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Abstract: Although operating systems (OSes) are crucial to achieving high availability of computer systems, modern
OSes are far from bug-free. Rebooting the OS is simple, powerful, and sometimes the only remedy for kernel failures.
Once we accept reboot-based recovery as a fact of life, we should try to ensure that the downtime caused by reboots
is as short as possible. This paper presents “phase-based” reboots that shorten the downtime caused by reboot-based
recovery. The key idea is to divide a boot sequence into phases. The phase-based reboot reuses a system state in the
previous boot if the next boot reproduces the same state. A prototype of the phase-based reboot was implemented on
Xen 3.4.1 running para-virtualized Linux 2.6.18. Experiments with the prototype show that it successfully recovered
from kernel transient failures inserted by a fault injector, and its downtime was 34.3% to 93.6% shorter than that of the
normal reboot-based recovery.
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1. Introduction

High availability is important for all ranges of computer sys-
tems from high-end enterprise systems to low-end consumer de-
vices. High-end enterprise systems lose millions of dollars if
their services are unavailable. Low-end device vendors would
lose their customers if their products such as smart phones and
HDD recorders were not very stable or sometimes got hung up.
Upgrading iPhoneOS 3.x to iOS 4.0 on iPhone 3G causes severe
performance degradation and makes iPhone 3G service nearly
unavailable. Apple was criticized for delivering an inferior op-
erating system and finally took action to investigate the series of
complaints related to performance.

Operating systems are crucial for achieving high availability
of computer systems. Compared with application-level failures,
kernel-level failures are known to occur less frequently, but they
have a considerable impact on the overall availability of software
systems. Even if the applications running on the operating system
are highly available, a bug inside the kernel may result in a failure
of the entire software stack; no application can continue to run on
the crashed kernel.

Modern operating systems are far from bug-free. Palix et al. [2]
report that the rate of introduction of bugs continues to rise even
in Linux 2.6. In addition, the average time between when a bug
is introduced and when a fix is released is 1.8 years for Linux
kernels. Our investigation of the change logs of Linux 2.6.24 and
2.6.25 also revealed that there are critical bugs inside the kernel
core components. Kernel bugs are not the sole reason for kernel
failures. Soft errors in high-density semiconductors are increas-
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ing [3], and they cause incorrect values to be read from memory
or incorrect instruction results to be produced.

For end users of computer systems, sometimes the only rem-
edy for kernel failures is to reboot the operating system (and thus
the entire software stack). For example, if a smart phone freezes
due to a kernel failure, the end user reboots it in the expectation
that the reboot will recover the smart phone; she does not have
any skill or tools to diagnose and recover from the failure. Aside
from low-end consumer devices, skillful administrators for high-
end enterprise systems sometimes reboot the system to avoid or
recover from failures. A Cisco Security Advisory [4] reported
that their network products had a bug involving a memory leak,
and the reboots were necessary to recover from it until a bug fix
was released. IBM Director, a cluster management system for
xSeries servers, periodically reboots (i.e., rejuvenates) the system
to counteract software aging [5].

Once we accept reboot-based recovery as a fact of life, we need
to try to reduce the downtime caused by reboots as much as pos-
sible. This paper proposes “phase-based” reboots that shorten
the downtime caused by reboot-based recovery. In a phase-based
reboot, a boot sequence is divided into three phases: 1) the
hardware-initialization phase, 2) the kernel-boot phase, and 3) the
daemon-startup phase. The key idea behind phase-based reboot
is that a reboot repeats the same procedure as in the previous boot
and sometimes reproduces the system state identical to the previ-
ous one; we can reuse a system state in the previous boot if the
next boot reproduces the same state. In the phase-based reboot,
a system state is saved after each boot-phase is finished. When
a reboot is done for recovery, our system restores the saved state
to skip the boot-phases that reproduce the same states as in the
previous boot.

An earlier version of this paper appeared in IEEE/IFIP DSN [1].

c© 2012 Information Processing Society of Japan 121



IPSJ Transactions on Advanced Computing Systems Vol.5 No.2 121–132 (Mar. 2012)

To save and restore a system state, the phase-based reboot uses
the snapshot functionality of virtual machines (VMs). At first
glance, saving and restoring a system state is straightforward; the
entire memory image of the VM is saved to and restored from a
disk. However, this is time-consuming, especially when the mem-
ory size assigned to a VM is large. In the worst case, the phase-
based reboot takes a longer time to reboot than a normal reboot.
To avoid this situation, our mechanism avoids saving unnecessary
memory pages that can be reconstructed after the memory image
is restored.

Restoring a system state is much more complicated. The mem-
ory image saved to a disk contains a disk cache that may be up-
dated after the snapshot is taken. In other words, the disk cache in
the saved image may be out of date. If the saved image is simply
restored, the out-of-date disk cache is also restored and regarded
as up-to-date. To solve this problem, our mechanism refreshes
in-memory file objects with the corresponding disk blocks after it
restores the saved image.

A prototype of the phase-based reboot was implemented on
Xen 3.4.1 running para-virtualized Linux 2.6.18. Experiments
with the prototype showed that the phase-based reboot success-
fully recovered from kernel transient failures inserted by the ker-
nel fault injector, and its downtime was 34.3 to 93.6% shorter
than that of the normal reboot-based recovery.

The rest of this paper is organized as follows. Section 2
presents the key idea of phase-based reboot and its semantics.
Section 3 overviews phase-based reboot. Sections 4 and 5 de-
scribe the design and implementation of phase-based reboot, re-
spectively. Section 6 presents our experimental results. Section 8
discusses work related to ours. Finally, Section 9 concludes this
paper.

2. Phase-based Reboot

To reduce the downtime of reboot-based recovery, the phase-
based reboot skips some phases of a time-consuming boot se-
quence. In this section, we describe the key idea behind the
phase-based reboot and its recovery semantics.

