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Abstract: Virtualization solutions aimed at the consolidation of a real-time operating system (RTOS) and a general-
purpose operating system (GPOS) onto the same platform are gaining momentum as high-end embedded systems
increase their computation power. Among them, the most extended approach for scheduling both operating systems
consists of executing the GPOS only when the RTOS becomes idle. Although this approach can guarantee the real-time
performance of the RTOS tasks and interrupt handlers, the responsiveness of GPOS time-sensitive activities is nega-
tively affected when the RTOS contains compute-bound activities executing with low priority. In this paper, we modify
a reliable hardware-assisted dual-OS virtualization technique to implement an integrated scheduling architecture where
the execution priority level of the GPOS and RTOS activities can be mixed with high granularity. The evaluation re-
sults show that the proposed approach is suitable for enhancing the responsiveness of the GPOS time-sensitive activities
without compromising the reliability and real-time performance of the RTOS.
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1. Introduction

Current high-end embedded systems are no longer confined to
standalone, resource-constrained devices. On the contrary, they
frequently consist of highly connected devices with increasing so-
phistication and complexity. In order to address such complexity
within a realistic time span, it is a current trend to leverage exist-
ing open source software [1] that was originally born to service
the needs of personal computer users. Despite the fact that the
need for a general-purpose operating system (GPOS) and the rich
functionality of its libraries is beyond question, most embedded
systems are still expected to support certain requirements—such
as security, reliability or timeliness—which only a small-scale
real-time operating system (RTOS) can satisfy [2], [3], [4].

There are several alternatives for consolidating a RTOS and a
GPOS onto the same embedded system platform. The traditional
approach is to allocate separate hardware resources for each op-
erating system. However, since that approach increases the hard-
ware cost, new dual-OS virtualization techniques have been in-
vented to help both operating systems to share the same hardware
platform. A dual-OS virtualization technique [3], [5], [6], [7]
must guarantee the security and reliability of RTOS activities
(i.e., interrupt handlers and tasks) even in the presence of faulty or
malicious GPOS software. For example, dual-OS virtualization
techniques must make sure that memory and devices assigned to
the RTOS cannot be accessed by the GPOS. In addition, the real-
time performance (e.g., no deadline misses) of RTOS activities
must be guaranteed. For that reason, the most extended approach
for scheduling both operating systems consists of executing the
GPOS only when the RTOS becomes idle [5], [6], [7], [8].
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The aforementioned idle scheduling approach is suitable for
situations where the RTOS is restricted to running time-sensitive
I/O-bound activities that have a short execution time. How-
ever, modern high-end embedded systems often include addi-
tional compute-bound activities which exhibit a longer execution
time and still require the security and reliability provided by the
RTOS [9]. A few examples are cryptographic services—such as
digital rights management (DRM) services—and secure-store fa-
cilities. Since these activities usually require access to devices
that must not be accessible by the GPOS (e.g., secure memory
containing cryptographic keys or passwords), they need to exe-
cute on the RTOS. The idle scheduling approach is not suitable
for this situation because compute-bound activities affect nega-
tively the responsiveness of time-sensitive GPOS activities. For
example, the hardware buffer of a network card managed by the
GPOS may get overwritten by the arrival of new packets if the
execution of the corresponding interrupt handler is delayed for an
excessive amount of time.

The goal of this work is to fix the shortcomings of the idle
scheduling approach in the scope of a reliable dual-OS virtualiza-
tion solution called SafeG [10]. The most important contribution
of this paper is an integrated scheduling (IS) architecture whose
main features are:
• It supports mixing the execution priority level of the GPOS

and RTOS activities. This allows, for example, configuring
the priority of a GPOS time-sensitive activity to be higher
than the one of a RTOS compute-bound task.

• The real-time performance and reliability of the RTOS is
guaranteed even if the GPOS is faulty or misbehaves. In par-
ticular, time-sensitive GPOS activities are controlled through
CPU time resource reservations. This mechanism guarantees
that RTOS activities executing with a lower priority will not
suffer unbounded blocking nor starvation.
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• The architecture does not require modifications to the source
code of the dual-OS virtualization monitor nor to the RTOS
kernel. This feature makes integrated scheduling easier to
maintain and verify.

We built the IS architecture on a physical platform, and evalu-
ated it through several experiments and a realistic example appli-
cation. The evaluation results show that the architecture is suit-
able for enhancing the responsiveness of GPOS time-sensitive ac-
tivities (e.g., by scheduling RTOS compute-bound tasks at a lower
priority) and the overhead introduced is small enough for practi-
cal usage.

The paper is organized as follows. Section 2 reviews the main
concepts of SafeG, the dual-OS virtualization technique on top
of which the presented research is built. Section 3 constitutes the
core of this paper and explains the IS architecture proposed in this
paper. Section 4 evaluates the IS architecture, and includes a use
case example to show the effectiveness of the IS architecture in
a real situation. Section 5 compares this research with previous
work. Finally, the paper is concluded in Section 6.

2. Review of SafeG

SafeG [10] (Safety Gate) is a reliable dual-OS virtualization
technique designed to support the concurrent execution of a
RTOS and a GPOS on top of an ARM TrustZone-enabled [11]
single processor. SafeG guarantees that RTOS data and instruc-
tions are protected from the GPOS, which is considered by de-
fault unreliable. Moreover, SafeG provides time isolation for
the RTOS to guarantee that hard real-time tasks always meet
their deadlines. Both memory and time isolation are backed by
the ARM TrustZone hardware extensions, which allows for a
low-overhead implementation and minimal modifications to the
GPOS.

