
is used in later computation (executor.) If the executor phases
run much more than inspector phases, the cost to prepare is re-
duced. The compiler should distinguish which operation is done
with a single inspector. In the Titanium specification, for an array
on global address space A and its indices array B, the compiler
uses this strategy if the codes repeatedly access A[B[i]] while
A and B are unchanged. In the inspector phase, all the global ad-
dresses for A[B[i]] for all i are collected; the local received data
are then used in the executor phase. Titanium takes the best at-
tributes from various types of aggregation: reading exact needed

c© 2012 Information Processing Society of Japan 19

IPSJ Transactions on Programming Vol.5 No.1 17–25 (Mar. 2012)

data, reading the data covering the needed data, and reading all
the array. However, Titanium only aggregates read access, not
write access.

Lastly, high performance Fortran (HPF) [9] also provides
global address space. With HPF, a programmer can parallelize
a sequential Fortran program with some directives. HPF provides
data-parallel or task-parallel syntax, and data distribution is au-
tomatically determined by runtime or explicitly specified by the
programmer. In HPF, HALO [10] is the feature for communica-
tion aggregation. HALO directives specify which data each pro-
cess accesses and use this information in runtime to communica-
tion optimization, for instance, aggregation or overlapping. The
problem with HALO is that programmers must explicitly notify
the access data in the program, so it is hard to write a program
with a dynamic access pattern.

3. PGAS Language with Automatic Optimiza-
tion of Communication

3.1 Basic Design
As shown above, existing PGAS model languages suffer from

a trade-off between performance and programmability, and opti-
mization techniques in compile time or runtime make it possible
to achieve high performance with simple programming. Thus,
the programming language should allow all the global accesses
with normal memory access syntax, and the runtime should op-
timize the communication. In this paper, we propose the high-
level PGAS language and its runtime with almost transparent ac-
cess to the global address space over the DMI. To implement
this concept, we use an extension of C++, translate the source
codes to normal C++ code using the DMI with a translator script,
and compile into an execution file with the normal C++ compiler
GNU Compiler Collection (GCC) [11].

3.2 Programming Model
This language is based on the thread programming model of the

DMI. Users describe thread creations and joins in the DMI_main
function, which is a predefined DMI function same as main in
normal programs. Users can also use the SPMD programming
model provided by the DMI. That means that this language does
not affect the whole programming model; thus, programs of the
language are not parallelized implicitly.

3.3 C++ Extension
The suggested language extends C++, by adding two syntaxes:

shared type specifiers and a parallel_for statement. The
shared type specifier distinguishes global address space from lo-
cal memory space. The shared type specifier has the following
properties.
• To assign a shared expression into a not shared expression

means reading data from the global address space.
• To assign a not shared expression into a shared expression

means writing data from the global address space.
For instance, the expression sum = a[0] with the pointer to
shared data a and normal variable sum means that the value on
the global address space pointed a assigned to sum. Another ex-
pression a[0] = 8 means writing to global address space. We

1 shared int * a;
2 int sum=0;
3 for(int i=0; i<N; ++i)
4 sum += a[i];

Fig. 6 Example of a shared pointer: sum of array.

1 shared int *A, *B, *C;
2 int *p;
3 #ifdef USE_PARALLEL_FOR
4 parallel_for(int i=0; i<=N; ++i)
5 #else
6 for(int i=0; i<=N; ++i)
7 #endif
8 {
9 ...

10 A[i] = B[p[i]] + C[i+1];
11 ...
12 }

Fig. 7 Example of parallel for: aggregation of global accesses with indirect
reference.

can write a program to accumulate a[0]+a[1]+...+a[N-1]
with shared integer pointer a, as shown in Fig. 6. In fact, this
program communicates on each access a[i] and suffers from
too much communication overhead. In the next subsection, the
parallel_for statement is proposed as the solution.

3.4 parallel for Statement
The parallel_for statement is almost equivalent to the nor-

mal for statement in C/C++. The difference is that iterations
of parallel_for are not executed in order. It is confusing for
users that the parallel_for statement is not a data-parallel syn-
tax but aggregates communication using concurrency of iteration.
All the iterations are done concurrently but serialized.

