IPSJ Transactions on Advanced Computing Systems Vol.5 No.2 86-98 (Mar. 2012)

Regular Paper

Reactive Cloud: Consolidating Virtual Machines

with Postcopy Live Migration

1,2) 1

Hipemoro Nakapa!  Sarosar Iton!

1

Takaniro HiRoOFUCHI
SATOSHI SEKIGUCHI

Received: July 19, 2011, Accepted: November 15, 2011

Abstract: Dynamic consolidation of virtual machines (VMs) through live migration is a promising technology for
IaaS datacenters. VMs are dynamically packed onto fewer server nodes, thereby eliminating excessive power con-
sumption. Existing studies on VM consolidation, however, are based on precopy live migration, which requires dozens
of seconds to switch the execution hosts of VMs. It is difficult to optimize VM locations quickly on sudden load
changes, resulting in serious violations of VM performance criteria. In this paper, we propose an advanced VM con-
solidation system exploiting postcopy live migration, which greatly alleviates performance degradation. VM locations
are reactively optimized in response to ever-changing resource usage. Sudden overloading of server nodes are promptly
resolved by quickly switching the execution hosts of VMs. We have developed a prototype of our consolidation system
and evaluated its feasibility through experiments. We confirmed that our consolidation system achieved a higher de-
gree of performance assurance than using precopy migration. Our micro benchmark program, designed for the metric
of performance assurance, showed that performance degradation was only 12% or less, even for memory-intensive
workloads, which was less than half the level of using precopy live migration. The SPECweb benchmark showed that
performance degradation was approximately 10%, which was greatly alleviated from the case of using precopy live

migration (21%).

Keywords: virtual machine, live migration, server consolidation

1. Introduction

Dynamic virtual machine (VM) consolidation is a promising
technology for IaaS datacenters, hoping to improve the density of
VM hosting. VMs are dynamically repacked onto the fewest pos-
sible server nodes, thereby reducing power consumption caused
by use of excessive hardware resources. When VMs are idle, a
consolidation system moves them onto a small number of server
nodes, shutting down the rest of the server nodes. When VMs
become active, the system quickly starts up sleeping server nodes
and migrates some of the VMs to them, thereby assuring appro-
priate performance of all VMs.

Live migration is the key technology for dynamic consolida-
tion, enabling relocation of VMs onto new server nodes without
stopping guest operating systems. There are two types of live
migration mechanisms, precopy and postcopy. In precopy live
migration, all states of a VM are completely copied to a desti-
nation host before the execution host is switched to the destina-
tion. Updated memory pages during memory copy are iteratively
copied to the destination. It takes a long time to switch the exe-
cution host of an actively-running VM, and it is hard to estimate
when migration is completed. On the other hand, postcopy live
migration executes memory page copies after the execution host
is switched; it is possible to change the execution host in sev-

! National Institute of Advanced Industrial Science and Technology

(AIST), Tsukuba, Ibaraki 305-8568, Japan
¥ thirofuchi@aist.go.jp

© 2012 Information Processing Society of Japan

eral hundred milliseconds, and the whole live migration process
is completed in a determinable period.

To the best of our knowledge, all existing studies of dynamic
VM consolidation are based on precopy live migration mecha-
nisms, which are already available in widely-used virtual machine
monitors (VMMs). However, we consider postcopy live migra-
tion to be more suitable for dynamic consolidation systems that
can quickly migrate VMs to other server nodes when the loads of
VMs are suddenly changed.

In this paper, we propose an advanced VM consolidation
system exploiting postcopy live migration. It can quickly re-
optimize the locations of VMs by changing the execution host
of a VM in several hundred milliseconds. The system provides a
great benefit for environments where the load changes of VMs are
unpredictable; when the loads of VMs suddenly become high and
server nodes are overloaded, postcopy live migration can remove
the overloading of server nodes (i.e., the performance degradation
of consolidated VMs) much more quickly than precopy.

Although postcopy migration techniques themselves have been
discussed in research papers[5], [11], these implementations
have not been seen in publicly-available VMMs. In our previous
work [6], [7], therefore, we implemented postcopy live migration
for KVM [10]. Next, in this paper, we focus on a VM consolida-
tion system with postcopy live migration.

The contribution of this paper is that this is the first work that
clarifies the effectiveness of postcopy live migration for dynamic
VM consolidation. We have developed a prototype of our consol-

86



IPSJ Transactions on Advanced Computing Systems Vol.5 No.2 86-98 (Mar. 2012)

idation system to evaluate the effectiveness through experiments
on our server cluster.

Section 2 highlights existing problems in our target environ-
ments. Section 3 presents our reactive VM consolidation system.
Section 4 discusses its evaluation. Section 5 describes related
work. Finally, Section 6 concludes this paper *!.

2. Background

The target environment of our consolidation system is a com-
mercial IaaS datacenter where customers run various kinds of
workloads on their VMs. The datacenter presents performance
criteria for VMs. One example is Amazon EC2; it says the CPU
processing speed of Small Instance is equivalent to a 1.0-1.2 GHz
2007 Opteron. Although these criteria are casual and not defined
in service level agreements, service providers need to achieve
them as much as possible.

The challenge of our dynamic VM consolidation is to achieve
power saving and performance guarantees. If dynamic VM con-
solidation is introduced into an IaaS datacenter like Amazon EC2,
customers’ VMs, which have performance criteria like “1.0 GHz
Opteron,” are dynamically packed onto the fewest possible server
nodes, depending on actual resource usage. When the VMs be-
come idle, they are relocated onto a small number of server nodes.
By putting unused server nodes into the hardware sleep mode
(ACPI S3), excessive power use of the datacenter is eliminated.
On the other hand, when the VMs become active, they are relo-
cated onto resumed server nodes, thereby guaranteeing promised
VM performance criteria.

2.1 Limitations of Precopy Live Migration

Prior studies regarding VM consolidation are based on precopy
live migration. We feel, however, that precopy live migration is
not suitable for our consolidation system, which puts primary im-
portance on performance guarantees.

Precopy live migration is employed in widely-used VMMs
(e.g., Xen, KVM, and VMware). It reconstructs a VM’s mem-
ory image at a destination host before switching its execution
node [3], [12], [13]. After live migration is initiated, this basi-
cally works as follows.

