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Abstract: Partial dead code elimination (PDE) is a powerful code optimization technique that extends dead code
elimination based on code motion. PDE eliminates assignments that are dead on some execution paths and alive on
others. Hence, it can not only eliminate partially dead assignments but also move loop-invariant assignments out of
loops. These effects are achieved by interleaving dead code elimination and code sinking. Hence, it is important to
capture second-order effects between them, which can be reflected by repetitions. However, this process is costly.
This paper proposes a technique that applies PDE to each assignment on demand. Our technique checks the safety of
each code motion so that no execution path becomes longer. Because checking occurs on a demand-driven basis, the
checking range may be restricted. In addition, because it is possible to check whether an assignment should be inserted
at the blocking point of the code motion by performing a demand-driven analysis, PDE analysis can be localized to a
restricted region. Furthermore, using the demand-driven property, our technique can be applied to each statement in
a reverse postorder for a reverse control flow graph, allowing it to capture many second-order effects. We have im-
plemented our technique as a code optimization phase and compared it with previous studies in terms of optimization
and execution costs of the target code. As a result, our technique is as efficient as a single application of PDE and as
effective as multiple applications of PDE.
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1. Introduction

Dead code elimination [1] has been traditionally used as a code
optimization technique used by compilers. If a variable is not
used after a certain point p in a program, the variable is said to
be dead at p. An assignment statement with a dead variable on
its left-hand side is considered to be totally dead or simply dead.
Dead code elimination not only enhances the efficiency of pro-
gram execution but also reduces the program size by eliminating
such totally dead assignments.

Partial dead code elimination (PDE) is a technique used to en-
hance the effectiveness of dead code elimination. As shown in
Fig. 1 (a), the statement at node 1 is dead on the left-hand side
of the path after branching, whereas it is alive on the right-hand
side of the path. Such an assignment is called partially dead [13].
Because a partially dead assignment is not totally dead, it cannot
be removed by the traditional dead code elimination technique.
PDE removes such partially dead assignments by rendering them
as totally dead through the code sinking technique, which moves
assignments forward. Thus, PDE is accomplished by combin-
ing two types of program transformations, code sinking and dead
code elimination. For example, the assignment statement y = a
+ b in Fig. 1 (a) can be rendered as totally dead and is removed
by sinking it from node 1 to the beginning of node 3, as shown in
Fig. 1 (b).

In addition, PDE can move loop-invariant assignments out of
the loop. In Fig. 2 (a), the assignment y = a + b in the loop is
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(a) Original code (b) Code after applying PDE

Fig. 1 Removing partially dead assignments.

(a) Original code (b) Code after applying PDE

Fig. 2 Moving loop-invariant assignments out of a loop.

dead on the path going back to node 1 because the assignment
is killed by itself, whereas it is still alive on the path that goes
out of the loop. This is because its left-hand side is used by the
statement out(y) at node 3. This denotes that y = a + b is
partially dead and can be removed by inserting the same state-
ment at node 2. The transformation is equivalent to moving loop-
invariant assignments out of the loop.

Both code sinking and dead code elimination may generate
new candidates for other code sinking or dead code elimination
processes. These effects can be classified into the following four
types [13]:
Sinking-elimination effect Sinking an assignment renders the

assignment dead.
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(a) Original code (b) One-time PDE
application

(c) Application of PDE
twice

Fig. 3 Decrease in effectiveness by incomplete application of PDE.

Sinking-sinking effect For a series of assignments s1 and s2, if
the variable defined by s1 is used or redefined in s2 or if the
variable used in s1 is defined by s2, it is possible to further
sink statement s1, which is blocked by s2, by sinking s2.

Elimination-sinking effect For s1 and s2 stated above, it is
possible to sink s1 as a result of removing s2.

Elimination-elimination effect By eliminating the assignment
s, it is possible to eliminate an assignment for a variable used
in s.

Although it is possible to obtain the sinking-elimination effect
by applying PDE once, it is necessary to apply it again to ob-
tain the remaining three effects. This is because the application
of PDE generates another dead assignment, providing an opportu-
nity for further removal. These effects are called the second-order

effects of PDE. To reflect the second-order effects, it is necessary
to apply PDE repeatedly, and the analysis cost is known to be
high.