For example, assume that we write the program shown in Fig. 7
using the for statement or the parallel_for statement. In the
code, the current process handles the data in [0,N]. With the
normal for statement, this program would execute as shown in
Fig. 8. In the figure, blue means a global read and orange means
a global write. Figure 8 shows that for each i = 0, . . . ,N read on
B and C, the result is computed and the value written to A. In this
flow, the number of communications is 3N, and the overhead is
too large.

Meanwhile, iterations of this program do not depend on each
other, and thus, the for can be replaced with a parallel_for.
If a parallel_for is used, runtime can execute the program as
shown in Fig. 9. First, runtime collects all the addresses of A[i],
B[p[i]], and C[i+1] for i ∈ [0,N]. This is represented by the
green color in Fig. 9. Second, all the data in bulk are read for the
collected addresses of C[i+1] and B[p[i]]. After bulk reading
is completed, a real calculation is done for each i in local mem-
ory. Finally, all the data are written to the global address. In
this execution flow, the number of communications is only three.
The runtime can aggregate communication of global access in
parallel_for as shown above.
3.4.1 Redundancy Elimination

In this section, we investigate a program such as that shown in
Fig. 10. When this program is optimized as shown above, the pro-
gram is executed until adding one to a[i], and write the data to
a and read a again before doubling the value. However, because

c© 2012 Information Processing Society of Japan 20

IPSJ Transactions on Programming Vol.5 No.1 17–25 (Mar. 2012)

Fig. 8 Flow of normal for statement.

Fig. 9 Flow of parallel for statement.

1 shared int * a;
2 parallel_for(int i=0; i<N; ++i)
3 {
4 a[i] += 1; // increment
5 a[i] *= 2; // doubling
6 }

Fig. 10 Example of parallel for: access to the same address again.

the DMI uses sequential consistency, it assumes that a write to a
global address is guaranteed to be read in a later operation only in
the same process before synchronization. This consistency model
allows the program to reduce first write and second read to a if
there is no synchronization during adding one and doubling. In-
stead of doing a global read or write, the program reuses the local
memory area.
3.4.2 Inspector/Executor

The suggested runtime should collect all the addresses to ac-
cess first, sort the addresses, and then prepare some data for com-
munication. This costs O

(
N log N

)
time complexity to save N

addresses, which is too heavy to do in every parallel_for ex-
ecution, so the runtime uses inspector/executor strategy when the
access pattern is not changed during execution.

3.5 Implementation
In this section, we describe the implementation of compiler

and runtime to meet the language specification. We imple-
mented a translator from the language to C++. For instance,
this translator translates the original source in Fig. 7 into the
C++ code in Fig. 11. The MyGroup<> template class instance

1 int * a; // DMI pointer
2 int sum=0;
3 MyGroup<int> _G1;
4 for(int i=0; i<N; ++i)
5 {
6 _G1.pushPtr(a+i); //L1
7 }
8 _G1.init(); //L2
9 _G1.read(); //L3

10 for(int i=0; i<N; ++i)
11 {
12 int & _T1 = _G1.atAndNext(); //L4
13 sum += _T1; //L5
14 }

Fig. 11 Translated code of the example of parallel for: sum of array.

1 int * a; // DMI pointer
2 MyGroup<int> _G1;
3 for(int i=0; i<N; ++i)
4 {
5 _G1.pushPtr(a+i); //L1
6 }
7 _G1.init(); //L2
8 _G1.read(); //L3
9 for(int i=0; i<N; ++i)

10 {
11 int & _T1 = _G1.atAndNext(); //L4
12 _T1 += 1; //L5
13 }
14 _G1.resetCounter(); //L6
15 for(int i=0; i<N; ++i)
16 {
17 int & _T1 = _G1.atAndNext(); //L7
18 _T1 *= 2; //L8
19 }
20 _G1.write(); //L9

Fig. 12 Translated code of the example of parallel for: access to the same
address again.

MyGroup<int> _G1 manages the pointer collection, aggregated
read and write, and local memory buffer. At point L1, we add
all the addresses a+i to _G1. The current implementation can
only handle the bracket syntax access to shared pointers such
as p[i]. Next, runtime checks the address in _G1 to determine
whether it is continuous or sparse at L2. If it is sparse, runtime
also initializes a DMI object for sparse access. Next, read the a
data from global address space at point L3. At L4 and L5, the
program accesses the local buffer in _G1. The member function
MyGroup<>::atAndNext() at L4 is the function returning the
memory area reference in address registered order.