2.1 Key Idea
A boot sequence can be divided into three phases: 1) hard-

ware initialization, 2) kernel boot, and 3) daemon startup. Nor-
mal reboot-based recovery executes all the boot phases in order
to reconstruct a consistent system state and restart services. The
normal reboot-based recovery repeats the same boot sequence as
in the previous boot. Most parts of the sequence are similar to the
previous boot because the system configuration is not changed in
the context of reboot-based recovery. In the reboot-based recov-
ery, the system is not rebooted so as to make the configuration
changes effective; the boot sequence starts from the same system
configuration and is thus expected to result in the same system
state as the previous boot.

As illustrated in Fig. 1, the system starts its services after ini-
tializing the hardware, booting the kernel, and starting up every
daemon. Through these operations, a consistent system state is
constructed from which we can start services. When a kernel
crashes, the reboot-based recovery is attempted; the system re-

Fig. 1 Key idea behind phase-based reboot. In most cases, the reboot pro-
cess produces the same system state as in the previous boot.

peats the same procedures to reconstruct the same system state
from which we can restart the services. In the reboot-based re-
covery, no system configuration is changed in most cases. There-
fore, the resulting system states are expected to be the same in the
previous and current boot sequences.

The key idea behind the phased-based reboot is to save and
reuse consistent system states during the reboots. If the next re-
boot always creates the same state as in the previous one, we can
simply save and restore the previous state for reboot-based recov-
ery instead of rebooting the entire system. Unfortunately, this is
an oversimplification. During service operations, an administra-
tor may change the configuration of some daemons. In this case,
we cannot reuse the system state saved in the previous boot be-
cause the different configuration may result in a different system
state.

To address this reusability problem, the phase-based reboot
saves system states at several points, called restartable points,
during the boot sequence. System states saved at restartable
points are called restartable candidates, from which the user
can select the appropriate point to start the system reboot from.
By default, the phase-based reboot saves the candidates every
time each boot-phase is finished. Administrators can add more
restartable points based on their intimate knowledge of the target
system. If no configuration is changed, we can use the most re-
cent candidate from which the system reboot starts. Note that this
is the most common case in reboot-based recovery. If a config-
uration is changed as in the above example, the user can select
an appropriate candidate from which to restart the system from.
In the above example, the user restarts the system just after the
kernel initialization is finished. To help the user select an ap-
propriate restartable point, the phase-based reboot can determine
which restartable point can be used for recovery.

2.2 Recovery Semantics
Figure 2 shows the failure coverage for a normal OS reboot

and the phase-based reboot. The phase-based reboot handles ker-
nel transient failures in a way similar to a normal OS reboot. Ker-
nel transient failures include memory leaks and non-deterministic
kernel panics. By rebooting an OS, we can recover from kernel
transient failures even if their root causes are unknown. Reboot-
ing an OS eliminates a corrupted memory state and returns the
system state back to its initial state, which is known to be con-
sistent, making it possible to safely restart services. The phase-
based reboot inherits this advantage from the OS reboot, and
it restores the system state to a clean and consistent one at a
restartable point.

Unlike normal OS reboots, the phase-based reboot cannot re-
cover from a failures caused by inconsistent hardware states. To
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recover from inconsistency in hardware devices, the devices must
be re-initialized; the faulting machine must be reset physically.
Since the phase-based reboot skips the hardware-initialization
phase, this type of reboot cannot recover from hardware incon-
sistency. This is not a serious shortcoming of the phase-based re-
boot. When a failure occurs, the user tries the phase-based reboot
first. If the failure cannot be recovered, the user physically resets
the entire machine. From our experience in investigating Linux
change logs, most of the bugs in Linux corrupt in-memory ker-
nel states, which can be recovered from the phase-based reboot.
There are only a few bugs that make hardware devices inconsis-
tent.

As in the normal reboot-based recovery, the phase-based re-
boot cannot handle all types of failures. Since the phase-based
reboot is an optimization of the normal reboot-based recovery, it
inherits all the shortcomings of reboot-based recovery. First, the
failures that persist across reboots cannot be recovered. For ex-
ample, if a hardware device is corrupted physically, reboot-based
recovery is useless. If the persistent data in file systems are cor-
rupted, we have to run fsck to repair the corruption. Second,
the reboot-based recovery cannot handle deterministic failures
that can be reproduced by executing the same path. Finally, the
reboot-based recovery sometimes fails to restart user-level appli-
cations that save their states to non-volatile devices. If a kernel
failure prevents an application from saving its state, the applica-
tion may be confused after the OS reboot. To correctly restart a
service, the application must perform the recovery operation. For
example, an application using a database server must roll back the
SQL transactions that were processed when the kernel crashed.

Fig. 2 Failure coverage for a normal OS reboot and the phase-based reboot.

Fig. 3 Comparison of normal reboot and phase-based reboot.

3. Overview

The phase-based reboot leverages the snapshot function pro-
vided by system virtualization to restart the system at a restartable
point. System virtualization is becoming commonplace in a
computing environments. The snapshot function enables us to
save/restore a virtual machine (VM) state including CPU regis-
ters, memory, and disks at an arbitrary point. The phase-based
reboot uses a snapshot taken during an OS boot to restart the VM
at a restartable point. We refer to the snapshot as a restartable im-

age. The phase-based reboot overwrites CPU registers and mem-
ory states preserved in the restartable image to the running VM;
the phase-based reboot never rolls back the disk state to save up-
dates of disks in the service operation.

In the phase-based reboot, we treat snapshots as restartable
candidates that can be used as a restartable image. The phase-
based reboot appropriately selects a snapshot from the restartable
candidates and restores it. To prepare restartable candidates, we
take snapshots at many points during an OS boot. Figure 3 shows
a typical example of how restartable candidates are prepared. We
can collect them by taking a snapshot when the kernel boot is
complete, every daemon has been launched, and after a log-in
prompt appears. When a phase-based reboot is conducted, we
pick up a snapshot from the restartable candidates that has the
same state as after the normal reboot-based recovery.

The use of system virtualization allows us to prevent kernel
failures inside a VM from corrupting its restartable candidates.
If their contents are modified by the propagation of kernel fail-
ures, we cannot successfully restore the restartable image. Since
the virtual machine monitor (VMM) isolates VMs running on it,
the kernel failures are not propagated to the other VMs or VMM,
where snapshots are saved. Although commodity OSes offer a
hibernation mechanism that saves its memory state to disks, the
saved memory image are more easily affected by kernel failures.
This is because the hibernation mechanism saves memory images
to the disk that is not isolated from the OS. This is not reasonable
for saving restartable candidates.