In addition, the effect of PDE may be limited unless the second-
order effects are reflected thoroughly. For example, in the pro-
gram shown in Fig. 3 (a), all assignments at node 1 sink to node 5
after applying PDE three times. Considering the process of each
application, the first application of PDE sinks only the assign-
ment z = y + 1 to node 5. As a result, the live range of variable
y is extended, as shown in Fig. 3 (b). An extension of the live
range of variable’s may hinder register allocation of the variable
and increase the chance of spills. Next, the second application of
PDE sinks the statement y = [x], which denotes an assignment
from the memory location x, to node 5. As a result, as shown in
Fig. 3 (c), the statements y = [x] and x = r + 4, which were
supposed to form one load instruction y = [r + 4] in the origi-
nal code, are detached. These problems that arise from the incom-
plete application of PDE are called incomplete PDE application

problems.
This paper introduces an algorithm that applies PDE to each

assignment statement on demand and proposes a technique to ef-
ficiently reflect second-order effects.

PDE analysis is based on dataflow analysis. In general, the
dataflow analysis is determined by the type of the solution, min-

imal or maximal of a dataflow equation. A minimal solution is
represented as a union of dataflow sets propagating from differ-
ent program points in a dataflow equation. Hence, it is sufficient
to consider only the program points that are reachable from the
relevant points of the analysis. In contrast, a maximal solution

(a) Original code (b) Application of our technique

Fig. 4 Effectiveness of our technique.

is obtained by initializing all program points with positive solu-
tions and negating the solutions of points that do not satisfy the
dataflow equation. Hence, it is necessary to calculate dataflow
information for the entire program even if only information prop-
agating from particular program points is required.

Because the dataflow analysis of PDE requires a maximal so-
lution, it is difficult to restrict the range of analysis to obtain a
result for specific assignments. Our technique tests the possibil-
ity of sinking at each program point v while tracking reachable
points from point n in which the target assignment statement s

resides. Once v is found to be sinkable, it is sunk further, and
if it is not found to be sinkable, s is inserted at v. Because the
possibility of sinking can also be tested using the demand-driven
analysis, the range of analysis is restricted to a requisite mini-
mum. Demand-driven PDE is denoted as DDPDE.

Using the demand-driven nature of this technique, it is possible
to sequentially apply DDPDE to each statement, starting from the
assignment that is closest to the end point without sacrificing effi-
ciency. As a result, it is possible to directly reflect most of the four
types of second-order effects. For example, applying DDPDE to
a program sequentially from the end point, as shown in Fig. 4 (a),
results in the program given in Fig. 4 (b).

This paper is organized as follows. After presenting prelim-
inaries in Section 2, we presents the concept of demand-driven
code sinking in Section 3. In Section 4, we develop the demand-
driven code sinking to DDPDE extending the notion of insertions
of assignments to eliminate partially dead assignments. In Sec-
tion 5, we show the actual procedures required for the transforma-
tion of a program. In Section 6, we present the evaluation results
to demonstrate the effectiveness of the technique. Finally, we dis-
cuss related works in Section 7 and provide concluding remarks
in Section 8.

2. Preliminaries

For ease of presentation, we assume that the input program
consists of the following sets:
• Var: a set of variables
• C: a set of constants
• OP : a set of operators
Also, we represent a programs as a control flow graph (CFG),

i.e., in the form CFG = (N, E, s, e) with node set N consisting of
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(a) Propagation of f alse (b) Propagation of true

Fig. 6 Calculation of code sinking.

(a) Critical edge (b) Removing criticality

Fig. 5 Critical edges and their elimination.

a single statement, edge set E ⊂ N × N representing the flow of
control, and s and e representing the unique start node and end
node of a CFG with no statement, respectively. The set of pre-
decessor nodes of node n is represented as pred(n) and the set of
successor nodes as succ(n).

The statements in a CFG are classified into the following three
groups:
Assignment statements: These statements are represented as a

three-address code, such as x = t, where x ∈ Var, and t is an
expression containing at most one operator.

Skip statements: These statements do not need to be pro-
cessed. A CFG node that does not have a statement is con-
sidered to include a skip statement.