2.1 ARM TrustZone
ARM TrustZone is a set of hardware extensions present in

high-end ARM embedded processors such as ARM 1176 [12] or
the Cortex-A series. This section briefly introduces some con-
cepts of ARM TrustZone that are necessary for understanding the
rest of the paper. For more information, refer to Refs. [9], [11],
[12], [13].
• Virtual CPUs: an ARM TrustZone-enabled single proces-

sor provides two Virtual CPUs (VCPUs), the Secure VCPU
and the Non-Secure VCPU. Each VCPU is equipped with
its own memory management unit and exception vector ta-
ble; and supports all ARM operation modes (i.e., User, FIQ,
IRQ, Supervisor, Abort, System and Undefined modes). It is
important to understand that these two VCPUs do not run in
parallel but in turns. In other words, only one of the VCPUs
can be active at any given time.

• The Monitor: the Secure VCPU has an additional mode—
called the monitor mode—which is used to context switch
between both VCPUs. The software executing in monitor
mode is commonly known as the secure Monitor. The entry
to monitor mode is tightly controlled and can only be trig-
gered by software executing the Secure Monitor Call (SMC)
instruction or the occurrence of a hardware exception (i.e.,

IRQ, FIQ, Data abort and Prefetch abort exceptions) through
an exception vector table in monitor mode. A VCPU context
switch involves saving and restoring all ARM general pur-
pose registers plus coprocessor registers that are shared by
both VCPUs.

• Address space partitioning: when a bus master accesses
memory or devices, the NS bit (Non-Secure bit) is propa-
gated through the system bus indicating the privilege of that
access (i.e., secure or non-secure). This allows the partition-
ing of the address space into two virtual worlds: the Secure
and the Non-Secure world. This partitioning can be done
statically by the hardware vendor or at run time through the
TZPC [14]. The Secure VCPU is allowed to access mem-
ory and devices from both worlds. However, hardware logic
makes sure that Secure world memory and devices cannot
be accessed by the Non-Secure VCPU nor other Non-Secure
bus masters, such as Non-Secure DMA devices.

• Device interrupts partitioning: ARM processors have two
types of interrupt known as FIQ and IRQ. The main dif-
ference between them resides in the fact that FIQ interrupts
have higher priority and more banked registers than IRQ in-
terrupts. In a TrustZone-enabled processor, ARM recom-
mends that Secure devices are configured to generate FIQ
interrupts and Non-Secure devices are configured to generate
IRQ interrupts. This configuration is carried out through the
TZIC [15] which is only accessible from the Secure VCPU.

FIQ and IRQ interrupts can be disabled within a privileged
mode by setting the F and I flags of the Current Program
Status Register (CPSR) respectively. To prevent Non-Secure
software masking Secure device interrupts, TrustZone pro-
vides the FW (F flag Writable) bit which is only accessible
by the Secure VCPU. When the FW bit is set to zero the F
flag becomes non maskable for the Non-Secure world.

2.2 TrustZone Configuration in SafeG
The SafeG architecture takes advantage of ARM TrustZone

hardware extensions to concurrently execute a RTOS and a GPOS
on top of the same processor. The SafeG monitor—which is the
main component of the SafeG architecture—is a specific imple-
mentation of the ARM TrustZone monitor focused on guarantee-
ing the real-time performance requirements and memory isola-
tion of the RTOS. Figure 1 depicts the overall organization of the
SafeG architecture*1. The SafeG architecture uses ARM Trust-
Zone under the following configuration:
• Virtual CPUs: in the SafeG architecture the GPOS is as-

signed to the Non-Secure VCPU and the RTOS is assigned
to the Secure VCPU.

• The Monitor: the SafeG monitor executes under monitor
mode and handles the switching between the GPOS and the
RTOS. The entry to SafeG monitor can only be triggered by
software executing the SMC instruction or the occurrence of
a FIQ interrupt while the Non-Secure VCPU is active. The
SafeG monitor is small—around 2 KB [10]—and executes
with all interrupts disabled, which simplifies its verification.

*1 All figures have Secure and Non-Secure components displayed in gray
and white respectively.
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Fig. 1 SafeG architecture.

Fig. 2 SafeG idle scheduling.

A VCPU context switch on an ARM1176 [12] processor re-
quires around 200 cycles [10].

• Address space partitioning: during initialization SafeG con-
figures RTOS memory and devices as Secure world re-
sources; and GPOS memory and devices as Non-Secure
world resources. For that reason, the RTOS address space is
protected from potentially malicious accesses by the GPOS.

• Device interrupts partitioning: SafeG architecture config-
ures RTOS devices (i.e., Secure devices) to generate FIQ
interrupts; and GPOS devices (i.e., Non-Secure devices) to
generate IRQ interrupts. This is done through the TZIC [15],
a Secure interrupt controller.

2.3 Execution Flow Model of SafeG
The execution flow within the SafeG architecture is controlled

by two fundamental principles that allow the RTOS to guaran-
tee real-time performance requirements to its tasks and interrupt
handlers.
• Idle scheduling: this principle is illustrated by Fig. 2 and im-

plies that the GPOS is only allowed to execute during the
RTOS idle time. The SafeG architecture can be seen as a
two-level hierarchical scheduler where the RTOS scheduler
plays the role of the global scheduler; and the GPOS sched-
uler acts as a local scheduler. The whole GPOS is a black
box represented in the RTOS scheduler by a task executed
at idle priority. We call this task RTOS SMC Task because
its body consists of a loop executing the smc instruction to
invoke the SafeG monitor. The SafeG monitor plays the role
of a dispatcher that context switches to the GPOS whenever
the RTOS becomes idle.