However, the phase-based reboot does not come without effort.
It poses several design challenges. First, the existing snapshot
restoration takes a long time if the memory size assigned to the
VM is large. Next, when a snapshot is restored, the file system
objects are restored as well, which leads to eliminating the disk
update in the service operation. Lastly, we need a way to deter-
mine which restartable candidate is a restartable image in order
to help select a proper restartable image.
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4. Design

For the first challenge, we avoid saving pages that are unneces-
sary for the VM to work correctly after the snapshot is restored.
For the second challenge, we design a kernel module that updates
the file system objects. To address the last challenge, we pre-
pare a support tool that infers application states that will be built
by the normal reboot. To do so, the support tool checks whether
files accessed during the guest OS boot are updated in the service
phase.

4.1 Snapshot Optimization
The conventional VM snapshot function saves and restores all

the memory pages of a VM even if the pages are not used for
the kernel and user processes. If a VM is assigned 1,024 MB of
memory, the VMM saves all the memory on the disk even if the
VM uses only 128 MB. As the assigned memory size is larger,
the restoration of the snapshot takes longer, causing many disk
I/O problems.

To shorten the time for restoring a restartable image, we shrink

the size of VM memory checkpoints. Our technique reduces disk
I/O involved in saving and restoring the memory checkpoints.
We borrowed this idea from the hibernation mechanism offered
by commodity OSes. Specifically, our technique avoids saving
pages that are not necessary for the system to work correctly after
the restore operation as shown in Fig. 4. Such pages include a
free page and file cache pages. For example, if a VM is assigned
1,024 MB of memory, and 928 MB are free pages, we save only
72 MB since free pages are a soft state and can be reproduced
from the disk. We believe that our technique is effective because
memory usage is not heavily utilized during the boot phase where
restartable candidates are taken.

In this work, we focused on a free page and a page containing
soft-state kernel objects. Even if a VMM discards the contents
of free pages, the guest works correctly because free pages are
initialized when the kernel uses them. Soft-state kernel objects
include caches for disk blocks and caches for kernel resource
managers. A file cache is a typical example of soft-state ker-
nel objects. Because a file cache contains the data on disk, the
guest can reproduce it by reading the data from the disk. Like-
wise, caches for resource managers such as a slab cache can be
reproduced from the original data structure.

To avoid saving these pages, we modify the guest kernel to ex-
plicitly inform the VMM which pages are unnecessary. When a
snapshot is taken, the guest kernel examines its memory objects
and sends the VMM the guest physical address of the unnecessary

(a) Existing snapshot function (b) Optimized snapshot function

Fig. 4 Snapshot optimization.

pages. The VMM does not store them in a snapshot, based on the
given addresses. When the snapshot is restored, the VMM com-
pensates for the lost pages by allocating new pages to the guest.
After that, the restored VM starts to run.

Shrinking the VM memory checkpoints also enables us to put
the checkpoints on small and faster access devices. When a VM
memory checkpoint is significantly small, we can place it on solid
state drives or RAM disks whose accesses are much faster than
disk drives. This accelerates the restoration of the restartable im-
age, leading to much faster reboot-based recovery.

4.2 Update of File System Objects
We need to take into account the memory objects of file sys-

tems after restoration from a restartable image. File systems are
OS core components that manage disk caches including the cache
of data blocks, metadata, and file system metadata. Because file
systems manage such memory objects, a restartable image nat-
urally contains them, but the file systems fail to keep the disk
updates in the service phase when a restartable image is restored.
For example, the filesystems’ metadata such as the super block
cause this problem. The kernel only updates these metadata in
the memory, and writes them back to the disks; the metadata are
never read from the disks after the partition has been mounted.
When a restartable image is restored, the older file system meta-
data are overwritten on the current metadata. This causes the file
system to inconsistently manage disk blocks such as free blocks
and data blocks.

The i-node cache of the file opened with the append mode
causes a similar problem. When the i-node cache preserved in
a restartable image does not have an append region, restoring the
restartable image results in the i-node data being overwritten on
the newer data on the disk. This means the appended regions of
the file are eliminated.

Although remounting the disk volumes is a simple solution for
this inconsistency problem, this solution is not suitable for phase-
based reboots. Specifically, we take a snapshot after unmounting
the disk volumes. When the snapshot is restored, we mount them.
This way naturally refreshes file system objects, thus avoiding
the inconsistency problem described above. However, we have
to close all the files in the disk volumes to safely unmount the
disk volumes. This constraint is critical for the phase-based re-
boot because some applications keep files open while running.
For example, syslog d keeps its log file open with O APPEND,
and crond keeps its pid file open. Therefore, we cannot put these
applications into restartable candidates. To put such applications
on a restartable image, we explore an alternative to solve the in-
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Fig. 5 Selection of the proper candidate.

consistency of file system objects.
To solve the inconsistency, our kernel module forces the ker-

nel file system component to read such metadata again just after
a restartable image has been restored. When the restoration of a
snapshot is completed, our kernel module forces the file system
component to read the file system metadata and i-node from the
disk and it updates them. The consistency of file cache pages is
kept by our snapshot shirinking because it releases the file cache
pages.

4.3 Finding Restartable Images
We use as a restartable image a restartable candidate, where the

application states are the same as after a normal OS reboot. Be-
cause the memory contents saved in a restartable image are over-
written to the target VM, the restartable image needs to contain
applications’ memory contents that will be built by the normal
OS reboot. If an application memory image in a restartable im-
age is different from that after the normal OS reboot, the wrong
memory image will be built on the VM. This means we cannot
produce the effect of the reboot-based recovery.