For another example, the Fig. 10 program is translated into
Fig. 12. In this program, a[i] of incrementing and a[i] of dou-
bling should be compared by compiler data flow analysis to deter-
mine whether or not it is the same. In the current implementation,
however, they are compared literally. Synchronization existence
checking between two a[i] accesses depends on the existence of
a function call in the current implementation. Synchronizations
of the DMI is used as a function call, so this can check for syn-
chronization. There is a problem that function calls without syn-
chronization cause unnecessary reading and writing to a, which
can add performance overhead. At L6 in Fig. 12, runtime resets
the access counter of _G1 instead of writing back _G1 data and
registering pointers and reading again to a new instance _G2.

c© 2012 Information Processing Society of Japan 21

IPSJ Transactions on Programming Vol.5 No.1 17–25 (Mar. 2012)

4. Performance Analysis

4.1 Experiments
4.1.1 Experimental Environment

This analysis is executed on hosei and huscs clusters of the In-
Trigger platform [12]. Table 1 shows further information.
4.1.2 Abstract of Experiment

In the experiment, sparse matrix vector multiplication (SpMV)
and conjugate gradient (CG) are implemented as basic operations
in scientific computation in the MPI, the DMI, and the presented
language.
4.1.3 SpMV

SpMV is an algorithm with the simple code

A�x = �b. (1)

Storing a sparse matrix in a two-dimensional array is memory
inefficient, so a sparse matrix is usually stored in four arrays:
dias Diagonal components of the matrix are stored. The size is

the same as that of the matrix.
vals Nondiagonal nonzero components of the matrix are stored.
cols The number of columns of each val item is stored.
rows The indices of each first-column component in vals are

stored. The size is the same as the matrix size plus one.
The program code to compute SpMV with the following data
structure is in Fig. 13.

To execute this program over a distributed system, vectors x
and b should be distributed over all the processes. In particu-
lar, x should be readable from all the processes. By contrast,
the matrix must not be shared because it does not change during
execution. Thus, with the message passing model, first the vec-
tors x and b are aligned to each process, and matrix dias, vals,
rows, and cols are distributed to each processor. In the real ex-
ecution phase, the data of other processes are needed in access
x[cols[j]]. Using the message passing model language, the
process scans positions of x that should be received from corre-
sponding processes and interchanges the data and receives what
data should be sent to other processes. When the program exe-
cutes a real computation, the process sends and receives some of
x. Thus the message passing model is too complicated to imple-
ment even for such a simple algorithm.

Our second check for implementing this algorithm uses a com-
plete global PGAS. x and b are still shared over the global address

Table 1 Environment of experiments.

cluster huscs
nodes 19

CPU Xeon E5530 (2.40 GHz)
core 8

memory 24 GB
network 10 G Ethernet
kernel Linux 2.6.26-2-amd64

1 for(i=0; i<N; ++i) {
2 b[i] = dias[i] * x[i];
3 for(j=rows[i]; j<rows[i+1]; ++j) {
4 b[i] += vals[j] * x[cols[j]];
5 }
6 }

Fig. 13 Sequential code of sparse matrix vector multiplication.

space. If communications are not aggregated, all the accesses dur-
ing the diagonal calculation in 2 line and the nondiagonal calcula-
tion in 4 line cause communication, so communication overhead
must be huge. If the user codes to read x[i] and x[cols[j]]
to local memory in bulk, overhead is efficiently reduced but the
programmer suffers from handling correspondence between the
original x[i] and x[cols[j]] and the local buffer.

In our proposed language, the program should be coded as
shown in Fig. 14 to aggregate communications. It is slightly con-
fusing since the matrix is locally distributed, but the code can be
rewritten Fig. 13 to handle from low row to high-1 row. In this
code, the parallel_for statement first collects all the pointers
of x[i], b[i], and x[cols[j]] and then performs a computa-
tion using the local copy. Finally, the result b is written back to
the global address space. This aggregation is implicit.

The sparse matrix used in our experiment is chosen as Table 2
from the University of Florida Sparse Matrix Collection [13].
Figure 15 shows the shape of this matrix.
4.1.4 CG Method

The CG method is an iterative method for solving linear equa-
tions with symmetric and positive-definite matrices. The detailed
algorithm is shown in Fig. 16 [14]. This is an excellent small real-
world program using SpMV.