1; Start dirty page logging at a source host. This mechanism
detects updates of memory pages during the following memory
copy steps. 2; Copy all memory pages to the destination. Since
the VM is running at the source host, memory pages are being
updated during this period. 3; Copy dirtied memory pages to the
destination again. Repeat this step until the number of remaining
memory pages is small enough. 4; Stop the VM at the source.
Copy the content of virtual CPU registers, the states of devices,
and the rest of the memory pages. 5; Resume the VM at the des-

1

This work is based on an earlier work: Reactive Consolidation of
Virtual Machines Enabled by Postcopy Live Migration, in Proceed-
ings of the 5th International Workshop on Virtualization Technolo-
gies in Distributed Computing, (C) ACM, 2011. http://doi.acm.org/
10.1145/1996121.1996125. In this paper, we extend the earlier work
to include more detailed discussions; especially the section of evalua-
tion is extended with detailed descriptions and new experiments. We
updated overall the paper to improve readability and presentation. This
paper is a substantially-developed, new derivative work, which adheres
to the submission rules.

© 2012 Information Processing Society of Japan

tination host.

At the second step, all memory pages are transferred to the des-
tination, which means that migration time basically increases in
proportion to the memory size of the VM. Moreover, at the third
step, dirtied pages must be iteratively copied to the destination.
If the VM is intensively accessing large amounts of memory, nu-
merous dirty pages are created and transferred continuously. In
the worst case, live migration is never completed; i.e., a workload
dirties VM memory faster than network bandwidth can accom-
modate.

Prior studies, therefore, employed a load prediction technique
to alleviate this migration overhead; before a target system be-
comes fully saturated, a consolidation system rebalances VMs to
remove the potential risk of overloading proactively.

However, we feel this approach is not feasible for the target
environments that our consolidation system is focusing on, where
the prediction of VM loads is not effective.

First, it is difficult to predict the future demand for processing
power precisely without workload-specific information [16]. In
the real world, an IaaS datacenter allows users to run any work-
load in their VMs, and it is difficult for the consolidation system
to support all types of workloads with load prediction. In addi-
tion, from the viewpoint of security and privacy concerns, there
should exist isolated administrative domains between the inside
and outside of a VM; the consolidation system should be inde-
pendent of unreliable information that can be maliciously altered
on the inside of a VM.

Second, to get the maximum power saving with dynamic con-
solidation, the system should optimize VM locations frequently
as much as possible. In our research project, we aim to establish
more fine-grained, aggressive optimization at the level of every
second, not in daily and weekly cycles. Existing load prediction
studies focusing on longer time spans (e.g., the load will increase
during business hours) are not applicable to this short time span.
The system is required to optimize VM locations reactively for
load changes.

3. Reactive Consolidation System with Post-
copy Live Migration

First, postcopy live migration is briefly summarized here to
bring readers up to speed. Next, the design and implementation
of our consolidation system is presented.

3.1 Postcopy Live Migration

In our previous work [6], we developed a postcopy live migra-
tion mechanism for KVM. In contrast with precopy migration,
memory pages are transferred after a VM is resumed at a destina-
tion host. The key to postcopy migration is an on-demand mem-
ory transfer mechanism, which traps the first access to a memory
page at the destination and copies its content from a source host.
Postcopy migration basically works as follows:

1; Stop the VM at the source host. Copy the content of virtual
CPU registers and the states of devices to the destination. 2; Re-
sume the VM at the destination without any memory content. 3;
If the VM touches a not-yet-transferred memory page, stop the
VM temporarily. Copy the content of the memory page from the

87



IPSJ Transactions on Advanced Computing Systems Vol.5 No.2 86-98 (Mar. 2012)

Detect overload

Wall clock time
Precopy
T = Ramsize / Bandwidth + a ‘[
Postco All states are moved to the
i RS R destination host and the
/ T = Ramsize / Bandwidth execution host is switched.
T<1sec

All states are moved

The execution host is switched
to the destination.

to the destination host.

Fig. 1 Comparison between precopy and postcopy live migration for VM
consolidation.

source. Then, resume the VM.

The third step is repeated until all memory pages are trans-
ferred to the destination. In addition, in parallel with the on-
demand page retrievals, a background copy mechanism works
to make bulk copies of not-yet-transferred pages. Because on-
demand page copy may not cover all ranges of VM memory
in a short period of time, the background copy mechanism gets
rid of dependency on a source host as soon as possible. The
background copy mechanism analyzes important memory areas
with page fault statistics, and starts to deal with hot-spot mem-
ory pages for current VM workloads. On-demand memory page
retrievals over a network are reduced by this mechanism.

Figure 1 summarizes the comparison between precopy and
postcopy live migration. For dynamic VM consolidation, the ad-
vantage of postcopy migration is that the system can react to sud-
den load changes of VMs more quickly than precopy; especially,
some of the VMs on a server node can be quickly moved to other
hosts, when their loads suddenly become high and the server node
gets overloaded. Strictly speaking, the execution hosts of the
VMs are quickly switched to other hosts (in less than one sec-
ond), and then the rest of the memory pages are transferred in a
fixed period of time.

As in Fig. 1, with precopy live migration, the performance cri-
teria of the VMs on a saturated node are not satisfied during
Ramsize /Bandwidth + « seconds; o depends on the memory up-
date speed of the guest operating system. On the other hand,
with postcopy live migration, the performance of VMs is recov-
ered in Ramsize/Bandwidth seconds, even in the worst case. In
normal cases, performance degradation ends in a shorter period
time, because the working set of memory pages for running work-
loads are limited and transferred in a high priority manner. In the
best case, such as pure CPU-intensive workloads, all the VMs
achieve their performance criteria without visible degradation,
even though some of the VMs are migrated to other server nodes.

3.2 System Components

The overall design of our consolidation system is illustrated in
Fig. 2, which is composed of Load Monitor, Relocation Planner,
and VM Controller modules. Load Monitor collects resource us-
age data every one second and put it into a database. Relocation
Planner periodically calculates optimal locations for VMs from
the latest resource usage histories in the database. VM Controller
requests live migration to server nodes according to the results

© 2012 Information Processing Society of Japan

oaao 9@

Server Server Server
Node Node Node
Collect Determine optimal Request
resource usage ocations VM migration

[J[]

o A

Fig. 2 System components.

from Relocation Planner.