Relevant statements: These statements refer to statements that
may change the meaning of the program if they are moved,
such as those involving a memory storage operation, a func-
tion call, or branching. They are treated as being locked to
the original CFG nodes, and the variables used in relevant
statements are all treated as being alive (not dead). In this
paper, a relevant statement is represented as an output state-
ment, such as out(t) [13].

Because this technique is based on code motion, its effect
may be limited if there exist critical edges leading from a
node with more than one successor to a node with more than
one predecessor, such as an edge from node 1 to node 2 in
Fig. 5 (a) [11], [12], [14]. We assume that a critical edge is re-
moved by inserting a synthetic node as shown by the insertion of
b1,2 in Fig. 5 (b) *1.

3. Demand-driven Code Sinking

In this section, the demand-driven code sinking method is
shown before presenting DDPDE. Subsequently, the method is
extended to DDPDE by making the insertion step active selec-
tively on the basis of deadness information. First, we summarize
the traditional dataflow equation used to obtain the maximal so-
lution of code sinking. Then, we discuss the manner in which the

*1 In the CFGs used in the figures in this paper, to simplify representation,
critical edges are not removed.

equation for a maximal solution is converted into one for a mini-
mal solution, i.e., by detaching the part of testing upward safety.
Finally, we present the demand-driven method based on the con-
verted equation with a demand-driven upward safety test.

3.1 Code Sinking and Maximum Solution
The code sinking step of PDE is based on the dataflow

analysis [13]. Assume that predicates N-DELAYEDn(s) and
X-DELAYEDn(s) represent whether assignment s can be sunk
to the entry and exit of the CFG node n respectively. Then
N/X-DELAYEDn(s) can be calculated by having the following lo-
cal information LOCDELAYEDn(s) and LOCBLOCKEDn(s) flow
to next node n:
LOCDELAYEDn(s) : An assignment that can be sunk exists at

node n.
LOCBLOCKEDn(s) : The sinking of s is blocked by node n ei-

ther because a variable contained in s is modified at the node
n or because s modifies a variable contained in a statement
at n.

The propagation of information for N/X-DELAYEDn(s) is de-
fined by the following dataflow equations:

N-DELAYEDn(s)

=

⎧⎪⎪⎨⎪⎪⎩
f alse if n is the starting node∏

m∈pred(n) X-DELAYEDm(s) otherwise
(1)

X-DELAYEDn(s) = LOCDELAYEDn(s) (2)

∨ N-DELAYEDn(s) ∧ ¬LOCBLOCKEDn(s)

Code sinking analysis starts with the initial state
N/X-DELAYEDn(s) = true for all nodes other than the
start node, and then the states of the nodes in the program that
do not satisfy the dataflow equation are modifid to f alse The
solution thus obtained from the equations is called the maximal
solution. Typically, the maximal solution is sought when
information propagation from adjacent nodes is represented as
a product (

∏
) in the dataflow equation. Figure 6 shows an

example of sinking the assignment x = a + b at node 6. In
the conventional dataflow analysis, the state f alse obtained
from local information is propagated through the program after
initializing all nodes other than the start node with true for
N/X-DELAYEDn(s). It should be noted here that in Fig. 6, while
the range over which true propagates is restricted to a small
range reachable from node 6 (Fig. 6 (b)), the range over which
f alse propagates covers almost the entire program (Fig. 6 (a)).
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(a) Query propagation for checking upward safety (b) Query propagation for checking deadness

Fig. 7 Query propagations in Fig. 6 (a).

3.2 Code Sinking Based on Minimal Solution
As shown in Fig. 6, it is possible to restrict the propagation

range of dataflow if the nodes for which N/X-DELAYEDn(s) =
true can be directly calculated. Such a solution obtained by
propagating true information from relevant program points in the
dataflow analysis is called the minimal solution.