4.2 Results
4.2.1 Programmability

In this section, the programmability of using the MPI, the DMI,
and our proposed language is compared by looking at the number
of lines of code. Programmability is based not only on quantity
but also on the direct handling ability of the global address space,
but only the quantity of code is only used. Table 3 shows the
lines of code of the three language implementations of the pro-
gram. The “notable section” is the codes calculating SpMV or
CG method, not including initialization or matrix loading. This
comparison shows that the proposed language has a higher pro-
ductivity than the usual message passing model or the normal
PGAS model.
4.2.2 Performance

The scalability of SpMV and CG with three matrices is shown
in Figs. 17, 18, 19, 20, 21, and 22. The speed of the MPI with one
process is the baseline. We also attempted to evaluate the DMI
version without aggregation; however, the method is too slow and
cannot measure execution time.

The result shows that the scalability of all the implementations
breaks down for multinode systems. One reason for this break-
down is that the matrices are too small for the number of pro-
cesses; even calculating the largest matrix nlpkkt200 SpMV costs

1 shared double *b, *x;
2 parallel_for(i=low; i<high; ++i) {
3 b[i] = dias[i-low] * x[i];
4 parallel_for(j=rows[i-low] - cols[0];

j<rows[i+1-low] - cols[0]; ++j) {
5 b[i] += vals[j] * x[cols[j]];
6 }
7 }

Fig. 14 Implementation with the present language of sparse matrix vector
multiplication.

c© 2012 Information Processing Society of Japan 22

IPSJ Transactions on Programming Vol.5 No.1 17–25 (Mar. 2012)

Table 2 Matrices used in experiments.

id Name Cols Number of nonzero nondiagonal components
1252 audikw 1 943,695 76,708,152
916 cage15 5,154,859 94,044,692

1904 nlpkkt200 316,240,000 431,985,632

audikw 1 cage15 nlpkkt200

Fig. 15 Image of matrices.

�r ← �b − A�x

�p← �r
norm← ∣∣∣�r∣∣∣
for k = 0, 1, . . . do

α =
norm2

�pT A�p
�x← �x + α�p
�r ← �r − αA�p

norm′ ← ∣∣∣�r∣∣∣
if norm′ < ε then

break

end if

β← norm′2

norm2

�p← β�p + �r
norm← norm′

end for

return �x

Fig. 16 CG algorithm.

Table 3 The numbers of lines of applications with several implimentation.

MPI DMI Proposed language

SpMV
whole codes 294 286 207

notable section 121 86 24

CG
whole codes 346 339 224

notable section 174 140 54

Fig. 17 SpMV, audikw 1.

only 0.1 s with one iteration with 128 processes. This means that
overhead is dominant in the execution time.

In the performance graphs shown, the initialization cost re-
ferred to in Section 3.4.2 is not included. This is because the
proposed language has a cost only in the first iteration, and the

Fig. 18 CG, audikw 1.

Fig. 19 SpMV, cage15.

Fig. 20 CG, cage15.

c© 2012 Information Processing Society of Japan 23

IPSJ Transactions on Programming Vol.5 No.1 17–25 (Mar. 2012)

Fig. 21 SpMV, nlpkkt200.

Fig. 22 CG, nlpkkt200.

Fig. 23 CG, nlpkkt200, first iteration.

MPI and the DMI also have costs associated with aggregate com-
munication. Figure 23 shows the scalability with initialization
cost in the presented language. This graph shows that initializa-
tion of aggregation information degrades performance and it is
important to reduce initialization if the communication pattern
does not change.

5. Conclusion and Future Work

The message passing model is the most widely used program-
ming model in distributed parallel programming, but a program-
mer must write send and receive explicitly to share some data
and must keep in mind which node the data are on. The PGAS
programming model provides a global address space and a pro-
grammer can program with shared memory semantics. However,
if access affinity to the global address space is small, communi-
cation overhead begins to dominate, and so a programmer should

read the entire set of required data and compute on local memory.
This presentation suggests that the PGAS language can help bal-
ance transparent access to global address space and performance
with communication aggregation. Compared to existing libraries
MPI and DMI, we have shown that our proposed language has
much higher productivity, but its performance is about 57% of
that of MPI.