Load Monitor collects resource usage data from each server
node, such as CPU usage, network I/O, and disk I/O of both the
server node and the VMs running on it. This information is re-
trieved from /proc/ of the host Linux operating system and the
monitor interface of QEMU/KVM. At one second intervals, a
daemon program on each server node scans resource usage in-
formation and sends data to Load Monitor. Load Monitor stores
the received data to an SQLite database as soon as possible. The
consolidation system requires the latest resource usage to quickly
respond sudden load changes. Considering the Linux kernel basi-
cally updates the contents of /proc/ at every second, we decided
to collect resource usage at 1-second intervals. The CPU over-
head of the resource monitor daemon on each host is negligible
(i.e., lower than 1-2%) in our experimental environments.

Relocation Planner retrieves resource usage histories from the
database, determines whether a server node is overloaded or not,
and calculates a relocation plan. We carefully designed this com-
ponent to be independent from the others, so that it is possible to
implement various consolidation algorithms. The current strategy
of consolidation planning is explained in Section 3.3.

VM Controller executes live migration according to the relo-
cation plan. We use XML-RPC to control VMs on server nodes
remotely; three request messages (e.g., CREATE_VM, MIGRATE_VY,
and DESTROY_VM) are defined to create, migrate, and destroy the
requested VM. On each server node, there is a server daemon
handling these XML-RPC requests.

VM Controller also executes the suspend/resume of server
nodes. When there is no VM on a server node, VM Controller
puts the server node into the sleep mode (ACPI S3 state). When
a relocation plan indicates the suspended node needs to be woken
up, VM Controller requests the resume of the node via the Intel
AMT (Active Management Technology) web service interface.
AMT is an out-of-band hardware management system working in
the BIOS level, which is more reliable and powerful than Wake-
On-LAN, and less expensive than other out-of-band management
systems.

3.3 Consolidation Strategy

Our consolidation system tries its best to achieve guaranteed
performance for VMs. In this paper, the system assigns one
physical CPU core and 1.7 GB memory to each VM, which
is the performance criterion presented to users. We defined this

88



IPSJ Transactions on Advanced Computing Systems Vol.5 No.2 86-98 (Mar. 2012)

/—\A‘ctive VI op out from Shared Server.

Power off unused
Dedicated Server

‘¢

S\ | Server Node || Server Node

Server Node

Server Node

(Shared) (pLClTes ) MEGITEIEE) I | (Dedicated) || (Dedicated)
Always Power On Power On Power On Power Off Power Off
(Resumed) (Resumed) (Suspended)  (Suspended)

Fig.3 Server node types (Shared Server and Dedicated Server).

criterion considering an IaaS service in the real world; a Small
Instance of Amazon EC2 has one virtual CPU core and 1.7 GB
memory. The service claims the virtual CPU core is equivalent
to a 1.0-1.2 GHz 2007 Opteron, which supposedly corresponds
to one physical CPU core of a physical machine. Compared to
EC2, in our dynamic consolidation system, when a VM is con-
suming a small part of the assigned CPU resource, the VM may
share a physical CPU core with other VMs through dynamic re-
location. As far as we know, Amazon EC2 and other providers
do not employ this kind of dynamic consolidation.

3.3.1 Server Nodes

As illustrated in Fig. 3, our consolidation system introduces
two types of server node to a target datacenter, Shared Servers and
Dedicated Servers. VMs are migrated between Shared Servers
and Dedicated Servers, depending on their resource usage. Both
types of servers have the same hardware, except that a Shared
Server has a large amount of physical memory. The memory size
is sufficient to host many idle VMs; however, the number of phys-
ical CPU cores is not sufficient to exclusively assign one physi-
cal CPU core to each VM on the server. Basically, the system
tries to put as many VMs as possible on Shared Servers, as far
as performance criteria of VMs are being satisfied; unused Ded-
icated Servers are suspended. When more physical resources are
required to meet performance criteria, the system resumes a Ded-
icated Server and uses it to host VMs. When a VM is running on a
Dedicated Server, it uses one physical CPU core exclusively; the
number of VMs hosted on a Dedicated Server is limited by the
number of CPU cores on it. A Dedicated Server does not need a
large amount of memory like a Shared Server.

One of the reasons behind this design choice is that our con-
solidation system does not exploit dynamic memory ballooning.
It allocates a fixed memory size to each VM, never resizing it.
Although dynamic memory ballooning is supported by VMMs,
it requires coordination of guest operating systems, which does
not match isolated administrative domains between the outside
and inside of a VM, as noted in Section 2. Therefore, the system
requires special server nodes with large memory to consolidate
VMs. The other reason is based on our assumption that most
workloads on VMs run in a ‘race-to-halt’ manner. A new job
is processed with all the available resources to finish it as soon
as possible. Allocating dedicated resources to an active VM is a
realistic design choice.

3.3.2 Packing Algorithm

The packing algorithm of our consolidation system is required
to calculate optimal locations in the shortest time. The system
must reactively optimize VM locations as soon as possible when

© 2012 Information Processing Society of Japan

the loads of VMs suddenly change. We therefore employ the fol-
lowing heuristic algorithm that roughly optimizes VM locations
without explicitly solving bin-packing problems.

It should be noted that the algorithm is currently based on only
CPU usage statistics, not including disk and network /O data. At
the time this paper is being written, KVM does not support live
migration for paravirtualized devices, such as VirtlO Block De-
vice and VirtlO Network Device. All the VMs on our consolida-
tion system must use fully-virtualized devices incurring relatively
high CPU overheads.

Basically, VM relocation is performed as soon as possible
when one of the following events happens:

e 1) The system detects that a Shared Server is overload, and
finds a destination Dedicated Server.

e 2) The system detects that a VM on a Dedicated Server is
idle (the CPU load of the VM is under the below Return
threshold), and find a destination Shared Server.

It should be noted that these events asynchronously happen. For
each Shared Server, Relocation Planner launches an overloading
detector thread that performs the events of the type 1). For each
VM on a Dedicated Server, Relocation Planner launches an idling
detector thread that performs the events of the type 2). All over-
loading/idling detector threads asynchronously check the latest
resource usage by querying the database, and trigger VM reloca-
tion if needed.

First, all the VMSs are launched at one of the Shared Servers,
and then the following steps are iterated by overloading/idling
detector threads.