• Processor control recovery: this principle refers to the abil-
ity of the RTOS to recover control of the processor at any

Fig. 3 Execution paths of the SafeG monitor.

time through the use of a FIQ interrupt. When the RTOS is
executing (i.e., Secure VCPU is active) IRQ interrupts are
disabled (i.e., the I flag is one). This prevents GPOS de-
vices interrupting the execution of RTOS tasks. On the other
hand, when the GPOS is executing (i.e., Non-Secure VCPU
is active) FIQ interrupts are always enabled (i.e., the F flag is
zero). For that reason, the RTOS can recover the control of
the processor at any time (e.g., by using a Secure timer de-
vice). The TrustZone FW configuration bit is set to zero to
prevent the GPOS disabling FIQ interrupts (i.e., the GPOS
cannot set the F flag to one).

Figure 3 illustrates the two main execution paths of the SafeG
monitor. PATH 1 (SMC) is used by the RTOS SMC Task to con-
text switch to the GPOS whenever the RTOS becomes idle. PATH

2 (FIQ) occurs when a FIQ interrupt arrives to the processor while
the Non-Secure VCPU is active. The arrival of the FIQ interrupt
forces the processor to enter Monitor mode, where SafeG FIQ
vector handler switches back to the RTOS.

3. Integrated Scheduling

3.1 The Idle Scheduling Problem
Modern GPOSs usually count with support for activities—such

as GPOS device interrupt handlers or multimedia applications—
that require (soft) real-time performance [16], [17]. Unfortu-
nately, although the idle scheduling principle—illustrated by
Fig. 4 (a)—helps the RTOS to preserve the real-time performance
of the RTOS activities, as a side effect the latency of the GPOS
interrupt handlers and GPOS (soft) real-time tasks is negatively
affected. This negative effect is especially important when the
RTOS contains compute-bound tasks executing in background
(i.e., RTOS background tasks).

Suppose a system where the RTOS contains a background task
that is compute-bound (e.g., a cryptographic service or secure-
store application). Despite this task having no real-time require-
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Fig. 4 Dual-OS scheduling alternatives.

ments, the execution of all GPOS interrupt handlers—including
those which require a short response time to prevent some device
buffers being overwritten—will be delayed until all processing
by the RTOS is completed. In Section 4.8 we show an example
where the use of idle scheduling causes the frame rate of a GPOS
video player drop from 24 to 20 frames per second; and dramati-
cally worsens the video watching experience.

We may try to increase the priority of the RTOS SMC Task—
as illustrated by Fig. 4 (b)—to improve the latency of the GPOS
interrupt handlers. However, that is a rather coarse-grained so-
lution since the GPOS is still scheduled as a whole, including
GPOS normal tasks with no latency requirements. Furthermore,
a mechanism to limit the execution time of the GPOS would be
needed to ensure that RTOS Background tasks do not starve.

Figure 4 (c) illustrates the concept of our proposal—the Inte-

grated Scheduling (IS) architecture—which supports mixing the
priority levels of the RTOS and GPOS activities with higher gran-
ularity. This allows configuring the execution priority level of
GPOS interrupt handlers and (soft) real-time tasks to be higher
than the one of RTOS Background tasks or RTOS tasks having
long deadlines.

3.2 Assumptions and Requirements
We define the following set of initial assumptions. Relaxing

these assumptions for wider usage is left for future work:
• The RTOS must support fixed priority pre-emptive schedul-

ing. Most available RTOS kernels support this scheduling
algorithm.

• The GPOS scheduler must allow tasks with (soft) real-time
requirements to take precedence over normal tasks by allo-
cating a range of higher execution priority levels. Most pop-
ular GPOSs provide this feature.

• We need access to the source code of the GPOS scheduler.
For that reason we will use an open source GPOS kernel.

Next, we define a list of requirements that the IS architecture
must satisfy. Many of these requirements are common to other
virtualization architectures [18]:

( 1 ) GPOS interrupt handlers and real-time tasks can be config-
ured to take precedence over certain RTOS tasks with lower
priority.

( 2 ) The worst-case response time of RTOS interrupt handlers
and tasks must remain upper-bound in all cases.

( 3 ) The execution-time overhead introduced by the IS architec-
ture must be small enough for practical usage.

( 4 ) Modifications to the GPOS must be minimal and easy to
maintain.

( 5 ) The RTOS kernel must not be modified.
( 6 ) The SafeG monitor must not be modified.

Requirement (1) refers to the ability to mix the priority levels
of RTOS and GPOS activities from a global point of view. No-
tice that RTOS interrupt handlers still take precedence over any
GPOS activity.

Requirement (2) is necessary to preserve the real-time per-
formance requirements of the RTOS activities even when mali-
cious or defective software is executing in the Non-Secure VCPU.
In particular, RTOS tasks with low priority must be protected
from execution overruns by GPOS activities executing at a higher
global priority.

Requirement (3) means that the execution overhead introduced
by the IS architecture must not affect the overall performance of
the system to such an extent that it is no longer usable.

Requirement (4) is necessary since a GPOS is large and usually
evolves very rapidly, thus increasing the maintenance costs.

Requirements (5) and (6) are defined because both the RTOS
and SafeG belong to the trusted computing base. Leaving them
unmodified simplifies its verification and smooths its maintain-
ability.

