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Disease suppressive soil has both diverse and uniform ecology:

Modeling and characterization

from the viewpoint of microbiology and biodiversity

Y-h. Taguchi †1 and Kazunari Yokoyama†2

Soil disease suppression is a worldwide important issue in order to realize
stable food supply to people. In spite of that, no established indicators of soil
disease suppression have been found out yet. This prevents us from control-
ling well soil state such that no diseases take place. In this paper, we have
proposed a new biological indicator of soil disease suppression; the ability of
bacteria to consume carbon resources, which can be automatically observed
by Omunilog ID system during a duration of one or two days. This indicator
turned out to distinguish disease suppressive soils from others. We have mod-
eled these characteristic time developments of consumption of carbon resources
by the simple ecological model where bacteria compete with each other for car-
bon resources. Measured ecological structure of soil bacteria can fit with the
theoretical prediction well. In order to find characteristic features for each of
soils, observed time developments are embedded into two dimensional space by
non-metric multidimensional method. It results in the almost one dimensional
arrangements of embedded points. By analyzing spacial distributions of each
carbon resources in the embedded space, healthy soil turns out to have mostly
uniform distribution along this one dimensional arrangement. Since sick soil
and non-soil example have rather localized distributions, the ecological systems
in more disease suppressive soil are both more diverse and more uniform. Since
this indicator can be extremely easily and quickly obtained automatically, it is
expected to use in order to validate many efforts to try to improve soil before
any harvests very much.

1. Introduction

Soil disease suppression is an important issue to maintain sustainable food

supply. Soil diseases generally reduce food production by the huge amount all

over the world. Thus, if we can suppress the occurrence of soil disease, it will be
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a great progress to increase the amount of net food production.

In spite of the importance of soil disease suppression, we do not know even how

to measure how healthy the soil is. There are many proposals of this criterion1),2),

but there are no established ones.

Recently, soil biodiversity is regarded to be an important factor to maintain

healthy (normal) soils3). Soil microbiology is known to be one of the important

parts of this. In this paper, we have found that the amount of consumed carbon

resources by bacteria can be a good indicator of soil health. A simple ecological

model is also proposed to reproduce time development of consumption processes

of carbon resources. The obtained interaction matrix between bacteria and car-

bon resources is coincident with the previous observations on which bacteria can

consume which carbon resources.

The paper is organized as follows. In the next section, we show the time devel-

opments of carbon resources’ consumption and it is related to disease suppression.

Then we propose a mathematical model to reproduce it. Based upon the model

computation, we propose interaction map between bacteria and carbon resources,

which is compared with and confirmed by real measurements. Finally, feature

extraction by non-metric multidimensional scaling is applied to time course data

and it is found that the mostly disease suppressive soil keeps both diversity and

uniformity in soil ecology.

2. Results

2.1 Measurement of time development of carbon resource consump-

tion by bacteria

Although there are many brand new proposals to quantify soil microbiology

diversity based upon genomic technology4), here we have employed more classi-

cal, phenomenological and macroscopic measure of biodiversity, carbon resource

consumption. In order to measure time course development of carbon resource

consumption by bacteria, we have used Omunilog ID system. It has 96 wells each

of which contains one of 95 kinds of carbon resources plus negative control, water

(not shown here).

The amounts of consumption of carbon resources are measured quantitatively

by the amount of carbon dioxide exhibited in each well. It is detected as photo
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Fig. 1 Time developments of carbon resource consumption. A) Sick soil with the disease probabilities of 100 %, B) that
of 69.2 %, C) healthy soil of 19.2 %.

emission using carbon dioxide coloring reagent. Measurements are done every

quarter hour after starting time up to half past 47 hours, i.e., almost over two

days. Those at time point zero (background) are subtracted from them. Thus,

in total, the number of time points is 190 excluding 0 hour, i.e., at the time of

starting. These values are integrated from the beginning to each time point. In

Figure 1, we have shown typical time developments of the integrated amount of

consumed carbon resources in 96 wells up to each time point. Each of plots

corresponds to one of soils with the disease probabilities of 100 %, 69.2 % and

19.2 %, respectively. It is clear that their time developments are distinct and

dependent upon the disease probabilities. The plant growth rates are strongly

affected by disease probabilities (not shown here). How the difference of time de-

velopments is related to disease probabilities? Why soil having time development

seen in Fig. 1C is more healthy than others? In order to answer these questions,

at first we try to construct a model to reproduce these time developments. Then,

their conclusion turns out to be coincident with the measurement ten years ago.