Overloading Detection: When the latest CPU load average of
the Shared Server reaches 90% (i.e., is regarded as overloaded),
the most CPU-consuming VM is migrated to a Dedicated Server.
Because usage statistics are measured in outside of the VM, it
is difficult to determine what amount of a CPU resource is ac-
tually required. Therefore, simply, we pick up the VM that is
probably in a ‘race-to-halt’ state. The target Dedicated Server is
chosen from power-on Dedicated Servers, in which the Dedicated
Servers with the fewest empty cores (but not zero) are the first in
priority to be chosen. If not available, one is selected from the
sleeping Dedicated Servers. In this case, the Dedicated Server is
resumed.

Idling Detection: The system does not move the migrated VM
for at least 20 seconds after the last migration ends, in order to
avoid overreaction. After that, the idling detector thread of the
VM is started to periodically check whether the latest CPU load
average of the VM is under the Return threshold value (50%). If
the load average is under the threshold, the monitoring daemon
tries to move the VM back to one of the Shared Servers; it tries
to find the Shared Server that has sufficient CPU and memory re-
sources for the VM. An admission ticket to a Shared Server is
given to the VM on a ‘first come, first served’ basis, in order to
serialize migrations to the Shared Server. If a Shared Server with
sufficient resources is found, the VM is migrated to it. Otherwise,
the VM remains at the Dedicated Server; the daemon pauses at
one second intervals and tries the above steps again.

This packing algorithm is intended to be sufficient and light-
weight, allowing rapid re-optimization in response to sudden load

89



IPSJ Transactions on Advanced Computing Systems Vol.5 No.2 86-98 (Mar. 2012)

changes. If the loads of multiple VMs increase simultaneously
in a shared server, the system tries to pop out these VMs from
the shared server in a one-by-one manner. Obviously, the sec-
ond popping-out VM is adversely affected. The packing algo-
rithm does not invoke simultaneous migrations from/to a shared
server. If multiple live migrations share one network path, there
is a higher possibility that precopy live migration does not fin-
ish. Postcopy live migration may involve serious performance
degradation. Although both the one-by-one and simultaneous ap-
proaches have such trade-off, we chose the former approach for
the first prototype, which allowed the system design to be much
simpler.

4. Evaluation

First, experiments using micro benchmarks are performed to
identify basic characteristics of the proposed system. The con-
solidation system using postcopy live migration is compared with
the one using precopy live migration. The effectiveness of the
proposed system under various memory update intensities is dis-
cussed. Next, experiments with compound load change scenar-
ios are conducted to evaluate the proposed system’s feasibility
for long-term datacenter operations. We also use the SPECweb
benchmark to evaluate our consolidation system for more realistic
applications.

Figure 4 shows our experimental environment. Both the public
and private network segments are connected to each server node.
The network interface of a VM is bridged to the public network,
so that a web server in the VM is accessible through the Internet.
The private network, which is isolated from the public network,
is used to manage VMs on the datacenter side. The management
node and storage nodes are connected to the private network seg-
ment. In addition, a dedicated network segment for live migration
is added, in order to isolate bursty migration traffic from other
management traffic. If the private network is used for live migra-
tion, the disk I/O traffic of the VMs will be adversely affected,
directly resulting in performance degradation of all VMs.

In the following experiments, all server nodes have a 2-core
processor (Intel Core2 Duo E6305) and 20 GB memory; one
server node is used as a Server Node, and the other five nodes are
used as Dedicated Servers. All VMs are composed of one virtual
CPU core and 1.7 GB of memory. The first physical CPU core
of each server node is dedicated for VMs; all VMs are pinned
at the first core by using the taskset command. If there are
several VMs on a Shared Server, they share the first CPU core.
The second CPU core is used to run control and monitoring dae-
mons. The control of VMs (e.g., create, migrate, and destroy
operations) and the monitoring of resource usage should be per-

Public Network

Server Node Server Node Storage

(Dedicated) Node

Server Node
(Shared)

(Dedicated)

Private Network |

Migration Network

Fig. 4 Experimental environment.

© 2012 Information Processing Society of Japan

formed promptly anytime, not affected by the activity of VMs.

Due to page limitations, this paper focuses on performance as-
surance, not power savings. Our work-in-progress paper [8] sum-
marizes the preliminary results of power savings in another clus-
ter: in the ACPI S3 state, a server node consumes only 8 W (10%
of the power-on mode); a server node was resumed in approx-
imately 5 seconds from the S3 state and became acceptable for
migrating VMs. In the following experiments, Dedicated Servers
were not actually suspended/resumed, although the number of in-
use Dedicated Servers was tracked.

4.1 Micro Benchmarks

Because the motivation for our consolidation system is to as-
sure the best VM performance possible, we have developed a new
benchmark program that shows performance degradation from
specified criteria. The metric of performance assurance is the
number of achieved operations per second against that of target
operations per second.

The benchmark program, executed in a guest operating system,
can create any specified CPU load. A target CPU load is gener-
ated by interlacing short busy loops and sleeps. In addition, the
benchmark program allows specifying any memory update inten-
sity; this will significantly affect performance of migrating VMs.
4.1.1 Benchmark Detail

Figure 5 illustrates how the benchmark program works. The
benchmark program iterates a short calculation operation; the
time of one operation is composed of T, (the time for busy CPU
loops), Ten (the time for memory touches), and Ty, (the time
for sleep). During Ty, the benchmark program iterates a busy
loop C times. During T, the benchmark program touches Ca
memory pages (i.e., write 1bytes data at the first byte of each
memory page); the « is the parameter of memory update inten-
sity. It should be noted that these memory touches consume CPU
resources. During 7T, and T, the CPU of the VM is busy. We
assume memory update speeds of workloads are proportional to
their CPU load.

The benchmark program automatically determines the appro-
priate value of C that makes a specified target CPU load with a
specified parameter of memory update intensity. Given S .,, (the
number of busy loops per second that the VM can achieve) and
S mem (the number of memory page touches per second that the
VM can achieve), which are measured before the execution of
benchmarks, we get the following equations regarding T, and

Tmem :

one operation
amssse—————) ¢ © ©
) () )  Repeat
busy loop memory touch | operations
C (times)  C* alpha (times) sleep
CPU is busy CPU is idle

Fig.5 The overview of the micro benchmark program.