3.3 Integrated Scheduling Architecture
3.3.1 Overview and Merits

The goal of the integrated scheduling (IS) architecture—
illustrated by Fig. 4 (c)—is to support mixing the execution pri-
ority levels of RTOS and GPOS activities without compromis-
ing the reliability and real-time performance of the RTOS. The
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Fig. 5 Integrated scheduler architecture.

IS architecture is based on the collaboration between the RTOS
user-space and the GPOS kernel scheduler. We discarded extend-
ing the SafeG monitor—basically a dispatcher that executes with
all interrupts disabled—with new functionality (e.g., a scheduler
or support for execution overrun timers) for several reasons: to
keep the certification process of SafeG simple [10]; to minimize
the latency of RTOS interrupts; to avoid increasing the complex-
ity of trusted code; and to provide flexibility in the control of the
GPOS execution (e.g., a RTOS task can easily suspend or resume
the execution of the GPOS using the existing RTOS application
interface).

Figure 5 depicts the integrated scheduling (IS) architecture.
The main idea is to subdivide GPOS activities into a user-defined
number of groups that will be scheduled at different global pri-
ority levels by the RTOS scheduler. In order to accurately map
each group of GPOS activities into a different RTOS priority, the
IS manager needs to track changes in the GPOS scheduled group.
For that reason, the GPOS scheduler is modified to notify the IS
manager about such GPOS scheduling events. This collaboration
is accomplished by means of an inter-VCPU interrupt—provided
by the interrupt controller—and shared memory.

Finally, since the GPOS activities execute in a non-trusted open
environment we need to make sure that any execution overrun
will not affect the real-time performance of the RTOS tasks. To
achieve that, the IS architecture runs each group of GPOS activi-
ties under the control of a CPU time resource reservation.
3.3.2 Groups of GPOS Activities

We subdivide GPOS activities into several groups according to
their latency requirements, and then we map each group to a dif-
ferent global priority level. Unlike the idle scheduling approach,
which only has a single RTOS SMC Task at idle priority, the IS
architecture assigns each group of GPOS activities to a different
RTOS SMC Task, executed with a user-defined priority. In Fig. 5
we divide GPOS activities into the following 3 groups:
• Activities in group #1 (i.e., GPOS interrupt handlers) usu-

ally require a very short response time. Therefore they are
represented by the RTOS SMC Task #1 which executes at a
high priority.

• Activities in group #2 (i.e., GPOS real-time tasks) are usu-
ally I/O bound. They spend most of the time waiting for
events to arrive, and require good responsiveness to attend
to them. For that reason, they are represented by the RTOS
SMC Task #2 which executes at a middle priority.

• Activities in group #3 (i.e., GPOS normal tasks) do not have

Fig. 6 Pseudo code of the GPOS scheduler hook function.

special real-time requirements, and therefore they are rep-
resented by the RTOS SMC Task #3 at idle priority. In the
case that only this group existed, the IS architecture would
be equivalent to the idle scheduling approach.

The IS architecture supports each group of activities being fur-
ther subdivided into smaller groups—up to a single activity per
group—to provide a more fine-grained scheduled system. For the
sake of clarity and without loss of generality, the following expla-
nations will use the mentioned 3 groups.
3.3.3 GPOS Scheduling Events

We define a GPOS scheduling event as the instant when the
currently running group of GPOS activities is about to be substi-
tuted by a different group.
• Event type 1: GPOS task from group α→ GPOS task from

group β. This scheduling event occurs when the GPOS
switches tasks from different groups.

• Event type 2: GPOS interrupt handler → GPOS task. This
scheduling event occurs when a GPOS interrupt handler ends
and a GPOS task that belongs to a different group is resumed.

• Event type 3: GPOS task or RTOS task → GPOS interrupt
handler. This scheduling event occurs when a GPOS inter-
rupt handler interrupts the execution of a GPOS task that
belongs to a different group or a RTOS task.

The IS architecture needs to keep track of all GPOS scheduling
events for the IS manager in the RTOS to resume the RTOS SMC
Task representing the next scheduled GPOS group. Notifications
of GPOS scheduling events are sent to the RTOS through FIQ
interrupts as we explain in the next two sections.
3.3.4 Tracking GPOS Scheduling Events of Type 1 and 2

We inserted a hook function into the GPOS scheduler—which
is called at every context switch—in order to notify the RTOS
about the occurrence of GPOS scheduling events of type 1 and
2. Figure 6 shows the pseudo code of the GPOS scheduler hook
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Fig. 7 Tracking GPOS interrupts.

function, which executes in GPOS kernel context and receives the
control block of the next scheduled task (Next Task) as a param-
eter. At every GPOS context switch, the hook function updates a
variable named Next Group ID with the #ID of the GPOS group
where Next Task belongs to. Then, the hook function checks
whether the next group differs from the previously active GPOS
group or not (see line 9). In the case that the next GPOS group
is different, the hook function sends an inter-VCPU interrupt to
the RTOS (see line 10) as a way to notify the RTOS of the occur-
rence of a GPOS scheduling event of type 1 or 2. The variable
Next Group ID is placed in inter-VCPU shared memory. It is
used by the IS manager—after checking its range—for the man-
agement of the state (i.e., suspended or resumed) of the RTOS
SMC Tasks. Even if malicious or faulty GPOS software inten-
tionally set the variable Next Group ID to the GPOS group with
the highest priority, the RTOS real-time performance is still pro-
tected by the corresponding CPU time resource reservations.
3.3.5 Tracking GPOS Scheduling Events of Type 3

GPOS scheduling events of type 3 cannot be tracked from the
GPOS scheduler since GPOS device interrupts may be raised
asynchronously even while the RTOS is executing. In order to
track the occurrence of GPOS device interrupts within the IS ar-
chitecture, we made a subtle modification to the way that the orig-
inal SafeG architecture manages device interrupts:
• When a group of GPOS interrupt handlers (i.e., group #1)

is not active, the corresponding GPOS device interrupts are
configured as FIQ interrupts. Although this configuration
violates the original SafeG architecture design (see device
interrupts partitioning in Section 2.3), it allows the RTOS to
be notified of the occurrence of GPOS interrupts through a
FIQ handler.