The dataflow equation used to obtain the minimal solution is
obtained by calculating the sum (

∑
) of information from adja-

cent nodes. The operation employed to obtain a product is used
in Eq. (1) to guarantee upward safety, which denotes the condi-
tion for avoiding the lengthening of any execution path through
insertions of s. To replace product with summation, it is neces-
sary to test upward safety at the destination of sinking each time.
Hence, by introducing isUpSafen(s), which is a program that tests
the upward safety of the assignment s at the node n, the dataflow
equation for obtaining the minimal solution can be represented
by modifying Eq. (1) as follows:

N-DELAYEDn(s)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f alse if n is the starting node
isUpSafen(s)
∧∑m∈pred(n) X-DELAYEDm(s) otherwise

(3)

The dataflow analysis used to calculate the minimal solution for
code sinking is referred to as demand-driven code sinking.

Here, isUpSafen(s) can also be calculated in on-the-fly by us-
ing the demand-driven dataflow analysis [8] to obtain the solution
of the dataflow equation at a particular point in the program such
as node n. Therefore, the range analyzed by demand-driven code
sinking is strictly restricted to a range that is reachable from the
node n.

3.3 Demand-driven Dataflow Analysis for Upward Safety
The demand-driven dataflow analysis propagates a query in a

direction opposite to that of conventional dataflow analysis from
a particular point n to obtain the validity of a dataflow fact at n.
To simplify the explanation, a query is assumed to ask whether
the dataflow fact is true or f alse. If the answer to the query is
obtained as the local solution f alse at some point in the program,
the answer to the query at the original point n is also f alse. In
contrast, if the answer f alse is not obtained for the query at any
point in the propagation process, the answer at n is true.

To perform a demand-driven dataflow analysis to test upward
safety, it is sufficient to propagate a query to check the presence
of the assignment s. The query q generates a local solution by
using following conditions of the node v:

( 1 ) q = true if LOCDELAYEDv(s) = true.
( 2 ) q = f alse if v is the start node.
( 3 ) q = f alse if LOCBLOCKEDv(s) = true.
( 4 ) q = true if the query has already propagated to the node v.

If the solution cannot be directly determined at v, then the
query should propagate to all successors of v. Figure 7 (a)
shows an example of the upward safety test at the entry of
node 9. A query to check the presence of the statement x = a
+ b propagates in a backward direction from node 9. Because
LOCBLOCKED7(“x = a + b”) yields the true at node 7, the so-
lution q = f alse is obtained. In contrast, the query propagated
to node 8 will not yield a solution, and will therefore propagate
further to node 6. Because LOCDELAYED6(“x = a + b”) = true
at node 6, the local solution q = true will be obtained. As a re-
sult, because of a query yielding the solution f alse, the upward
safety test at the entry point of node 9 yields a negative result. In
practice, it is not necessary to propagate the query to nodes 8 and
6 because upward safety at node 9 is determined to be f alse upon
obtaining the local solution q = f alse at node 7.

Program 1 below denotes the function isUpSafe which tests
the upward safety of the assignment target at the node v. The
function isUpSafe stores the candidate nodes for propagation in
its worklist and it is based on the worklist algorithm that ex-
tracts a node to determine the solution of a query [8]. The predi-
cates LOCDELAYEDv(s) and LOCBLOCKEDv(s) are represented
as arrays locdelayed[s, v] and locblocked[s, v] respectively. The
commented-out lines of code in lines 7–9 are explained later.

Program 1 (Upward Safety Test)

Function isU pS a f e(target, v)
1: worklist := {v}; query[∗] := f alse
2: while worklist � ∅ do
3: let n ∈ worklist; remove n from worklist
4: query[n] := true
5: for each p ∈ pred(n) do
6: if locdelayed[target, p] then
7: // if p � done then
8: // add p to done
9: // add p to cand
10: continue
11: else if p = entry ∨ locblocked[target, p] then
12: return f alse
13: else if ¬query[p] then
14: add p to worklist
15: return true

3.4 Implementation of Demand-driven Code Sinking
Dataflow Eqs. (2) and (3) exclude the term isUpSafe and can

c© 2012 Information Processing Society of Japan 12



IPSJ Transactions on Programming Vol.5 No.1 9–16 (Mar. 2012)

be implemented as a worklist algorithm [2] by applying the
slot-wise method [7] to each statement because they are ordi-
nary dataflow equations for analyzing reachability. The function
insertForSinking shown in Program 2 performs a slot-wise anal-
ysis of code sinking for the target statement at the node v.