90



IPSJ Transactions on Advanced Computing Systems Vol.5 No.2 86-98 (Mar. 2012)

C
Tepu = — (1)
g Scpu
Ca
Them = S om (2)

In experiments, we use T'g., = 10 (ms), considering the clock ac-
curacy in guest operating systems. The target CPU load L, speci-
fied by users of the benchmark, is given as follows:

L — TC])M + Tmem (3)

Tcpu + Tmem + Tsleep

Through the Egs. (1), (2), (3), the benchmark program determines
the value of C for the target CPU load and memory update inten-
sity.

The benchmark program outputs the results of performance as-
surance every second; the number of achieved operations per sec-
ond is measured by the benchmark program, and that of target
operations per second is calculated from 1/(Tcpy + Tonem + Tsicep)
in advance. The difference between these values, the number of
failed operations per second, shows the degree of performance
degradation incurred by dynamic consolidation. In the follow-
ing experiments, we use this value as the metric of performance

assurance.
< 250
o 200
3 150
B 100
D
g 50
[

0
150 200 250 300

Time (s)

0 50 100

Fig. 6 The target CPU load change scenario of the micro benchmark pro-

gram.
Shared Server

140 others m—m
I vmO m—
Q\O/ 120 vm1 e
g 100 VM2 e—
& 80 vm3 mm—
=] vmé
S 60 vm5
5 40

20

0

0 50 100 150 200 250 300
Time (s)
Dedicated Server 4
£ 140 ‘ ‘ ‘ ‘ ‘ others
° vmO  m—
(o)}
[
1]
o]
o)
o
o
0 50 100 150 200 250 300
Time (s)
Dedicated Server 5
£ 140f ‘ ‘ ‘ ‘ ‘ others
o 120¢ vm1 s
@ 100
3 80
>
3> 60
o 40
o 20
0

0 50 100 150 200 250 300
Time (s)

4.1.2 Benchmark Settings

The benchmark program allocated 1 GB of memory and then
accessed it at a specified speed. The results of the benchmark
are time-series data, which show actual achieved operations per
second against the target operation per second that should be
achieved.

In the following experiments in Section 4.1.3 and Sec-
tion 4.1.4, the target CPU loads that the benchmark program tried
to generate are shown in Fig. 6. First, all 6 VMs are loaded with
10% of a CPU core capacity, respectively. All VMs are running
at the Shared Server. At 60 seconds, the target CPU load of VMO
is increased to 95%, which means the Shared Server is saturated,
and VMO will be removed from it. At 120 seconds, the target
CPU load of VM1 is set to 95%. At 180 seconds, the target CPU
load of VMO is set back to 10%, again. The consolidation system
automatically re-optimizes VM locations in response to the CPU
usage of the VMs.

4.1.3 Pure CPU-intensive Workload

For the first case, we ran the benchmark program with no ar-
bitrary memory update. The generated workload was nearly pure
CPU-intensive.

As shown in Fig.7, the consolidation system using postcopy
live migration worked successfully. At 65 seconds (i.e., 5 seconds
after the CPU load of VMO became high), the consolidation sys-
tem detected the overload of the Shared Server, and switched the
execution host of VMO to Dedicated Server 4. In the same man-
ner, VM1 was switched to Dedicated Server 5 at 125 seconds. By
using postcopy migration, the execution hosts of VMO0 and VM1
were changed 5 seconds after the overloads were detected.

Although the consolidation system using precopy live migra-

Shared Server

140 others
— vmQ m—
& 120 vm1 e
2 100 VM2 m—
& 80 vm3 m—
=] vmé
o 60 vm5
5 40

20

0

0 50 100 150 200 250 300
Time (s)
Dedicated Server 4
£ 140 ‘ ‘ ‘ ‘ ‘ others mmmm
° vmO0 m—
[o)]
[]
1]
>
o
o
@)
0 50 100 150 200 250 300
Time (s)
Dedicated Server 5
9 others
° vm1 s
(o))
©
12
>
>
o
O

0 50 100 150 200 250 300
Time (s)

Fig.7 The CPU usage of server nodes and VMs (left: using postcopy live migration, right: precopy).

© 2012 Information Processing Society of Japan

91



IPSJ Transactions on Advanced Computing Systems Vol.5 No.2 86-98 (Mar. 2012)

Using Postcopy Live Migration

S 2500

o

o

2 2000 + |

g essanmy

8

8 1500 H' |

5

E’_ 1000 | (- ]

2 Failed: vmO m—

S Failed: vm1 s

g 500 Target: total =

2 Actual: total e

S Avail: total

© 0 ‘ ‘ : ‘

0 50 100 150 200 250 300

Time (s)

Using Precopy Live Migration

S 2500
o
o
X 2000 1
el wrnnsnney
5
» H
g 1000 | : ]
o Failed: vmQ
S Failed: vm1 s
= 500 ! Target: total e 4
© Actual: total
Q Avail: total
o 0 L L L L

0 50 100 150 200 250 300

Time (s)

Fig.8 The comparison of the benchmark results between the cases of using Postcopy and Precopy migra-
tions, including operations achieved per second (Actual:total), target operations per second (Tar-
get:total), failed operations per second of each VM (Failed: VMO and Failed:VMI1, colored area),
and maximum achievable operations per second estimated from the number of running server

nodes (Avail:total). (No memory update).

tion basically worked, the execution host of VMO0 was switched at
approximately 85 seconds and that of VM1 was done at approx-
imately 145 seconds, both of which were 20 seconds later than
using postcopy. During these 20 seconds, VMO and VM1 were
stuck at the Shared Server, resulting in performance degradation.

In order to discuss performance assurance of VMs in more de-
tail, Fig. 8 shows the total performance degradation of VMs, com-
pared with the target performance that should be achieved.

Actual:total is the total of the operations achieved per second,
summing up those of all VMs. Since we increased the target CPU
loads of VMO and VM1 at different times, the total target oper-
ations per second (Target:total) stepped up twice, correspond-
ingly.

As shown in the colored areas of Fig.8 (Failed:VMO0 and
Failed:VM1), however, there are failed operations between Tar-
get:total and Actual:total, resulting in violation of the perfor-
mance guarantee. The first reason for these failed operations
is that the consolidation system took 5 seconds to detect over-
loading of the Shared Server. Avail:total shows the maximum
achievable operations per second, estimated from the number of
running server nodes. This value means how much physical re-
source is available to perform operations. In this experimental
environment, when the system uses one server node, the bench-
mark program can achieve up to 750 operations per second with
the node. In Fig. 8, when the consolidation system started using
a new server node, Avail:total stepped up.