The proposed language only provides shared and
parallel_for syntax and leaves basic operation to the
DMI, but these operations also should be wrapped with the
language. The current translator does not analyze program se-
mantics, so it is not checked whether or not the shared specifier
is correctly propagated. It also does not analyze data flow, and
thus, it is not checked which expression points to the same
address as another expression. Data flow analysis also makes
it possible to overlap communication. The inspector/executor
strategy used in the performance experiment depends on data
flow analysis; an automatic inspector/executor needs a much
richer compiler analysis.

For measure performance, SpMV is too easy to implement,
and more complicated applications are better to evaluate language
productivity. For instance, molecular dynamics is better since the
communication pattern will change depending on the movement
of molecules.

Reference

[1] Yelick, K., Bonachea, D., Chen, W.-Y., Colella, P., Datta, K., Duell,
J., Graham, S.L., Hargrove, P., Hilfinger, P., Husbands, P., Iancu, C.,
Kamil, A., Nishtala, R., Su, J., Welcome, M. and Wen, T.: Productiv-
ity and performance using partitioned global address space languages,
PASCO ’07 Proc. 2007 International Workshop on Parallel Symbolic
Computation (2007).

[2] Callahan, D., Chamberlain, B.L. and Zima, H.P.: The Cascade High
Producivity Language, 9th International Workshop on High-Level
Parallel Programming Models and Supportive Environments (HIPS
2004), pp.52–60, IEEE Computer Society (2004).

[3] Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A.,
Ebcioglu, K., von Praun, C. and Sarkar, V.: X10: An Object-oriented
Approach to Non-uniform Cluster Computing, OOPSLA ’05 Proc.
20th Annual ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications, ACM (2005).

[4] Carlson, W.W., Draper, J.M., Culler, D.E., Yelick, K., Brooks, E. and
Warren, K.: Introduction to UPC and Language Specification, IDA
Center for Computing Schences (1999).

[5] Hara, K., Taura, K. and Chikayama, T.: DMI: A Large Distributed
Shared Memory Interface Supporting Dynamically Joining/Leaving
Computational Resources, IPSJ Journal, Vol.3, No.1, pp.1–40 (2010).

[6] Chen, W.-Y., Iancu, C. and Yelick, K.: Communication Optimization
for Fine-grained UPC Applications, International Conference on Par-
allel Architecture and Compilation Techniques (2005).

[7] Su, J. and Yelick, K.: Automatic Support for Irregular Computations
in a High-Level Language, Proc. 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2005), p.53 (2005).

[8] Su, J. and Yelick, K.: Array Prefetching for Irregular Array Access in
Titanium, Sixth Annual Workshop on Java for Parallel and Distributed
Processing Symposium, p.158 (2004).

[9] Loveman, D.: High Performance Fortran, Parallel&Distributed Tech-
nology: Systems & Applications, IEEE, Vol.1, pp.25–42 (1993).

[10] Benkner, S.: Optimizing Irregular HPF Applications using Halos,
Proc. 11 IPPS/SPDP’99 Workshops Held in Conjunction with the 13th
International Parallel Processing Symposium and 10th Symposium on
Parallel and Distributed Processing, Vol.1586, pp.1015–1024 (1999).

[11] GCC, the GNU Compiler Collection, available from
〈http://gcc.gnu.org/〉.

[12] InTrigger, available from 〈http://www.intrigger.jp/wiki/index.php/
InTrigger〉.

[13] UF Sparse Matrix Collection, available from 〈http://www.cise.ufl.edu/
research/sparse/matrices/〉.

[14] Nakashima, K.: Lecture Handouts of Computer Science Special Lec-

c© 2012 Information Processing Society of Japan 24

IPSJ Transactions on Programming Vol.5 No.1 17–25 (Mar. 2012)

ture I “Scientific Computational Programming (FEM),” available from
〈http://nkl.cc.u-tokyo.ac.jp/09s/1D/1D-FEM-1.pdf〉.

Katsuaki Ikegami is a master’s student
at the Department of Information and
Communication Engineering, the Univer-
sity of Tokyo. He was born in 1989 and
received his B.S. degree from the Univer-
sity of Tokyo in 2011.

Kenjiro Taura is an associate professor
at the Department of Information and
Communication Engineering, the Univer-
sity of Tokyo. He was born in 1969 and
received his B.S., M.S., and D.Sc. degrees
from the University of Tokyo in 1992,
1994, and 1997, respectively. His ma-
jor research interests include parallel/dis-

tributed computing and programming languages. He is a member
of ACM and IEEE.

c© 2012 Information Processing Society of Japan 25