From line 4 onward, where code sinking to the successor
s is described, sinking is not performed to the entry of s if
isUpSafe(target, s) = f alse as prescribed in lines 5 and 6. In
addition, because of the ensuing expansion of PDE, code sinking
to the entry of s is prevented if s is the end node. Furthermore,
code sinking to the entry of s is determined to be feasible (N-
DELAYEDs(target) = true) only if these conditions are not satis-
fied as shown in line 8. Here the node for which code sinking is
determined to be feasible is recorded in the variable ndelayed in
line 9 and utilized in line 8 to avoid revisiting each node.

Code sinking to the exit of s is determined to be feasible (X-
DELAYEDs(target) = true) if locblocked[target, s] = f alse in
line 12. Because this makes further sinking possible, s is added
to the worklist as shown in line 12.

Program 2 (Determination of Insertion Point
in Demand-driven Code Sinking)

Function insertForS inking(target, v)
1: worklist := {v}; ndelayed := ∅
2: while worklist � ∅ do
3: let n ∈ worklist; remove n from worklist
4: for each s ∈ succ(n) do
5: if s = exit ∨ ¬isU pS a f e(target, s) then
6: // X-INS ERTtarget(n) is decided to be true
7: break
8: if s � ndelayed then

// N-DELAYEDs(target) is decided to be true
9: add s to ndelayed
10: if locblocked[target, s] then
11: // N-INSERTs(target) is decided to be true
12: else add s to worklist

// X-DELAYEDs(target) is decided to be true

In the demand-driven analysis applied to each statement such
as in Program 2, it is possible to incrementally calculate the inser-
tion points that are conventionally determined after the analysis.
Here, the predicate N/X-INSERT, which represents insertion at
either the entry or exit point of n, is expressed as follows [13].

N-INSERTn(s)

= N-DELAYEDn(s) ∧ LOCBLOCKEDn(s) (4)

X-INSERTn(s)

= X-DELAYEDn(s) ∧
∑

m∈succ(n)

¬N-DELAYEDm(s) (5)

In Program 2, considering the lines where N/X-DELAYED be-
comes true, it is clear that N/X-INSERT will be true in lines 6
and 11 on the basis of Eqs. (4) and (5). Hence, it is not necessary
to record the results for N/X-DELAYED to any variable except
ndelayed, which is used to avoid revisiting the nodes.

4. Extension of Insertion Points

Partially dead assignments can be easily eliminated by control-
ling the insertion operation in demand-driven code sinking intro-

duced in the previous section. Elimination can be achieved by
inhibiting the insertion to n because of code sinking if the assign-
ment s is dead at the node n. By using a predicate isDeadn(s) to
show whether the assignment s is totally dead at the exit of the
node n, a predicate USEDn(s) to show whether the target variable
in s is used at n, and a predicate MODn(s) to show whether the
target variable in s is updated at n, Eqs (4) and (5) are extended
as follows:

N-INSERTn(s)=¬(¬USEDn(s)∧(MODn(s)∨isDeadn(s))) (6)

∧N-DELAYEDn(s)∧LOCBLOCKEDn(s)

X-INSERTn(s)=¬isDeadn(s)∧X-DELAYEDn(s) (7)

∧
∑

m∈succ(n)

¬N-DELAYEDm(s)

The term ¬USEDn(s) ∧ (MODn(s) ∨ isDeadn(s)) in Eq. (6)
shows whether the assignment s is totally dead at the entry of
the node n. For example, in the code sinking example shown in
Fig. 6, the statement x = a + b is inserted at the exit point of
node 8 on the basis of Eqs. (6) and (7).

Although the dataflow analysis is required to determine
isDeadn(s), it is possible to use the demand-driven dataflow anal-
ysis, similar to the case of isUpSafen(s). That is, isDeadn(s) prop-
agates the query to check the deadness of the variable on the left-
hand side of the assignment s at the exit of the node n. The query
q yields a local solution on the basis of the following conditions
of the next node v.
( 1 ) q = f alse if USEDv(s) = true.
( 2 ) q = true if MODv(s) = true.
If a solution is not obtained directly at the node v, the query will
be propagated to all successors of v. For example, in the code
sinking example in Fig. 6, the function isDead8(“x = a + b”) is
determined for insertion at the exit of node 8. As shown in
Fig. 7 (b), the query q will propagate from node 8 to node 9 and
the result q = f alse will be obtained at node 9. Because this de-
notes that isDead8(“x = a + b”) = f alse, the statement x = a +
b will be inserted at the exit of node 8.