• When the RTOS is notified of the occurrence of a GPOS
interrupt, the corresponding GPOS group is activated and
all device interrupts associated to that group are configured
back as IRQ interrupts, as in the SafeG architecture.

Figure 7 illustrates the way GPOS device interrupts are managed
within the IS architecture. The presented approach allows the
RTOS to track the activation of a group of GPOS interrupt han-
dlers even during the RTOS execution, when the I flag is 0. The
configuration of the GPOS device interrupts is carried out through
the TZIC [15] by a special software agent in the RTOS, called the
IS Manager (see the next section). The overhead introduced to the
RTOS is bound, but it can disturb the execution of RTOS tasks.
Therefore, it must be taken into account when performing the
schedulability analysis of the RTOS tasks and interrupt handlers.
3.3.6 IS Manager

The IS Manager is a RTOS software agent executed with
higher priority (see Fig. 5) than the RTOS SMC Tasks. It is in
charge of managing the RTOS SMC Tasks whenever a FIQ inter-

Fig. 8 IS Manager architecture.

Fig. 9 Pseudo code of the scheduling events FIQ handler.

Fig. 10 Pseudo code of the Manager task.

rupt is raised due to the occurrence of a GPOS scheduling event.
Figure 8 shows the internal architecture of the IS Manager, which
is composed of the following elements:
• Scheduling events FIQ handler: a RTOS interrupt han-

dler (i.e., FIQ handler) which is raised whenever a GPOS
scheduling event occurs. Figure 9 shows the pseudo code of
the handler. When a GPOS scheduling event occurs, the han-
dler activates the Manager task (which is described below).
Then, in the case that the event was of type 3 the handler
updates the shared variable Next Group ID (see line 5) and
configures the GPOS interrupts belonging to that group as
IRQ interrupts (see line 6).

• Manager Task: a RTOS task aimed at controlling the state of
the RTOS SMC Tasks. Figure 10 shows the pseudo code of
the Manager task. When activated by the Scheduling events
FIQ handler, the Manager task calculates which RTOS SMC
Task should be activated next (see line 6). Then, if that task is
different to the previous one—it could be the same due to ex-
ecution time overruns as we will see later—the Manager task
resumes it and suspends the previous one. The RTOS SMC
Task running at idle priority is a special case and remains al-
ways active since it cannot affect the real-time performance
of the RTOS tasks.

• Execution Overruns Module: a software module aimed at
limiting the execution time of each RTOS SMC Task in or-
der to preserve the timeliness of the RTOS tasks that run with
lower priority. Until now, we assumed that GPOS interrupt
handlers and GPOS real-time tasks had a fixed worst-case
execution time and inter-arrival period. However, a fun-
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Fig. 11 Timeline: GPOS real-time task activation.

damental guideline in SafeG is to consider the GPOS as a
non-trusted component. Therefore, we need to guarantee the
real-time performance requirements of the RTOS activities
even in the case that the GPOS misbehaves or is attacked
by malicious software. For that reason, RTOS SMC Tasks
are executed under the control of CPU time resource reser-
vations [19]. A CPU time resource reservation is a mech-
anism to limit—and at the same time guarantee—a certain
amount of execution time (the reserved budget) within a cer-
tain period and at a certain execution priority level. Each
RTOS SMC Task, except the one that runs with idle priority,
is assigned to a CPU time resource reservation which is im-
plemented using the following functionality offered by the
RTOS.

– Overrun timer: an execution-time timer that is used to keep
track of the execution time consumed by the task associated
to a CPU time resource reservation. When a RTOS SMC
Task executes, the budget of its CPU time resource reserva-
tion is consumed. If a RTOS SMC Task exhausts its asso-
ciated budget, the overrun timer expires. Then, an overrun
timer handler activates the Manager task which suspends
the associated RTOS SMC Task and activates another lower
priority RTOS SMC Task with available budget.

– Replenishment timer: a timer used by the Execution Over-
runs Module to replenish the budget of a CPU time resource
reservation. The way to replenish the budget is dependant
on the implementation algorithm. In this paper, we used
deferrable servers [20] which replenish the budget period-
ically. When a RTOS SMC task that was previously sus-
pended after exhausting its budget receives a budget replen-
ishment, the Manager task resumes the RTOS SMC task
again if appropriate.

Interrupts emitted by the GPOS to the RTOS also consume
the budget of the corresponding active RTOS SMC Task.
This allows for the protection of the real-time performance
of RTOS tasks with lower priority. Also note that the block-
ing time that an interrupt emitted by the GPOS can cause on
RTOS tasks with high priority and RTOS interrupt handlers
is bounded to a single occurrence.

• Manager Data: contains information about the RTOS SMC
Tasks and is shared among the elements inside the RTOS
SMC Tasks manager. The information for each RTOS
SMC Task includes its execution state (i.e., suspended or re-
sumed), priority, budget, replenishment period and overrun
status.