Suppose that a restartable candidate contains a running appli-
cation that reads a configuration file in its boot phase. If the file is
updated, the application should be launched with the new con-
figuration after reboot-based recovery. However, restoring the
restartable candidate builds an application image that is based on
the older configuration. For example, as shown in Fig. 5, when
the configuration file of daemon 3 is changed in the service op-
eration, the user should select and restore the restartable image
saved just after daemon 2 has been launched. Then, the user can
initialize daemon 3. However, this selection depends on users’
skills and the knowledge about the target system. Although users
acquainted with the target system can select the proper candidate,
it is difficult for unskilled users to select it correctly.

Another example is that a restartable candidate contains a run-
ning application that keeps a file open to log its state. Restor-
ing this image may cause a log corruption if the application logs
its state in the service phase. Because the file offset of the ap-
plication is also restored, the application may overwrite the log
contents that were logged before restoring. Although one way to
solve this problem is to redesign applications to force them to re-
construct their states after a snapshot is restored, modifying all of
the applications is unreasonable.

To find an appropriate restartable image, our checker infers the
application states that will be built by the normal reboot. To do
so, it checks whether files accessed until a restartable candidate
is taken are updated in the service operation. If these files are not

updated, we evaluate whether the selected restartable candidate
can be used as a restartable image. We assume that applications
launch in the same way if files accessed by them are not updated.
For example, some applications start to run based on their con-
figuration files. If the configuration files are not modified, the
applications start in the same way at the next OS boot. Even if
an application reads files and caches their contents in memory, it
builds the cache again when the file contents have not been mod-
ified. When a log file is not updated, the application does not
overwrite old log contents since the file offset has not changed.

We believe that our checking tool supports to configure the VM
environment suitable for the phase-based reboot. If non-skillful
users want to enjoy the phase-based reboot, they can use a VM
image configured by skillful users with our tool. Although the
tool can be used to check restartable candidates when the phase-
based reboot is performed, it causes additional downtime of the
phase-based reboot. Optimizing the checking tool for using in the
service operation is another challenge, which is out of scope of
this paper.

We note that our checker does not cover all types of applica-
tions. For example, it does not manage applications whose be-
havior is defined by network conditions and time. If such appli-
cations are put into a restartable image, the phase-based reboot
may build the wrong application states after network conditions
and times are changed. To manage the applications, we need to
extend our checker to determine whether applications’ states in
the restartable candidates are the same as those built by the nor-
mal OS reboot.

We prepare a mechanism for files opened with the append
mode such as O APPEND to aggressively omit the boot phase.
When files are opened with the append mode, the kernel sets
files’ offset of the application to the end of the files in write().
This means the file offset is automatically set to the end of the
file by write() even after the snapshot is restored. If the file
contents are not updated, except for the appended region, the
checker determines whether the application that opens the file
with the append mode can consistently run after a restartable im-
age is restored. In this situation, it does not issue a warning that a
restartable candidate is not a restartable image.

5. Implementation

We implemented the phase-based reboot in Linux 2.6.18 run-
ning on Xen 3.4.1. Our core implementation consists of three
modules; a file access monitor, kernel object manager, and file

update checker. Both the file access monitor and kernel object
manager are running inside the guest kernel in a domain U. The
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(a) Execution of saving a snapshot (b) Execution of phase-based reboot

Fig. 6 An Overview of phase-based reboot.

file update checker is running inside domain 0. The file access
monitor logs the name and last modification time of files accessed
until a restartable candidate is taken. To do so, it records informa-
tion on files accessed by the processes. The kernel object manager
appropriately handles disk cache being managed by the ext3 file
system. In addition, it frees slab cache and tells the addresses of
free pages to the underlying hypervisor in order to remove the en-
tries of the P2M table when a restartable candidate is taken. The
file update checker inspects virtual disk images mounted by the
target VM and checks file updates by referring to a log produced
by the file access monitor. We added about 2,000 lines of new
codes to Linux 2.6.18 running on Xen 3.4.1 for three modules.

Our implementation is overviewed in Fig. 6. Figure 6 (a) de-
picts the execution of saving restartable candidates. For ease of
implementation, we run a daemon server that triggers our guest
kernel-level mechanism. Since we can take a snapshot only in
domain 0, the client running in domain 0 communicates with the
daemon server. To take a restartable candidate, the client asks the
server to run the kernel-level mechanism. The client starts taking
a snapshot when it is notified of the completion of the module
tasks by the daemon server. Note that there is a race condition
where a process can modify files until the client starts taking a
snapshot after the completion of the module tasks. To avoid this
situation, we need to implement a mechanism that enables do-
main U to take its snapshot.

First, the file access monitor logs information on accessed files
for the file update checker. Next, the kernel object manager
flushes the dirty buffer and releases the disk cache and slab cache.
Then, the kernel object manager tells the underlying hypervisor
to remove entries of free pages in the P2M table with the bal-
loon driver to shrink the memory checkpoint. Finally, we save
the shrunken memory image as a restartable candidate.

Figure 6 (b) shows the execution flow when the phase-based re-
boot is triggered. Xen restores the selected restartable candidate,
and the kernel object manager reallocates free pages because the
VM snapshot has been shrunk. Finally, the kernel object man-
ager updates i-nodes, dentries, and super block data in the mem-
ory. If necessary, the file update checker checks whether the VM
has updated the files in the file access logs and determines which
restartable candidate is restartable.

5.1 File Access Monitor
The file access monitor logs information on accessed files for

the file update checker. Specifically, it memorizes the absolute
path of the accessed file, its i-node number, and its last modifica-
tion time. The file access monitor also memorizes whether a file
has been opened with O APPEND. It saves the memorized infor-
mation as a file on the guest file system when the kernel object
manager triggers it. The log is used by the file update checker, as
will be described later.

The file access monitor monitors sys open, sys stat, and
sys exec to find out which files have been accessed. The mon-
itoring is stopped when our system call, pbr ready(), is issued
in order to avoid overhead of file access monitor activities in the
service phase.

5.2 Kernel Object Manager
The kernel object manager manipulates kernel objects being

managed by ext3 and the slab allocator. The manipulation is car-
ried out when restartable candidates are taken and when they are
restored. When a restartable candidate is taken, the kernel object
manager flushes the dirty buffer and releases the page cache cor-
responding to the buffer cache, i-nodes, and dentries. This is done
to shrink the memory checkpoint. If some processes are using i-
nodes and dentries, the kernel object manager does not release
these objects. When the restartable candidate is restored, the ker-
nel object manager updates the unreleased cache by fetching the
data from the virtual disk. At the same time, it updates the super
block data in the memory.