The higher parts of the colored areas, above those of
Auvail:total, correspond to this detection overhead. Until the sys-
tem detected overloading and started using a new server node,
there was not enough physical resource to achieve the target oper-
ations. Because our consolidation system works reactively, with-
out any load prediction, it is impossible to avoid these failed op-
erations. The number of failed operations in this part, which is
out-of-scope for further discussion here, does not depend on live
migration mechanisms.

The other part of the failed operations, focused on in this paper,
can be alleviated by postcopy live migration. As shown in Fig. 8,
the consolidation system using precopy live migration involved
serious performance degradation (i.e., approximately 50% down

© 2012 Information Processing Society of Japan

over 20 seconds) before the execution hosts of VMO and VM1
were switched. Around 75 seconds, for example, CPU resources
that could achieve 1,200 operations per second were required. Al-
though Dedicated Server 4 was already resumed, all VMs were
still running on the Shared Server, due to the slow efficacy of pre-
copy live migration; only the Shared Server could provide 750
operations per second at its maximum capacity. In addition, the
dirty page tracking and iterative page transfer of precopy migra-
tion incurred a CPU overhead penalty of approximately 250 op-
erations per second.

On the other hand, postcopy live migration greatly alleviated
this degradation (i.e., approximately 10% down over 20 seconds).
In these experiments with pure CPU-intensive workloads, the
substantial memory footprint of the benchmark program was ap-
proximately 3 Mbytes, which was copied to the destination within
one second. After that, on-demand page retrieval from the source
did not occur. The small number of failed operations around 75
and 140 seconds were caused by the CPU overhead of the page
access detection. The down spikes of failed operations at about
70 and 135 seconds were caused by the cache hit miss of the cur-
rent working set of memory pages. At approximately 70 (or 135)
seconds, the execution host of VMO was switched to the desti-
nation host by using postcopy migration. Just after this moment,
there were no transferred memory pages at the destination. The
performance of the workload was momentarily degraded until its
working set of memory pages was transferred to the destination.

As shown in Fig. 7, the postcopy case involved the higher CPU
utilization of other processes than VMs. Our current implemen-
tation of postcopy live migration uses the special daemon process
that transfers memory pages. After the execution host is switched,
this process consumes CPU resource until all memory pages are
transferred to the destination host. Because postcopy migration
involves bursty network traffic in a short period of time, the tem-
poral CPU utilization sometimes becomes higher than precopy
migration.

A pure CPU-intensive workload is considered an ideal case for
postcopy live migration. The next experiments focus on memory-
updating workloads.

92



IPSJ Transactions on Advanced Computing Systems Vol.5 No.2 86-98 (Mar. 2012)

‘postcopy‘
40 precopy

Failed Operations (%)

0 0.2 0.4 0.6 0.8 1
Memory Update Intensity

Fig. 9 Failed operations with different memory update intensity.

4.1.4 Workloads with Memory Updates

We repeated the previous experiments with different parame-
ters of memory update. Figure 9 summarizes the percentages of
failed operations during these experiments. Memory update in-
tensity means how many memory pages are updated during one
calculation operation. See Section 4.1.1 for the detailed definition
of memory update intensity. In the experimental environment, for
example, when the memory update intensity @ was set to 1.0, the
memory update speed at a 95% CPU load reached approximately
1 GB/s. The memory update speed is over the bandwidth of Gb
Ethernet.

Postcopy live migration enabled the consolidation system to
mitigate failed operations, which were always under 10% for any
memory update intensity. Note this 10% includes detection over-
head (approximately 3%). In the precopy migration case, the per-
centages increased for the higher intensity parameters, resulting
in a serious violation of performance criteria.

In precopy live migration, the elapsed time until migration is
completed increases dramatically for memory update intensive
workloads. In the experiments, the consolidation system using
precopy live migration could not quickly move VMO and VM1
to Dedicated Servers. In the case where the memory update in-
tensity was 0.6, the migrations of VMO and VM1 took approxi-
mately 40 and 50 seconds, respectively; however, with postcopy
live migration, they took approximately 20 seconds at anytime.

In theory, the network bandwidth used for precopy live migra-
tion must be larger than the memory update speed of a migrating
VM, thereby completing all state transfer in a finite time. Other-
wise, live migration never finishes. In the real world, a migrat-
ing VM suffers high CPU overheads due to shadow paging and
dirty page tracking. Since this overhead reduces the memory up-
date speed of the VM, the VM is finally moved to the destination
in most cases. As shown in the results, however, the consolida-
tion system using precopy live migrations incurs serious perfor-
mance penalties due to large migration time and high migration
overheads, especially for memory intensive workloads. The per-
formance penalty of postcopy-based consolidation is less serious
and much more determinable for any kind of workload.

4.1.5 Compound Load Change Scenarios

We evaluated the consolidation system with other load change
scenarios than the above. The following experiments are intended
to show whether postcopy migration has advantages for more re-
alistic scenarios, and also to focus the system characteristics from
long-term viewpoint. Before the experiments, we randomly gen-

© 2012 Information Processing Society of Japan

9 Precopy s

= Postcopy mmmmm
<
(@)
el
k]
‘©
w

Scenario

Fig. 10 The percentages of failed operations during each scenario.

Precopy mmmmm

Postcopy s
3
£
'_

Scenario

Fig. 11 The number of live migrations during each scenario.

20000 Precopy s
> 16000 Postcopy mmmms
o 12000
1S 8000
'_

4000
0

Scenario

Fig. 12 The accumulated usage time of server nodes during each scenario.

erated 5 one-hour scenarios with the following rules, considering
race-to-halt-like workloads. An active VM consumes a random
CPU load between 80% and 100%, and a non-active one con-
sumes a random load between 0% and 30%. The state of a VM
changes to active or non-active at 20% and 80% probabilities, re-
spectively. A new state continues for a random duration between
60 and 300 seconds. The memory update intensity of workloads
is set to 0.6 2.

As shown in Fig. 10, in any scenario, the consolidation system
using postcopy live migration mitigated failed operations. The
percentage of failed operations averages approximately 12%. In
the precopy cases, they are between 18% and 35%. In Fig.11,
the number of live migrations performed during each one-hour
scenarios is summarized. By using postcopy live migration, the
consolidation system changed the locations of VMs more often;
22 to 30 times in the postcopy cases, and 8 to 15 times in the
precopy cases. These results mean that postcopy live migration
enables the consolidation system to optimize VM locations more
aggressively than precopy.