Program 3 represents the function isDead to test the deadness
of the assignment target at the node v. As was the case with
isUpSafe, isDead is based on the worklist algorithm. Predicates
USEDv(s) and MODv(s) are represented using arrays used[s, v]
and mod[s, v], respectively.

Program 3 (Deadness Test)

Function isDead(target, v)
1: worklist := {v}; query[∗] := f alse
2: while worklist � ∅ do
3: let n ∈ worklist; remove n from worklist
4: query[n] := true
5: for each s ∈ succ(n) do
6: if used[target, s] then
7: return f alse
8: if mod[target, s] then
9: continue
10: else if ¬query[s] then
11: add s to worklist
12: return true

By extending Program 2 on the basis of Eqs. (6) and (7), Pro-
gram 4 shows the function insert, which determines the insertion
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point of the assignment target for node v. The function insert cal-
culates the target insertion points for ninsert and xinsert on the
basis of N-INSERT and X-INSERT.

Program 4 (Determination of Insertion Point in DDPDE)

Function insert(target, v)
1: worklist := {v}; ndelayed := ∅
2: while worklist � ∅ do
3: let n ∈ worklist; remove n from worklist
4: for each s ∈ succ(n) do
5: if s = exit ∨ ¬isU pS a f e(target, s) then
6: if ¬isDead(target, n) then
7: add n to xinsert
8: break
9: if s � ndelayed then
10: add s to ndelayed
11: if locblocked[target, s] then
12: if ¬(¬used[target, s]

∧(mod[target, s] ∨ isDead(target, s))) then
13: add s to ninsert
14: else add s to worklist

The results of isUpSafe in line 5 and isDead in lines 6 and 12
can be cached only if insert is executed. If the solution to the
query is cached, it is possible to avoid redundant query propaga-
tion by assuming the solution to be the local solution [8].

5. Code Conversion

After sinking the assignment s at a certain node, it may be nec-
essary to sink s at other nodes. For example, because the state-
ment x = a + b at node 2 is partially dead in Fig. 8 (a), it can be
eliminated by inserting it at node 5 as shown in Fig. 8 (b). How-
ever, because this insertion increases the number of calculations
on the path through nodes 3 and 5 (as shown in Fig. 8 (c)), the
same statement x = a + b at node 3 should also be eliminated
by inserting it at node 6.

An assignment s′, which is the target of simultaneous elimi-
nation that results from applying DDPDE to the assignment s,
resides at points that are backward reachable from the insertion
point. Such s′ can be simultaneously found by performing the
upward safety test at the insertion point. The commented-out
code in lines 7–9 in Program 1 records the nodes with other as-
signments to be eliminated in cand. The variable done holds the
processed nodes and provides the nodes to be eliminated during
the program transformation, in addition to ensuring that the same
assignments are not processed twice.

Program 5 shows the function ddPDE, which ultimately ap-
plies the function insert to all nodes to be considered and per-
forms the program transformation. In the transformation, the
targets of nodes done will be eliminated in lines 10 and 11, and
the same assignment is inserted at the entry of nodes ninsert and

(a) Original code (b) Sinking of the first assignment (c) Sinking of the second assignment

Fig. 8 Repeated application of insert.

at the exit of nodes xinsert in lines 12–15.

Program 5 (Transformation of a Program)

1: done := ∅
2: cand := ∅
3: ninsert := ∅
4: xinsert := ∅

Function ddPDE(target, v)
5: cand:={v}
6: done:={v}
7: while cand � ∅ do
8: let n ∈ cand; remove n from cand
9: insert(target,n)
10: for each org ∈ done do
11: eliminate target at org
12: for each vin ∈ ninsert do
13: insert target into the entry of vin
14: for each vout ∈ xinsert do
15: insert target into the exit of vout

DDPDE is a code optimization technique that is applied to each
occurrence of assignments. Hence, it is possible to perform ex-
haustive PDE that reflects the second-order effects by appropri-
ately applying DDPDE in a sequence for all occurrences of all
statements in the program.