The kernel object manager also unregisters free pages from the
P2M table for the Xen hypervisor to shrink the memory check-
point of the domain. To remove the entries of free pages in
the P2M table, the kernel object manager leverages a balloon

driver [6]. When the balloon is inflated, it pins down free pages
and tells the Xen hypervisor to remove their entries in the P2M
table. When the balloon is deflated, it releases the pinned pages
and registers their entries to the P2M table again.

The kernel object manager controls the balloon when a
restartable candidate is taken and restored. After releasing the
page cache and slab cache, it inflates the balloon to remove the
entries of free pages in the P2M table. When the restartable can-
didate is restored, the kernel object manager deflates the balloon
to register the free pages in the P2M table again.

5.3 File Update Checker
The file update checker helps to determine which restartable
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candidate is restartable. We can run the file update checker just af-
ter a restartable candidate is taken. To detect file updates, it pairs
the log produced by the file access monitor with the restartable
candidate. The file update checker mounts the virtual disk used
by the target domain U after the restartable candidate is taken to
salvage the produced log.

To determine which restartable candidate is restartable, the file
update checker detects file updates by referring to the log paired
with the restartable candidate. The file update checker obtains
the current state of the logged files by mounting the used virtual
disks. It compares the obtained i-node number and the last mod-
ification time with the corresponding values in the log. If the
current values are different from the logged ones, the file update
checker judges the files to be updated, and the restartable candi-
date cannot be used as a restartable image.

To successfully deal with the files opened with O APPEND, the
file update checker calculates and logs the hash value of their
contents just after a restartable candidate is taken. The file up-
date checker gets the file contents by mounting the virtual disks.
When we check whether a restartable candidate is restartable, the
file update checker calculates the file contents except for the ap-
pended region again, and compares it with the logged value. If
the values are the same, the file update checker does not issue a
warning that the restartable candidate is not restartable.

6. Experiments

We conducted experiments to evaluate the effectiveness of the
phase-based reboot. We used a machine equipped with a 3 GHz
quad-core Xeon processor, 16 GB of memory, and a 73-GB SAS
NHS 10,000 rpm hard disk. On this machine, we ran Xen 3.4.1
and the Linux 2.6.18 kernel in domain 0. We also ran the modi-
fied Linux 2.6.18 para-virtualized for Xen on guest domains con-
nected to a 10-GB virtual disk. We installed Fedora Core 8 on
each domain, and turned off unnecessary service daemons.

We investigated the following fundamental issues in our ex-
periments. The first was how the phase-based reboot shortens
the downtime of reboot-based recovery. The second was which
restartable candidate can be a restartable image under a compli-
cated workload. The last was whether the phase-based reboot can
recover from kernel transient failures.

6.1 Downtime
We measured the downtime of the phase-based reboot to de-

termine how the phase-based reboot shortens the downtime of
reboot-based recovery. To execute the phase-based reboot, we
prepared two restartable images. The first was a restartable im-
age that was taken before the guest kernel mounted the virtual
disk. We refer to the phase-based reboot that is restoring this
restartable image as pr-naive. The other was a restartable image
that was taken when a log-in prompt appeared after the kernel and
all the daemons were ready. We simply refer to the phase-based
reboot that is restoring this restartable image as pr-opt. For com-
parison, we also measured the downtime of a normal boot and a
normal reboot on the guest domain (guest boot and guest reboot).
To clarify how effective our optimization described in Section 4.1
was, we executed the phase-based reboot without our snapshot

optimization and measured its downtime (pr without snapshot

opt.). We started measuring when each operation was triggered,
and stopped when all the daemons registered in run level 3 were
ready on the domain. We measured the downtime of each reboot-
based recovery, varying the memory size of the guest domain.

We assumed a scenario of recovering from fail-stop failures,
and compared the guest boot to pr-opt, pr-naive, and pr with-
out snapshot opt. In this scenario, each reboot-based recovery
contains a fsck execution; the Linux kernel conservatively runs
fsck in the boot after the kernel is shut down without partitions
being unmounted. Next, we assumed a scenario of recovering
from gradually corrupting failures such as memory leaks, and
we compared the guest reboot to pr-opt, pr-naive, and pr without
snapshot opt. In this scenario, none of the reboot-based recover-
ies need a fsck execution because we assume the situation where
the virtual disk is correctly unmounted.

Tables 1 and 2 list the average downtime of each reboot-based
recovery. Table 1 indicates that the downtime of the phase-based
reboot was shorter than that of the guest boot in many cases. In
pr-opt, the downtime was 75.0% to 86.2% shorter than the guest
boot, while the downtime of pr-naive was 34.3% to 60.6% shorter
than that of the guest boot. In pr without snapshot opt, its down-
time is shorter than the guest boot when the domain memory size
was smaller than 2 GB.

Table 2 lists similar results to Table 1, where the downtime of
the phase-based reboot was shorter than that of the guest reboot in
many cases. In pr-opt, the downtime was 86.1% to 93.6% shorter
than the guest reboot. The downtime of pr-naive was 60.1% to
77.6% shorter than that of the guest reboot.

To analyze the downtime caused by the phase-based reboot, we
show the breakdown of the downtime of pr without snapshot opt,
pr-naive and pr-opt in Fig. 7. Figure 7 (a) and (b) reveal that our
snapshot optimization significantly contributed to shortening the
downtime of reboot-based recovery. In pr without snapshot opt,
the restore time was much longer than the other configurations,
pr-naive and pr-opt. In particular, the restore time was about 37

Table 1 Average downtime of guest boot, pr without snapshot opt with fsck,
phase-based reboot with fsck.

Memory Guest pr w/o opt. pr-opt pr-naive
size [MB] boot [sec] w/fsck [sec] w/fsck [sec] w/fsck [sec]

64 18.96 3.23 2.62 7.47
128 18.50 3.96 2.68 7.81
256 18.39 5.82 2.59 7.90
512 18.45 10.29 2.77 7.69

1,024 18.85 18.46 2.90 8.47
2,048 19.00 38.09 3.38 9.49
4,096 19.29 67.05 4.83 12.67

Table 2 Average downtime of guest reboot, pr without snapshot opt, phase-
based reboot, pr-naive.