3.3.7 Example
Figure 11 shows a simple example timeline to illustrate the ex-

ecution flow of the IS architecture. The system is composed of a
few tasks and interrupt handlers scheduled with the same priority
order as in Fig. 5. A detailed explanation of each step is shown
below:
• (1) An RTOS middle priority task executes.
• (2) A GPOS interrupt occurs and it is handled by the RTOS

through the Scheduling events FIQ handler. The handler ac-
tivates the Manager task, updates the Next Group ID vari-
able to #1 (i.e., group of GPOS interrupt handlers) and con-
figures GPOS device interrupts as IRQ interrupts.

• (3) The Manager task resumes the execution of the RTOS
SMC Task #1.

• (4) Since the RTOS SMC Task #1 has a higher priority than
the RTOS middle priority task it resumes its execution. The
CPU time resource reservation associated to the RTOS SMC
Task #1 starts consuming its budget.

• (5) The RTOS SMC Task #1 calls SafeG through an smc
instruction. SafeG switches to the GPOS, as explained in
Section 2.3, where the GPOS interrupt handler starts execut-
ing.

• (6) The GPOS interrupt handler activates a GPOS real-time
task and ends.

• (7) After that, the GPOS scheduler executes and the GPOS
scheduler hook function is called. The hook function up-
dates the Next Group ID to #2 (i.e., GPOS real-time tasks)
and sends a GPOS scheduling event to the RTOS through an
inter-VCPU FIQ interrupt.

• (8) SafeG traps the interrupt and context switches back to the
RTOS as explained in Section 2.3.

• (9) In the RTOS, the Scheduling Events FIQ handler receives
the inter-VCPU interrupt and activates the Manager task.
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Fig. 12 Evaluation of requirement (1).

• (10) The Manager task suspends the RTOS SMC Task #1
and resumes the RTOS SMC Task #2.

• (11) Since the RTOS middle priority task has precedence
over the RTOS SMC Task #2, it resumes its execution.

• (12) When the RTOS middle priority task ends—it goes to
sleep until the next period—, the RTOS SMC Task #2 is
scheduled and the budget associated to its CPU time resource
reservation starts being consumed.

• (13) The RTOS SMC Task #2 calls SafeG through the smc
instruction. SafeG context switches to the GPOS where the
GPOS real-time starts executing.

• (14) The GPOS real-time task executes for an excessive
amount of time which causes the associated RTOS overrun
timer to expire.

• (15) SafeG traps the RTOS overrun timer interrupt and con-
text switches back to the RTOS.

• (16) The interrupt is then handled by the overrun timer han-
dler, inside the Execution Overruns Module. The handler
activates the Manager task.

• (17) The Manager task suspends the GPOS RTOS Task #2.
However, the Next Group ID variable is not modified. This
only means that the group of GPOS real-time tasks will be
temporarily represented by a lower priority RTOS SMC Task
with available budget (in this case, the one running at idle
priority) until the RTOS SMC Task #2 has its budget replen-
ished.

• (18) The RTOS background task resumes its execution since
the GPOS real-time task already exhausted its budget.

4. Evaluation

4.1 Evaluation Environment
The environment for the evaluation of the IS architecture con-

sisted of:
• RealView Platform Baseboard (PB1176JZF-S)
– Processor: ARM1176JZF-S [12] development chip at

210 MHz.
– Cache: 32 KB (flushed after each measurement)
– Mobile DDR RAM: 128 MB (used by the GPOS)
– PSRAM: 8 MB (used by SafeG and the RTOS)
– TZIC [15] and TZPC [14]
• RTOS: TOPPERS/ASP 1.6 [ASP] with overrun handlers en-

abled.

• GPOS: Linux 2.6.33 [Linux] with a minimal buildroot [21]
filesystem.

4.2 Requirement (1): GPOS Latency
We evaluate requirement (1) through an experiment in order

to confirm that the IS architecture allows enhancing the latency
of GPOS activities. The evaluation system is composed of a pe-
riodic RTOS task executed at low priority; and a periodic timer
interrupt handler on the GPOS executed at high priority (group
#1). The experiment consists of measuring the maximum latency
of the GPOS timer interrupt handler for several payloads in the
RTOS task. The period of the RTOS task is 2 times the payload
in all measurements.

The lower part of Fig. 12 shows the experiment results for the
IS architecture. We observe that the maximum latency of the
GPOS interrupt handler (28 μs) remains independent of the pay-
load of the low-priority RTOS task. In contrast, when using idle
scheduling the maximum latency of the GPOS timer interrupt
handler increases proportionally to the payload of the RTOS task.
These results are explained by the fact that the IS architecture al-
lows GPOS interrupt handlers to execute with higher priority than
low-priority RTOS tasks.

4.3 Requirement (2): RTOS Real-time Performance Guar-
antees

The goal of the evaluation of this experiment is to confirm
that RTOS activities preserve their real-time performance even
when the Non-Secure VCPU executes malicious software. The
evaluation system consists of a greedy GPOS interrupt handler—
represented as part of group #1—that tries to monopolize the
processor by executing a continuous loop. We measured the
maximum latency of a periodic RTOS interrupt handler and a
RTOS middle priority task under different budget scenarios for
the GPOS group #1 (i.e., group of GPOS Interrupt handlers).

Figure 13 shows the results of the experiment. We observe
that the maximum measured latency of the RTOS interrupt han-
dler remains independent of the budget assigned to the group of
GPOS interrupt handlers. However, the latency of the RTOS mid-
dle priority task is affected by the execution of the greedy GPOS
interrupt handler because it has a globally lower priority.