2.2 An ecological model of soil microbiology

2.2.1 Model definition

Although there are substantial progresses of modeling in soil microbiology5),

here we have employed classical mean field theories6). This is because it is easily

treated and understood. Thus, if it works, there are no needs to consider more

realistic and complicated models. In order to model the time developments seen

in Figs. 1, we have assumed that the difference between the consumption rates of

carbon resources is decided by the number of bacteria which can consume them.

That is, rapid consumption means more bacterial species to cosume the carbon

resources. In order to model this situation as simple as possible, we proposed the

following Lotka-Volterra equation like model,
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=
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j=1
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)
yj , j ≤ M0

0, j > M0

, (2)

where xi, (i = 1, . . . , N) denotes the populations of ith bacteria and yj , (j =

1, . . . ,M) denotes the remained (not yet consumed) amount of jth carbon re-

sources. The quantities in parentheses in the right hand side decide the speed of

growing of bacteria or that of carbon resource consumption by bacterial species.

This means, bacteria which can consume more kinds of carbon resources can grow

faster, while the amount of carbon resource consumed by more bacterial species

decreases more rapidly. Due to these equations, ith bacteria consumes M0

N i kinds

of carbon resources, while jth carbon resource is consumed by N − N
M0

j kinds

of bacterial species. Generally, M0, which is the maximum number of carbon

resources that one bacterial specie can consume, should be less than M , which is

the total number of carbon resources. Therefore, there remains M −M0 carbon

resources which no bacterial species can consume. In Fig. 2, which hereafter

we call as the interaction map, we have illustrated this situation. If the point

having the coordinate (i, j) is placed within the shaded region, the term propor-

tional to xiyj exists in the right hand side of eqs. (1) and (2). For example, the

term proportional to xi1yj1 does exist in the right hand sides of eqs. (1) and (2),

since the point (i1, j1) is in the shaded region. On the other hand, that to xi2yj2
does not exist in the right hand sides of eqs. (1) and (2), since the point (i2, j2)

is outside the shaded region.

2.2.2 Reproduction of real examples

We have numerically integrated eqs. (1) and (2) from t = 0 to t = T with the

initial conditions of

xi = 0.01, (i = 1, . . . , N) (3)

yj = 1− εj , (j = 1, . . . ,M) (4)

where εj is uniform random number between 0 and 0.1, which was introduced

to reproduce randomness seen in Figs. 1, by setting M = N = 90, T = 150.

Figures 3 reproduce the outcomes seen in Figs. 1 very well if the simpleness of

Fig. 2 The interaction map that illustrates the interaction between bacterial
species i and carbon resources j. If the point having the coordinate (i, j) is
placed within the shaded region, the term proportional to xiyj exists in the right hand
side of eqs. (1) and (2). See main text for more details.

our models is considered. The reason why we used M = 90 is simply because

ominilog ID system employs 95 carbon resources. Even if we change M a little

bit, the results do not change drastically. On the other hand, we have taken N =

M = 90. It is almost sure that more bacterial species exist in soil and consume

carbon resources competitively. However, at least for numerical modeling, it

turns out that the number of bacterial species is large enough if it is as many as

the number of kinds of considered resources. It is also almost sure that there will

be more carbon resources in the soil to be consumed by bacteria. Thus, anyway

what we observe and try to reproduce is subsystem of soil ecology. Then, we

have decided to omit the contributions from more bacterial species than the

number of kinds of considerer carbon resources. We can consider these N '
M bacterial species as the representatives that mainly consume the considered

carbon resources. Although T can be taken to be any values, we have chosen

so as to reproduce the real outcome best. We do not think that this is badly

arbitrary, because anyway the period for which measurements were performed is

arbitrary.
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Fig. 3 Numerical simulation of eqs. (1) and (2) for T = 150, N = M = 90. A)-C)
1 − yj(t) as a function of t for M0 = 20, 40,and 80, respectively. D)-F) Interaction
maps accompanied with A),B) and C), respectively. Solid lines for j < M0 and broken
lines for j > M0.