The four second-order effects described earlier can be reflected
by sequentially applying the process from the assignment closest
to the end node. For example, it is possible to apply DDPDE by
visiting nodes in a reverse postorder for a reverse CFG, in which
edges are reversed. In the example shown in Fig. 4 (a), we apply
DDPDE in the reverse postorder sequence of nodes 10, 9, 8, 6,
7, 5, 3, 4, 2, and 1 for a reverse CFG. First, the assignment x
= e1 at node 8 is inserted at the exit of node 8. With regard to
the assignments y = x + 1 at node 6, no insertion is performed
because the assignment is dead at the entry of node 8 although it
is blocked at this node. Next, regarding the assignment x = a +
b at node 3, no insertion is performed because the assignment is
dead at the entry of node 8, although it is blocked at this node.
In contrast, in terms of code sinking from node 7 to node 9, the
assignment x = a + b is inserted at the exit point of node 7, be-
cause upward safety at the entry of node 9 is not ensured. The
assignment x = a + b at nodes 2 and 3 is processed simultane-
ously, yielding the same insertion point. After eliminating occur-
rences of the original assignments, the result shown in Fig. 4 (b)
is obtained.

6. Evaluation

To exhibit the effectiveness of our technique, we compared its
optimization cost and execution efficiency with those of the tra-
ditional method (PDE) by using a benchmark.
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(a) Ratio of analysis cost for PDE (b) Ratio of execution cost of target code for PDE

Fig. 9 Efficiency of analyses and executions.

The COmpiler INfrastructure (COINS) project [6] C compiler
was used for implementation. The COINS compiler was imple-
mented entirely using the Java platform and was run on Java vir-
tual machines. The primitive input code was transformed from a
high-level intermediate representation to a low-level intermediate

representation (LIR) and the target code was then generated on
the basis of LIR. Both our technique and the traditional methods
were implemented as a transformer to generate LIR after trans-
forming an input LIR code.

Nine SPEC CPU2000 benchmark programs (gzip, vpr, mcf,
crafty, parser, gap, vortex, bzip2, and twolf) were selected for
evaluation and analysis, and the target codes were run on a So-
laris 10 platform with a SPARC64-V 2-GHz CPU.

The evaluation was performed by comparing our technique and
the traditional method (PDE) applied multiple times.
PDE : Apply PDE once.
PDE*2 : Apply PDE twice.
PDE*3 : Apply PDE three times.
PDE*Inf : Apply PDE until the process yields the same result.
DDPDE : Apply the proposed technique.
The dataflow analysis of traditional PDE was implemented us-
ing a worklist algorithm called the word-wise method [10], which
controls the dataflow using a word-size bit vector. The word-wise
method is known to be efficient because it restricts the dataflow
and the propagation range to be calculated while maintaining the
parallel processing of a bit operation in units of words. In addi-
tion, DDPDE was applied to all assignments in the reverse pos-
torder for the reverse CFG. The demand-driven dataflow analysis
was implemented utilizing the caching technique described ear-
lier.

Figure 9 (a) and (b) show the ratio of optimization costs and
target code execution costs, respectively, for PDE. For clar-
ity, PDE*Inf is omitted in Fig. 9 (a) because its value was too
large. The number of times that it was necessary to apply PDE
in PDE*Inf was 13 for gzip, 17 for vpr, 11 for mcf, 15 for crafty,
11 for parser, 20 for gap, 11 for vortex, 13 for bzip2, and 21 for
twolf. A comparison of PDE, PDE*2, and PDE*3 in Fig. 9 (a)
shows that the optimization cost increases proportionally. In con-
trast, the optimization cost of DDPDE ranged from 0.967 to 1.303
of PDE and averaged 1.118. As a result, it can be concluded that
the optimization cost of our technique is approximately the same

as that of a single application of PDE.
In contrast, as shown in Fig. 9 (b), the optimization effect of

DDPDE was better than PDE, with the exception of vortex. In
the case of vortex, because the optimization effect of PDE*3 is
less that of PDE (and even more so of DDPDE), it is assumed
that the problem pertaining to incomplete application was caused
by many statements with a circular dependency, which is difficult
to handle in DDPDE. Compared with PDE*Inf, consistent results
were obtained for the four programs of vpr, mcf, crafty, and gap.
Although the results for gzip and parser with DDPDE were bet-
ter than those with PDE*Inf, it is assumed that these cases are
examples in which the register allocation provided better results
despite the inferior optimization effect of PDE*Inf.