Memory Guest pr w/o opt. pr-opt w/o pr-naive w/o
size [MB] reboot [sec] w/o fsck [sec] fsck [sec] fsck [sec]

64 29.01 2.42 1.87 6.51
128 28.58 3.18 1.93 6.87
256 28.27 5.01 1.84 6.98
512 28.42 9.57 2.02 6.78

1,024 28.83 17.65 2.15 7.57
2,048 28.92 37.17 2.63 8.56
4,096 29.38 66.15 4.08 11.72

c© 2012 Information Processing Society of Japan 127



IPSJ Transactions on Advanced Computing Systems Vol.5 No.2 121–132 (Mar. 2012)

(a) pr without snapshot opt (b) pr-opt (c) pr-naive

Fig. 7 Breakdown of pr without snapshot opt, pr-opt, and pr-naive downtime.

and 66 seconds when the memory size of the domain was 2 and
4 GB respectively. This is because Xen’s snapshot function saves
and restores all the memory pages assigned to the guest domain
even if the pages are not used by the kernel and user processes.
The restore time in the other configuration was at most 5.8 sec-
onds. And, the time required for syncing and updating kernel
objects was much shorter than the other functions.

In addition, our snapshot optimization successfully shrank the
restartable images. For example, when a VM was assigned
1,024 MB of memory, the optimized snapshot function saved only
99 MB as a restartable image, but Xen’s snapshot function saved
1,050 MB. As described in Section 4.1, since we can prepare
RAM disks or solid-state drives where these memory checkpoints
are placed, we can shorten the downtime of the phase-based re-
boot.

The figure also shows that omitting the kernel and daemon boot
phase is effective to shorten the downtime of reboot-based recov-
ery (Fig. 7 (b) and (c)). In pr-naive, booting the kernel and dae-
mons is the main part of its downtime since the impact of the re-
store operation and ballooning is relatively smaller. Phase-based
reboot in pr-opt effectively shortens its downtime by omitting the
launch phase. In fact, the downtime of pr-opt was 61.9% to 67.2%
shorter than that of pr-naive, as exhibited in Table 1.

6.2 Finding Restartable Images
To confirm how the phase-based reboot performs under a com-

plicated workload, we checked which restartable candidate can
be a restartable image after running a benchmark that models
a real web site. We used RUBiS [7] on the Java EE platform,
which is a three-tailored auction site prototype modeled after
eBay.com [8]. We prepared additional physical machines for this
experiment. The specifications of these machines were the same
as the machine described previously. These machines were con-
nected via Gigabit Ethernet. We ran the RUBiS client emulator on
one machine while Xen 3.4.1 was running on another machine.
The Xen machine was used as a server where three guest do-
mains were running, a web server domain (FrontVM), application
server domain (AppVM), and database server domain (DBVM).
Apache 2.2.9, Tomcat 5.5.28, and MySQL 5.0.45 were running
on FrontVM, AppVM, and DBVM, respectively. We emulated
500 clients and checked whether or not all the restartable can-
didates were restartable images. Our check was carried out two
ways. One is that we conducted the phase-based reboot when
the emulation had finished. The other is that we conducted the
phase-based reboot while the client emulator was running. We
assigned 1.7 GB of memory to each guest domain. This memory
size comes from the small VM configuration in Amazon Elastic

Fig. 8 Restartable points in the second experiment.

Compute Cloud [9].
We prepared restartable candidates in the following way, which

is shown in Fig. 8. We took a snapshot before mounting the vir-
tual disk (Point A), when the kernel boot was completed (Point
B), when all the configured daemons were launched (Point C),
when a log-in prompt was displayed (Point D), and after Apache,
Tomcat, and MySQL were launched on each VM (Point E).

The results are exhibited in Tables 3 and 4. Table 3 indi-
cates which restartable candidate is restartable or not when
the emulation has finished. In this situation, the phase-based
reboot does not issue warnings in FrontVM and AppVM. This
means that we can use Point E to restart the VMs. On the
other hand, the phase-based reboot judges that Point E is not
restartable since some files have been updated. Specifically,
/var/log/mysqld.log and /var/lib/mysql/ib logfile
were opened without O APPEND and were updated during the
RUBiS operation. /var/log/mysqld.log is used for MySQL
to log its execution state. /var/lib/mysql/ib logfile is a
log file where MySQL records transactions states.

Table 4 indicates which restartable candidate is restartable or
not when we conduct the phase-based reboot while the client
emulator is running. DBVM is sent the same warnings as
when we conduct the phase-based reboot after the client emu-
lator is completed. The phase-based reboot sometimes judges
that Point E is not restartable in FrontVM and AppVM since
/etc/httpd/logs/error log has been updated. When the
workload of RUBiS is interrupted, Apache logs the error condi-
tion into /etc/httpd/logs/error log. We cannot restart can-
didates at Point E because this file is opened by Apache without
O APPEND.

We found that some logs were updated frequently. For ex-
ample, auditd records system call names issued by specified
processes, opening the log file without O APPEND. If this dae-
mon is put into restartable candidates, we cannot use them for
a restartable image. To consistently run such a daemon after a
phase-based reboot, we carefully avoid putting it in restartable
candidates. We need to configure the daemon to start after the
phase-based reboot. If a user wants to skip the boot phase of
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Table 3 Restartable points when executing phase-based reboot after completing the emulation.

VM Point A Point B Point C Point D Point E

FrontVM OK OK OK OK OK

AppVM OK OK OK OK OK

DBVM OK OK OK OK
/var/log/mysqld.log

/var/lib/mysql/ib logfile

Table 4 Restartable points when executing phase-based reboot during the emulation.