Nonetheless, Fig. 13 confirms that the latency increase of the
RTOS middle priority task is bound by the budget of the CPU
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Fig. 13 Evaluation of requirement (2).

Table 1 Overhead of the IS architecture.

type min (μs) median (μs) max (μs)
GPOS scheduling event type 1-2 7 15 28
GPOS scheduling event type 3 6 10 19
Budget replenishments 5 10 18
Budget overruns 5 9 20
SafeG switch time � 1.7 μs
Linux system tick = 50 ms (CONFIG HZ=20)

time resource reservation associated to the group of GPOS in-
terrupt handlers (i.e., group #1). Therefore, the RTOS real-time
performance requirements can be guaranteed. Note that the la-
tency of the RTOS middle priority is also affected by the RTOS
interrupts that occur while the GPOS interrupt handler is execut-
ing.

4.4 Requirement (3): Execution Overhead
We measured the overhead incurred by the IS architecture. Ta-

ble 1 shows the measurement results for the following 4 sources
of overhead:
• GPOS scheduling event type 1-2: execution time overhead

caused by GPOS scheduling events of type 1 and 2. The
worst-case measure includes steps (7) to (12) in Fig. 11.

• GPOS scheduling event type 3: execution time overhead
caused by GPOS scheduling events of type 3. The worst-
case measure includes steps (2) to (5) in Fig. 11 plus an ad-
ditional SafeG context switch (in case the GPOS interrupt
was raised while the GPOS was executing).

• Budget replenishments: execution time overhead caused by
the Replenishment timer from the Execution Overruns Mod-
ule. The worst-case measure includes 2 SafeG context
switches, the execution of the replenishment timer handler
and the execution of the Manager task.

• Budget overruns: execution time overhead caused by the
Overrun timers. The worst-case measure includes steps (15)
to (17) in Fig. 11 plus an extra SafeG context switch to the
GPOS.

The execution overheads shown in Table 1 must be taken into
account during the schedulability analysis of the RTOS. How-
ever, they are small enough for practical application, and there-
fore we can say that the implementation of the IS architecture is
able to satisfy the requirement (3).

4.5 Requirement (4): Modifications to the GPOS Kernel
During the implementation of the IS architecture, we extended

Table 2 Source code lines and binary size increase.

type new files code increase binary size increase
RTOS user 3 155 lines 2,716 bytes

RTOS kernel 0 0 0
GPOS kernel 5 88 lines 372 bytes
GPOS user 0 0 0

SafeG monitor 0 0 0

the Linux kernel with a new driver which includes initialization
code and stores information regarding the configuration of the
GPOS groups. The module provides a callback function to no-
tify GPOS scheduling events of type 1 and 2, which is inserted as
a hook inside the Linux scheduler. The insertion of the hook is
facilitated by the ftrace [22] kernel tracer hooks infrastructure,
which reduces the necessary maintenance efforts. As Table 2
shows, the implementation of the IS architecture on the Linux
kernel required a total amount of 88 lines of C source code. 81 of
those lines are independent from the Linux kernel while the re-
maining 7 lines correspond to the hook inserted in the scheduler.

4.6 Requirement (5): Modifications to the RTOS Kernel
Table 2 shows that the size of the modifications to the RTOS

kernel is zero. This is because we managed to implement the
IS architecture completely on RTOS user space by using the
TOPPERS/ASP [23] application interface which includes over-
run handlers, cyclic handlers, semaphores and an interface to
suspend and resume tasks. The implementation required a to-
tal of 155 C source code lines and the binary size was increased
by 2,716 bytes, most of them in the .bss section.

4.7 Requirement (6): Modifications to SafeG
In this implementation SafeG was completely unmodified and

therefore requirement (6) was satisfied. The main reason for
which SafeG may need to be extended in a future implementa-
tion is that the chip did not support inter-VCPU interrupts. In
that case, a new SMC call should be added for SafeG to emulate
inter-VCPU interrupts.

4.8 Use Case Example
In order to prove the practical applicability and effectiveness

of the proposed architecture we built the real-world system il-
lustrated by Fig. 14. The hardware configuration of the system
consists of the following elements:
• PB1176JZF-S: the main board (see details in Section 4.1).
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• Robot: a Puppy robot [24] by Hokuto Electronics. The robot
contains gyroscope and rotary encoder sensors. It is con-
nected to the PB1176JZF-S board through a CAN bus con-
nection which is assigned to the Secure VCPU.

• Secure Disk: a place to store secure data. It is accessed
through a serial bus interface which is assigned to the Se-
cure VCPU.

• Display: used by the Non-Secure VCPU to show a video.
The software configuration of the system is composed of the

following elements:
• Robot software: the robot runs an application on top of TOP-

PERS/ATK [23]. The application sends the values of the
gyroscope and rotary encoder sensors to the PB1176JZF-S
board through the CAN bus with a period of 10 ms. Then,
it waits for an answer containing an appropriate motor value
for the robot to keep balance. If this value arrives to the robot
later than the next period (i.e., misses its deadline) the robot
will lose balance and fall down.

• Secure VCPU software: the Secure VCPU contains two
tasks running on top of ASP. The robot control task waits
for messages coming from the Puppy robot—containing the
sensor values—and sends replies back with the calculated
values for the motor. The logger task is a compute-bound
task whose main function is to encrypt and store the execu-
tion log generated by the robot control task onto the secure
disk.