2.2.3 Extreme case: M = M0

Although no soils have similar outcomes to those obtained when M = M0; i.e.,

no carbon resources are consumed by none of bacteria. There are two character-

istic features when M0 = M (not shown here),

( 1 ) The amount of consumed carbon resources starts to increase and saturates

in earlier time region if compared with Figs. 3A-C.

( 2 ) In contrast to Figs. 3A-C, there are no carbon resources which remains

unconsumed.

Are there no real situations having these above two features? The answer is no.

The time developments of carbon resource consumption for a compost, ”Kanto-

kun” provided by Fujimi Engineering Co., Japan has similar tendencies described

in the features (1) and (2) ( not shown here). In addition to this, it is well known

that the content of compost can be fully consumed by bacteria in contrast to soils.

This suggest that interaction map of compost is possibly like when M0 = M ,

i.e., there are no carbon resources consumed by no bacteria. In conclusion, the

situation when M0 = M is well reproduced in the compost.

2.3 Assumed real interaction map

There are no ways to observe directly interaction maps in the real soil. However,

if we can isolate bacterial species one by one, there are some possibilities to

observe interaction map indirectly. It can be done if we can have each bacteria

to colonize. Of course, since not all bacteria can be incubated, this procedure

is not perfect. However, at least, if we can know which carbon resource each

of isolated bacteria can consume, it can be a substitute to the interaction map.

Almost ten years ago, we have isolated soil bacteria and observe this by biolog

system. Although relatively scattered, this kind of observation for healthy soil

(not shown here) have similar configuration seen in Figs. 3D-F. As mentioned

above, although this cannot be a true interaction map but an assumed one, it

does not at least disagree with our model eqs. (1) and (2).

3. Discussion

3.1 Feature extraction

Although our model equations more or less reproduce real outcomes, time de-

velopment themselves have too much information to compare with each other. It

will be better to have more understandable features to distinguish sick soil from

healthy one. We have previously proposed7) integration of area below graph, i.
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e.

ADS ≡
96∑
j=1

191∑
t=1

∆cj(t),

where ∆cj(t) ≡ cj(t) − cj(0), as activity-diversity score (ADS) to judge how

healthy soil is. cj(t) is the amount of consumed jth carbon resource up to tth time

points. In our model equations (1) and (2), cj(t) is assumed to be propotional

to 1 − yj(t). It turns out that ADS can discriminate sick soil from healthy soil.

For example, soils in Figs. 1A-C have ADSs of 306,097, 412,000, 1,114,100,

respectively. Thus, ADS can be a measure of how healthy soil is. However,

compost ”Kanto-kun” has greater ADS of 2,820,201 than soils. Since compost

cannot be a soil, simply increasing ADS cannot result in healthy soil but may

result in some other state. We need more suitable indicator to judge how healthy

soil is.

One possibility to find such features is the usage of multivariate analysis8).

Multivariate analysis allows us to reduce redundant information into more com-

pact one. For example, principal component analysis8) can reduce redundant

feature vector into the vector with less and important components. However,

since this is a linear transformation, the ability of reduction is limited. Recently,

Taguchi and Oono proposed a new and efficient algorithm of non-metric multi-

dimensional scaling (nMDS)9), which can reduce the size of information space in

the non-parametric thus non-linear manner.

In order to make use of nMDS, we first have to define the dissimilarity (distance)

δjj′ between objects j and j′. Here we would like to have δjj′ for the pair of the

jth and j′th carbon resources. This is defined as

δjj′ ≡
191∑
t=0

[∆cj(t)−∆cj′(t)]
2
. (5)

Employing δjj′ defined in eq. (5), we have apply nMDS to the collection of the

four time developments in Figs. 1A-C and ”Kanto-kun”. We have obtained two

dimensional embeddings (not shown here) by nMDS employing the dissimilarity

eq. (5). For these embeddings, we have embedded all of time developments in

Figs. 1A-C and that of ”Kanto-kun” together. Thus, in total, we have had

96 × 4 = 384 time sequences. However, to understand easier, we have plotted

sequences in each figure separately (not shown here). Each point corresponds to

one of time sequences.