Figure 12 shows the accumulated usage time of server nodes;
we counted up how long each server node is active (i.e., hosting
one VM or more), and then summed up the usage time of each
server node. The accumulated usage time of server nodes was
10% shorter in most postcopy-based experiments.

Although we have not yet integrated the ACPI S3 feature into
our consolidation system, we discuss energy use through approx-
imate estimations. We measured the energy consumption of the
server node and the network switch that were used in the exper-
iments. We also measured the energy consumption of a live mi-
gration.

*2 Figure 14 shows the overview of the Scenario 0 workload. In Sec-

tion 4.1.5, we use our micro benchmark program, not SPECweb. For
Section 4.1.5, please interpret 350 sessions as 100% CPU usage.

93



IPSJ Transactions on Advanced Computing Systems Vol.5 No.2 86-98 (Mar. 2012)

ggg Precopy s
]

200 Postcopy

150

100
50

Energy (Wh)

Scenario

Fig. 13 The estimated energy use of server nodes during each scenario.

m 1200 vm0 —
S 1000 vm1 s
B 800 vm?2 me—
3 600 vm3 m—
P 400 vm4
S] vmb
g 200
0
0 100 200 300 400 500 600 700 800 900
Time (s)
Fig. 14 The number of concurrent sessions generated by the load change

scenario in the SPECweb experiments. 350 sessions correspond to
100% CPU usage.

e The server node, running at its full CPU capacity, consumed
approximately 100 W. The idle server consumed approxi-
mately 53 W; note the power saving feature (i.e., ACPI C
state and DVFS) was enabled. The server node in the sus-
pend state consumed approximately 7 W.

e We performed a precopy live migration of an idle VM with
the same configuration as the experiments. It took approx-
imately 50 seconds to be completed. During the migra-
tion, the power consumption of a source/destination node
increased only 3 W or less, respectively. The energy con-
sumption of the network switch did not show a visible in-
crease; the network switch kept consuming approximately
18 W through all the experiments. Through these values, we
roughly estimated the energy use of one live migration as
0.07 Wh.

The actual energy overhead of a live migration will not be the
same. For example, this overhead will depend on the type of mi-
grations and workload behaviors. However, we emphasize that
the energy use of a live migration is far less than the power sav-
ing gain of making a server node to the suspend state.

To make this point clear, we roughly estimated the energy use
of server nodes during each scenario, which is calculated from
the CPU utilization log of server nodes, the number of live mi-
grations, and the above power consumption values. At the time
of ¢, the power consumption of a running server node i is roughly
estimated to be p; = 53 + (100 — 53) * L;; (W) where L; is the
CPU load of the server node **. The power consumption of a not-
in-use server node is to be p; = 7(W), where we assumed the
server node is suspended. We estimated the total energy use of
each scenario to be P = (3}; >, pir) + 0.07 = M, where M is the
number of live migrations shown in Fig. 11.

Figure 13 shows the estimated energy use of each scenario in
the precopy/postcopy cases. In most scenarios, the consolidation
system using postcopy live migration consumed approximately
the same or less energy use compared to that of using precopy

*3 We assumed that the power consumption is linearly proportional to the

CPU usage. In the real world, the model of the power consumption is
more complex. We consider, however, this rough estimation is sufficient
to discuss the energy overhead of live migrations here.

© 2012 Information Processing Society of Japan

None
Postcopy ¥ Good
] W Tolerable
Precopy | Failed
W Error

0 10000 20000 30000 40000 50000 60000
# of Requests

Fig. 15 The total number of performed requests in the SPECweb experi-
ments. In the case of using precopy migration, there are 50 Error
responses.

live migration. In our experiments, we confirmed that frequent
live migrations contributed to reducing performance degradation
and did not adversely affect the energy use of the consolidation
system.

4.2 Application Benchmark

Next, we evaluated the feasibility of our consolidation system
by using an application benchmark. In this subsection, we used
the E-Commerce benchmark of SPECweb2005, which emulates
a busy on-line shopping web server. In each VM, we set up the
server side program of the SPECweb benchmark, individually;
i.e., each VM hosts a different on-line shopping site. We added
a client node in the public network of our experimental environ-
ment (See Fig. 4), in which we set up the client side program of
SPECweb.

The client program generates the different number of simul-
taneous sessions to each web server, respectively. The number
of simultaneous sessions is changed as shown Fig. 14. We used
the same load change scenario as Scenario 0 in Section 4.1.5. In
experiments, when the load of a VM is set to 100%, the client
program generates 350 sessions on the VM.

Figure 15 shows the total number of performed requests dur-
ing the first 900 seconds, which sums up the number of requests
performed with each web server. It also shows user experiences
estimated by the benchmark; if a state is Failed, a user will leave
the on-line shopping site without doing the shopping, because
he/she feels the web site hangs up. In the case of None (no con-
solidation), all VMs are statically distributed on different server
nodes and never consolidated. In this case, approximately 50,000
requests were performed and most responses were in the Good
state. In the case of using precopy migration, however, only
42,000 requests were performed. It should be noted that the
SPECweb client program generates new requests as conforming
to the specified number of concurrent sessions. If a target web
server is heavily loaded, then each session takes longer time to
be processed; in such situations, a client program can perform
fewer requests through a period of time. In the case of using pre-
copy, the total number of Good responses was reduced by 21%
in comparison with that of the “no consolidation” case. In addi-
tion, there were 50 Error responses, which mean some TCP con-
nections were unexpectedly closed due to the lack of resource.
On the other hand, the consolidation system using postcopy live
migration successfully alleviated performance degradation; the
number of Good responses was reduced only by 10%, and there
were no Error responses.

Figure 16 shows the time-series behavior of the benchmark

94



IPSJ Transactions on Advanced Computing Systems Vol.5 No.2 86-98 (Mar. 2012)

#0of Req

# of Requests

200

300

400

500 600

Time (s)

]

(MBytes/s)

700

—_—

750

Time (s)

Jo——"

800

850

Fig. 16

#of Req
3
8

#0f Req

700 800 900 0 100 200 300 400 500

Time (s)

600 700 800 900 0 100 200 300 400 500

Time (s)

600 700 800 900

Error mmmm 2 120 Error s 2 120 Error
Failed 2 100 Failed 9 100 Failed

Tolerable s 3 Tolerable s S Tolerable s
Good  m— g 80 Good m— g 80 Good  m—

2 60 g 60

s 40 5 40

s 20 e 20

0 0

700 750

Time (s)

800 850 700 750

Time (s)

800 850

The QoS score of the SPECweb experiments. Left: using precopy live migration, Center: using
postcopy, Right: no live migration. The upper graphs show the high-level view of overall results.