• Non-Secure VCPU software: the Non-Secure VCPU con-

Fig. 14 Use case example.

Fig. 15 Execution priority levels for the use case example.

Fig. 16 Frames per second in each scheduling approach.

tains Linux with a minimal filesystem based on build-
root [21]. On top of that, a movie player application—called
mplayer [25]—is used to show a 24 fps MPEG4 video on the
display through the Linux framebuffer device and executed
with the maximum real-time priority in Linux.

The period and execution time of each task are described in
Table 3 (deadlines are equal to periods). We compared the per-
formance of the system under the idle scheduling approach and
the proposed IS scheduling approach—Fig. 15 (a) and Fig. 15 (b)
respectively—by measuring the frame rate of the video using the
movbench [17] utilities. On the IS architecture, Linux interrupts
and the mplayer task are executed with a global priority higher
than the ASP logger task (see Fig. 15 (b)). This configuration
provides (soft) real-time support for the GPOS to play the video,
without being preempted by the ASP logger task every 4,000 ms.
A CPU time resource reservation with 12 ms of budget and 41 ms
of replenishment period was used to prevent the ASP logger task
from starving. Using real-time response analysis [26], it is easy to
confirm that the system is schedulable under the IS architecture,
but not under the idle scheduling approach (e.g., the mplayer task
has a worst case response time of 1,027 ms under idle schedul-
ing).

Figure 16 shows the dynamic frame rate at which the video
is played under both scheduling approaches. We observed that
the frame rate under the idle scheduling approach experiments
strong drops approximately every 4,000 ms. This is caused by
the blocking time imposed by the execution of the ASP logger
task. The average frame rate is reduced to 20 frames-per-second,
and most importantly the video watching experience gets dramat-
ically worsened. In contrast, we observed that under the IS archi-
tecture the video is played smoothly at a constant rate of 24 fps

Table 3 Tasks in the use case example.

OS task name period (ms) execution time (ms)
ASP Robot Control task 10 5
ASP Logger task 4,000 500
Linux mplayer task 41 12
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without causing any deadline miss to the ASP robot control task
nor to the ASP logger task, and therefore proving the practical
applicability of the presented proposal.

5. Related Work

There is a large amount of literature proposing different dual-
OS mechanisms to enable the concurrent execution of a GPOS
and a RTOS under time and memory isolation conditions. How-
ever, research on dual-OS scheduling is rather scarce and most of
it can be classified in the following groups:
• Idle scheduling: dual-OS monitors that schedule the GPOS

as the RTOS idle task belong to this group. A few exam-
ples are RTAI [8], Linux on ITRON [5] and more recently,
MobiVMM [7]. Reference [27] proposes a combination of a
time-driven, priority-based and proportionally shared sched-
uler. However, in their proposal the RTOS is always assigned
a static high priority, and therefore providing responsiveness
to the GPOS is rather difficult.

• Compositional scheduling: this includes dual-OS moni-
tors that schedule the RTOS and GPOS using time-based
compositional scheduling frameworks. An example is the
XTRATUM [28] hypervisor whose scheduler is based on the
ARINC-653 specification [29]. This approach allows for a
great degree of time isolation between the guest OSs. How-
ever, it is not suitable for event-driven processing, such as
interrupts, that require very short latencies.

• Fair scheduling: a typical example is the XEN [30] credit
scheduler which enables sharing the CPU proportionally be-
tween the guest OS. XEN has several mechanisms [31] to
improve the responsiveness of I/O bound guest OSs but it is
not able to cope with the hard real-time requirements of a
RTOS.

The idle-scheduling problem described in Section 3.1 was also
identified by Ref. [32], where a task grain scheduling algorithm
for a virtualized embedded system was presented. The architec-
ture proposed in Ref. [32] uses the L4-embedded microkernel as a
hypervisor running para-virtualized versions of Linux (Wombat)
and TOPPERS/JSP (L4/TOPPERS). In order to implement task
grain scheduling, each of the guest operating systems notifies the
priority of the running task to a global scheduler. However, their
approach does not protect RTOS tasks real-time properties from
GPOS misbehavior and is not capable of mixing the priority of
GPOS interrupt handlers with RTOS tasks. Also, the architec-
ture proposed in that approach requires an extra global scheduler
while in the IS architecture the RTOS scheduler plays that role.

6. Conclusions and Future Work

We presented an integrated scheduling architecture for a reli-
able dual-OS virtualization technique. The architecture is based
on the collaboration of the RTOS and the GPOS scheduler and
allows mixing the execution priority levels of RTOS and GPOS
activities for enhancing the responsiveness of the GPOS. At the
same time, the real-time performance requirements of the RTOS
is preserved thanks to the use of overrun control mechanisms.
The evaluation results showed that all requirements stated in Sec-
tion 3.2 were satisfied. We also built a use case example to prove

the practical applicability of our proposal in a real situation.
In future work, we plan to extend SafeG with an inter-OS com-

munications system. We will take advantage of the asymmetric
privileges of a dual-OS system (i.e., the RTOS can access mem-
ory assigned to the GPOS but the inverse is not possible) to design
an efficient and reliable communications architecture. The com-
munications architecture is expected to benefit from the IS ap-
proach to enhance the latency of messages transmitted between
both operating systems. We also plan to investigate the applica-
tion of SafeG to new multi-core TrustZone processors. In more
detail, we will try to find a solution for the lock-holder preemp-
tion problem [33] by leveraging the functionality provided by the
IS architecture presented in this paper.
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