First of all, they have clear one dimensional structure, although its direction

varies one by one. Since nMDS is non-metric method, scales of horizontal/vertical

axes are arbitrary. However, the ratio between them is reproducible. Thus,

the obtained one dimensional structure is meaningful; i.e., we have successfully

reduced the rich information contained in time sequences. That is, these time

sequences are ranked in one criterion very well. Remarkably, nMDS embedding

can give us clear distinguishable features among them. For example, for sick soils,

points concentrated to the limited region. While for healthy soil and compost

”Kanto-kun”, points distribute over wider region. Wider distribution means more

diversity of time sequences. Thus, more healthy soils have tendency to have more

diversity of time sequences.

At a glance, compost seems to have more diversity than healthy soil, since

points distribute over wider region. In order to see this points, we have computed

spatial distribution (not shown here) of points along horizontal axis. It turned

out that the distribution corresponding to Fig. 1C, has more uniform distribution

than that corresponding to compost ”Kanto-kun”. Thus, we can conclude that

healthy soil has both diversity and uniformity. In other words, healthy soil has

the mostly valanced distribution of time development.

3.2 Diversity and uniformity

In this paper, we have shown that healthy soil has time development of carbon

resources consumption with very unique features; both diversity and uniformity.

Although at the moment, it is impossible to measure how diverse and uniform

soil ecological systems are, if we can trust our simple modeling, such a kind of

distribution is related to uniform interaction matrix, i.e., having carbon resources

ranging from those consumed by all to those by none (Fig. 3F). If this is true,

why healthy soil has diverse and uniform time development can be understood

as follows. Suppose that disease is caused by overpopulation of some specific

bacteria. If interaction map is like Fig. 3F, ecological system is occupied by

both specialist which consumes small kinds of carbon resources effectively and

generalist which can consume many of carbon resources but less effectively than

specialist. If there are more specialists, there will be easier for one species to
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grow drastically if it can beat some of specialists, since then it can use full of

carbon resources which are consumed by the specialists that it beats. However,

if there are generalists, too, it cannot monopolize this resources since generalist

will consume it, too. On the other hand, there are only generalists, it is also easy

for some bacteria to invade it if it is specialists, because there are no specialists

which can consume target resources as well as it can. Thus, if ecological system

is occupied by both generalists and specialists, ecological system is more difficult

to invade. Although at the moment, there are no way to confirm this conjecture,

someday, we believe that some can confirm this conjecture and will succeed in

generating soil which are strongly disease suppressive.

4. Materials and Methods

4.1 Preparation of soil suspension

Microorganism is dispersed using 15mM phosphate buffer solution from soil.

1000-fold diluted suspension is dispersed to GN-2 BIOLOG plate. Color reaction

(590nm wavelength region) is measured in both wells each of which includes one

of 95 carbon resources and the reference well with no carbon resource. Robotic

system invented by BIOLOG Co. is used for automatic measurement every 15

minutes (25 ◦C, 48 hours). Used software for control is OL-PM ver.1.3 and that

for analysis is OL-FM1.3. Output from this system is user for further analysis.

4.2 Colonization

50 µ` soil suspension is applied to culture medium (1/10 PTYGA10)) by Au-

toplate. It is incubated for four days (25 ◦C, under dark condition). Bactria is

sampled from each of colonies. Since sampling must be random, we have sam-

pled all of colonies in the medium with at least ten or more colonies. Sampling

has been done using a disinfected toothpick. Each of samples are applied to a

new culture medium again. Medium is incubated over 24 hours. These whole

processes are repeated twice and cell suspension (107 cells/` physiological salt

solution) is deposited to the BIOLOG plate. Permeability of detection light (440

nm) is controlled to be 70 to 80 %. Assimilation by bacteria is detected by

the light (590 nm) by comparing control well with no carbon resources and is

digitized to 1 or 0, by the software Microlog3N (BIOLOG Co.).
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