VM Point A Point B Point C Point D Point E

FrontVM OK OK OK OK
Depends

(/etc/httpd/logs/error log)

AppVM OK OK OK OK
Depends

(/etc/httpd/logs/error log)

DBVM OK OK OK OK
/var/log/mysqld.log

/var/lib/mysql/ib logfile

such a daemon, he or she has to redesign the daemon to be phase-
based reboot-aware. In this case, we add O APPEND to the open
argument.

Although this experiment shows that a real Linux distribution
and the RUBiS benchmark are restartable from Point D in many
cases, there are the cases in which we need to use the early
restartable candidate such as Point A. For example, when the
VM hardware configuration such as VM memory size is changed
during service operations, we need to use Point A to restart the
VMs. Evaluating other test sets that restart at Point A, B or C, is
important and future work.

6.3 Recovery from Kernel Failures
To confirm that the phase-based reboot can successfully re-

cover from kernel failures, we synthetically injected faults into
the running kernel. We measured the rate of successful recov-
ery from the kernel crashes, which were caused a total of 200
times. To inject transient failures to our kernel, we used the
fault injection mechanism originally developed at the Univer-
sity of Michigan. This mechanism has been used in other stud-
ies [10], [11], [12]. Each fault changes a single integer value
on the kernel stack of a random thread, or a single instruction,
or instruction operand in the kernel code. This emulates many
common errors, such as stack corruption, uninitialized variables,
incorrect testing conditions, incorrect function parameters, and
wild writes. We assigned 1.7 GB of memory to the guest domain.

The experimental results demonstrated that the phase-based re-
boot successfully recovered from all the injected kernel failures.
Because the phase-based reboot completely destroys the crashed
memory state and constructs a fresh state from the restartable im-
age, the kernel failures do not affect the phase-based reboot proce-
dure. For example, when the fault injection tool changed values in
the stack memory region to incorrect values and led to kernel stop
error, the phase-based reboot overwrote the memory image of the
crashed VM with the restartable image, and then the crashed VM
continued providing services. In this experiment, the fault injec-
tion tool never injected faults that were not transient, such as a
fault that writes incorrect values to the disks. Although such ker-
nel failures happen in the real world, they are out of the scope of
the phase-based reboot; The target failures of the phase-based re-
boot are transient failures that can be recovered by a normal OS
reboot.

7. Discussion

7.1 Limitation
As previously described, the phase-based reboot has limita-

tions. The effectiveness of the phase-based reboot depends on the
two major factors. First, it depends on the type of kernel failures.
As described in Section 2.2, the phase-based reboot handles ker-
nel transient failures in a way similar to a normal OS reboot. So,
the phase-based reboot does not manage persistent failures and
deterministic failures. Moreover, the phase-based reboot cannot
recover from the failures caused by inconsistent hardware states.
This is because, differently from the normal OS reboot, the phase-
based reboot skips hardware initialization which can recover from
such failures.

Second, the effectiveness of the phase-based reboot depends on
how applications whose running state is saved in restartable can-
didates launch. As described Section 4.3, a restartable candidate
cannot be used as a restartable image when the restartable candi-
date includes the running state of an application and the applica-
tions’ configuration files are modified during the service opera-
tion. For example, in Section 6.2, the restartable candidate saved
at Point E, which includes the running state of MySQL, cannot
be used as a restartable image because MySQL’s log file were
updated during the RUBiS operation. If a daemon is launched
earlier than many other daemons and its configuration files are
frequently modified during the service operation, the phase-based
reboot is not effective since it can use only restartable candidates
taken before the daemon is launched. This means that we cannot
skip many execution phases, failing to shorten the downtime of
reboot-based recovery. However, there is not such a daemon in
34 daemons of Fedora 8 and RUBiS.

Moreover, the phase-based reboot does not always automati-
cally produce the effect of an OS reboot, as described in Sec-
tion 2.1. Some applications create a file to avoid being dou-
bly launched. For example, vsftpd creates its lock file in
/var/lock/subsys. Because the file is preserved in the disk
after a restartable image is restored, the system fails to start the
applications when we restore a restartable image where they have
not been started yet. In order to obtain the effect of an OS re-
boot from the phase-based reboot in this situation, we need to
shut down such applications before conducting the phase-based
reboot.
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Furthermore, we need to explain the limitation of our current
implementation of the support tool named the file update checker.
Our check is conservative because the file update checker checks
file update times, not sizes and contents, by referring to the log
paired with the restartable candidate. However, it does not man-
age applications whose behavior is defined by network conditions
and time. Imagine that we change the DHCP server configuration
to assign a different IP address to the VM using the phase-based
reboot. In this case, the file update checker does not issue a warn-
ing that the restartable candidate is not restartable because it can-
not detect the change of IP address. Addressing this limitation is
our future work.

Our snapshot optimization conflicts with a daemon that puts
frequently used files into buffer cache to improve the performance
in the service phase. For example, readahead early accesses
frequently used files to put them into the buffer cache of the ker-
nel. Our optimization shortens the time for restoring a snapshot at
the expense of disposing of soft-state objects that improve system
performance. We can adjust how many pages of buffer cache we
release, taking into account the importance of performance in the
service. However, there is a trade-off between the performance
and the time for restoring the restartable image; the more buffer
cache we leave, the longer time it takes to restore the restartable
image.

7.2 Use Case
One of the use-cases is cloud computing environments, espe-

cially in SaaS and PaaS environments. The skillful administrators
create the restartable candidates and deploy them in the datacen-
ters. In such environments, end users can use the applications and
interfaces without the knowledge about the system configurations
of the datacenters. By performing the phase-based reboot, we can
improve the availability of the users’ services.

To use our system, users need to understand whether the sys-
tem state after next reboot is the same as the previously saved
state. Specifically, we need to know that the boots of the kernel
and daemons are the same as the previous boot. For example,
suppose that the restartable candidate is saved when one daemon
is launched. In this case, the user need to check whether files
opened by the daemon are modified during service operations,
whether the files was opened with the append mode in the pre-
vious boot, whether the contents of the files are changed during
service operations if they were not opened with the append mode,
and so on.