It is worth noting that increasing the number of PDE applica-
tions from PDE and PDE*2 to PDE*3 does not guarantee a better
optimization effect, and in some instances, it may even worsen the
effect. This result also indicates that DDPDE, which is capable of
reflecting many second-order effects at a low cost, is significant
in obtaining a stable optimization effect.

7. Related Works

The significance of eliminating partially dead assignments has
been reported by Feigen, L. et al. [9]. According to the technique
proposed by Feigen, L. et al., the assignment s is moved to a
point in the code at which the target variable in s is used more
often for all paths on which s is executed, and if the motion of the
statement is blocked, the entire branching structure in the CFG is
moved. As a result, there is a danger that the program structure
could be altered. Also, because the statement is moved only to
a point in the program, it cannot eliminate certain partially dead
assignments and is ineffective in moving codes out of loops. In
response to these problems, Knoop, J. et al. proposed a technique
to generalize the technique of Feigen, L. et al. without altering
the control structure while including the effect of moving codes
out of loops [13]. Because the proposed technique of Knoop, J.
et al. must be applied repeatedly based on dataflow analyses, the
computation cost is estimated to increase in direct proportion to
the fourth power of the program size in the worst case, and if ra-
tional assumptions are made, in direct proportion to the square of
the program size.

Based on the assumption that the control structure may be al-
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tered, Bodik, R. et al. proposed a technique to generalize the tech-
nique of Feigen, L. et al. [3]. They implemented a method to ef-
fectively achieve PDE by using the program slicing technique.
However, its computational cost is exponential to program size.

Takimoto, M. et al. proposed a technique to enable as much
PDE as possible without altering the control structure [15]. Al-
though the computational cost of this technique is directly pro-
portional to the square of the program size, the graph representa-
tion called an extended value graph, which is used in the process
of transforming the program, is complicated, and the algorithm
used is also complex.

As was the case with the technique of Knoop, J. et al., the
technique proposed in this paper assumes that the control struc-
ture will not be altered. The computational cost of this technique
for the analysis of one assignment is directly proportional to the
square of the program size if the caching technique is not used in
the demand-driven dataflow analysis and is in direct proportion to
the program size if the caching technique is utilized. If this tech-
nique is applied to the entire program, the computational cost will
be directly proportional to the third power of the program size if
the caching technique is not used and the square of the program
size if the caching technique is used. In practice, the computa-
tional cost of this technique has been proven to be equivalent to
that of simple dataflow analyses.

Because the demand-driven nature of this technique enables its
selective application for occurrences of particular assignments, it
can be applied only to the portion in which the optimization effect
can be expected.

In addition, PDE for some techniques based on the static single

assignment (SSA) form [4], [5] is obtained as a secondary effect
of code sinking, which is performed to prevent excessive code
hoisting when eliminating redundant expressions. However, PDE
is applied restrictively until the φ-function is encountered in the
SSA form, and for this reason, its code sinking range is limited.

8. Conclusions

This paper proposes a DDPDE technique suitable for applica-
tion to different assignment. This technique makes it possible to
reflect many second-order effects of PDE by applying it in se-
quence from an assignment closest to the end point of the pro-
gram.

To evaluate effectiveness of this technique, experiments were
performed by implementing it as an optimization component of
the COINS infrastructure. The result shows that this technique
improves the optimization effect while reducing the optimization
cost.

We believe that the combination of code sinking and demand-
driven tests proposed in this paper provides a guideline for mod-
ifying conventional techniques, for which an exhaustive analysis
was necessary, into a demand-driven type.
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