7.3 Future Work
We briefly discuss about future work of the phase-based reboot.

First, we apply the phase-based reboot to other environments. For
example, the phase-based reboot is effective for embedded sys-
tems since the applications used in the systems are limited. Sec-
ond, we expand the coverage of the file update checker. As de-
scribed in Section 4.3, the current implementation of the file up-
date checker does not manage applications whose behavior is de-
fined by network conditions and time. So, we should address this
limitation in order to expand the coverage of the target applica-
tions. Thirdly, we optimize the method of checking file updates.

The current file update checker checks whether the files accessed
in the previous boot are modified individually. It may cause I/O
contention with the running VMs since it compares i-node num-
ber and last modification time between the current state and the
previously saved state in the log. So, we need to explore a way to
reduce I/O contention. Finally, we optimize the snapshot function
furthermore. The current optimization of the existing snapshot
function is to shrink the size of VM memory checkpoints. In de-
tail, it is to avoid saving free pages and cache pages. We think that
the size of VM memory checkpoints becomes smaller by avoid-
ing saving other soft-state memory objects in the snapshot such
as the kernel code region.

8. Related Work

Various approaches have been proposed to reduce the down-
time stemming from a whole program restart. Microreboot [13]
achieves fine-grained software reboots. To enable a microreboot,
the target application is divided into small independent software
components which become units for a reboot. If rebooting a small
component cannot recover from a failure, a bigger component
will be rebooted. The work aims at application-level failures, and
thus, it cannot shorten the reboot time for recovery from kernel
failures. Also, the microreboot is complementary notion to the
phase-based reboot. We can say that the microreboot focuses on
“components” of software systems. We benefit from this when a
reboot of small components recovers from failures. On the other
hand, the phase-based reboot focuses on “phases” of software
systems. We benefit from this in cases where we have to reboot
larger components such as OS kernels, which take a long time to
restart.

Kexec [14] and Fast Reboot [15] allow us to quickly start up a
kernel. When they are invoked on a running kernel, another ker-
nel boots without any hardware reset. Since these mechanisms
require kernel support, they cannot be used when the kernel is
stopped due to kernel failures. The phase-based reboot can work
even when the kernel has crashed.

Different approaches have been proposed to recover from ker-
nel failures. Otherworld [10] reboots the kernel without clobber-
ing the state of the running applications. After the kernel crashes
and is rebooted, Otherworld restores the application memory
spaces, open files, and other resources. However, the downtime
of Otherworld is reported to be about 1 minute. To restart the ser-
vice quickly, we use both Otherworld and our method as the sit-
uation demands. We should use Otherworld if the running states
of the applications are critical for recovery. On the other hand,
we should use the phase-based reboot if the running states of ap-
plications are not critical.

Akeso [16] is a kernel-level mechanism that is request-oriented
in the sense that it handles the recovery at the request level such
as system calls or interrupts. When a failure occurs in the kernel,
Akeso rolls back the kernel state to the beginning of the function
and makes the function return an error. However, it requires a
complicated annotation in various places within the kernel code
along with the context. Writing a correct annotation requires ac-
curate knowledge of the kernel and is a laborious and error-prone
task. The phase-based reboot does not require any annotation
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and is basically complementary to kernel-level mechanisms; the
phase-based reboot can quickly rejuvenate them to achieve more
reliable services.

Previous studies have focused on a kernel component.
Nooks [11], [17] pushes a device driver into a lightweight protec-
tion domain and transparently recovers device drivers when they
fail. LeVasseur et al. proposed an approach to isolating device
drivers using dedicated VMs [18] to limit the drivers’ crash influ-
ence. Membrane [19] is a kernel-level mechanism to make file
systems restartable. It periodically saves checkpoints of file sys-
tem states. If the file system fails, Membrane restores the file sys-
tem state from the recent checkpoint and consistently and trans-
parently updates the stateful information to applications. These
approaches focus on certain kernel components’ failures, but the
phase-based reboot focuses on failures in any kernel component.

Some previous studies have made better use of virtualization
to improve the reliability of the system. Bresoud and Schneider
proposed a hypervisor-based approach to implementing a fault-
tolerant system [20]. It replicates the state of a system remotely
and recovers from failures in a failover manner. Remus [21] is a
failover mechanism that uses VMM. Remus replicates snapshots
of an entire running OS instance between a pair of physical ma-
chines. These failover approaches basically focus on hardware
failures, while the phase-based reboot focuses on software fail-
ures in the kernel.

CuriOS [22] recovers failed services transparently to clients in
a microkernel OS. CuriOS stores client-specific states in client-
associated but client-inaccessible memory. When OS system
servers fail, the servers use the preserved client states to restart
without affecting the clients. Vino [23] provides a mechanism to
recover from extension failures without rebooting the OS. Vino
encapsulates extensions in a transaction to spontaneously abort
them and clean up their states. These can run on a microkernel or
special formed kernel, while the phase-based reboot is suited to
commodity OSes such as Linux.

Approaches to improving the reliability of applications and vir-
tual machine monitors have also been proposed. Many techniques
target application failures. Examples of these techniques are
checkpoint-restarting methods [24], protecting the system from
code injection attacks [25], [26], diagnosing failures and patch-
ing online [27], [28], and changing application execution environ-
ments [29]. Roothammer [30] achieves a fast VMM rejuvenation
by preserving the running VMs in memory while rebooting the
VMM. These approaches are complementary to the phase-based
reboot, whose target is kernel failures.

The phase-based reboot is also complementary to other tech-
niques in OS error detection sensors such as an SVA runtime
mechanism [31] and software guards used in the XFI system [32].
These sensors can reduce our reboot recovery latency.

9. Conclusion

We proposed a “phase-based” reboot that shortens the down-
time of reboot-based recovery. The key idea is to divide a boot
sequence into phases. The phase-based reboot reuses a system
state in the previous boot if the next boot reproduces the same
state. By doing so, it skips some phases of a time-consuming

boot sequence that reproduces the same states as in the previous
boot. A prototype of the phase-based reboot was implemented
on Xen 3.4.1 running para-virtualized Linux 2.6.18. Experimen-
tal results showed that the prototype successfully recovered from
kernel failures inserted by a kernel fault injector, and its downtime
was 34.3% to 93.6% shorter than that of the normal reboot-based
recovery.
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