The below graphs show details between 650 and 850 seconds. In the case of using precopy live
migration, there are Error responses approximately at 740 seconds.

"

RX
T

(MBytes/s)

650

700

Fig. 17

14
1%

6!
The traffic of the migration network segment between 650 and 850 seconds; RX: migration traffic

used for consolidation, TX: migration traffic used for distribution. The left graph shows the case
of using precopy live migration and the right shows that of using postcopy.

750
Time (s)

750 50

Time (s)

800 850 700 800 850

results. The upper graphs show the overall view of the results
during 900 seconds. The left column is the case of using precopy
live migration, the center is that of using postcopy, and the right
is the “no consolidation” case. At a glance, the overall results
are approximately the same among these cases; the consolidation
system successfully repacked VMs in response to load changes.
However, as shown in the below graphs focusing between 650
and 850 seconds, the consolidation system using precopy migra-
tion was adversely affected due to the slowness of migration, in
comparison with the cases of postcopy and no consolidation.

Approximately from 675 to 750 seconds, the benchmark client
was stepping up the number of concurrent sessions. In response
to this load increase, the consolidation system sent out 3 VMs to
Dedicated Servers one by one. Figure 17 shows the traffic of
the migration network segment. Each spike corresponds to one
live migration; the migrations of RX were performed for con-
solidation and those of TX were for distribution. In the precopy
case, the consolidation system could not remove the overloading
state, because each live migration took long time due to dirty page
tracking and iterative memory copying. During this period, the
Shared Server was continuously over-loaded, which resulted in
the serious performance degradation. In the postcopy case, each
live migration was completed in a shorter period of time, and the
overloading of the Shared Server was quickly removed one by
one. Through these experiments, we confirmed that postcopy live
migration contributed to a higher level of performance assurance
for web-hosting VMs in our dynamic consolidation system.

5. Discussion

5.1 The Drawback of Using Postcopy Live Migration

A disadvantage of using postcopy migration is that a consoli-
dation system needs to be carefully designed to handle migration
traffic. In our prototype system, the dedicated network segment
for migration traffic is added to isolate it from other data trans-
fer. Without this isolation, we experienced that bursty migration
traffic prevented the system to control server nodes and some-
times suppressed workload traffic. This bursty migration traffic

© 2012 Information Processing Society of Japan

includes the on-demand page retrieval, which should be trans-
ferred as soon as possible to avoid performance degradation. One
option is to use the dedicated network segment for migrations
as shown in our prototype. However, this design incurs addi-
tional cost. Another option is to integrate an intelligent traffic
control mechanism. In another project, we are working on re-
ducing migration traffic by intelligently caching memory pages
among server nodes.

In postcopy migration, an on-going live migration cannot be
canceled. It is difficult to implement this feature because the ex-
ecution host is already switched to a destination node. The con-
solidation system cannot abort an on-going repacking plan when
the plan becomes out-of-date due to sudden load change. If the
consolidation system uses precopy migration, it is possible to de-
velop a packing algorithm that can revise an on-going repacking
process.

If the network between source/destination nodes becomes
down, for example, due to hardware failure, an on-going postcopy
migration cannot be gracefully canceled. The system temporar-
ily stops the migrating VM until its migration session is reestab-
lished. Some IaaS service providers, presenting service availabil-
ity agreement, may be concerned about this limitation. It is how-
ever possible to consider this kind of failure is very rare and can
be recovered by a backup mechanism of networking. Through
discussion with commercial aaS providers, we have the first im-
pressions that this limitation is acceptable in their datacenters.

In postcopy migration, the key to reduce performance degra-
dation is to precache important memory pages. This mechanism,
however, does not effectively work if the current workload reads
or writes a wide range of memory pages in a random manner.
In precopy migration, the completion time of migration greatly
increases especially if the current workload intensively writes a
wide range of memory pages. However, if the workload reads
a wide range of memory pages and rarely writes memory pages,
the completion time does not increase very much. In the latter
case, we consider that the consolidation system should use pre-
copy migration; although the drawback of precopy will not be in-

95



IPSJ Transactions on Advanced Computing Systems Vol.5 No.2 86-98 (Mar. 2012)

tensified, that of postcopy will become serious. At this moment,
our consolidation system cannot dynamically choose the type of
live migrations. However, we are now trying to merge postcopy
migration to the mainline of Qemu/KVM, which will allow con-
solidation systems to select precopy/postcopy migrations seam-
lessly. We hope further detail will be discussed with the merged
implementation of postcopy migration.

5.2 The Threshold Parameters of the Packing Algorithm

This subsection adds more details regarding the threshold pa-
rameters of the packing algorithm. The reason behind these pa-
rameters is based on the lessons we learned through the develop-
ment and evaluation of the prototype system.

5.2.1 The Threshold at 90% in the Overloading Detection

Although the CPU utilization of a server node is below 100%,
some VMs on the server node may feel performance degradation
due to scheduling latency; although the host operating system of
the node gives all requested time slots to all the VMs on the node,
some of the VMs may need to wait for a bit longer period until
getting their time slots. This will adversely affect, for example,
the response time of applications. If we choose a small value for
this parameter, however, the system cannot put many idle VMs
into Shared Servers.

The threshold at 90% includes 10% margin to alleviate the
above problem.

5.2.2 The Threshold at 50% in the Idling Detection

If the latest average value of CPU utilization is below this
threshold, the system tries to move back the VM to a Shared
Server. This parameter configures how likely the system assigns
a Dedicated Server to a VM. At this moment, we choose 50%;
because there are not so many VMs in experiments, there is a
large possibility that a Shared Server has CPU resource that can
host mid-active (i.e., consuming around 30% CPU usage) VMs.

If we perform experiments with the large number of server
nodes and VMs, we will decrease this value. Many idle VMs
on a Shared Server consume substantially large CPU resource,
and there is no room to move back mid-active VMs.

In addition, there is another reason for this. We observed that a
live migration sometimes made the execution of the current work-
load on the migrating VM slow down. In some cases, after the
migration was completed, the CPU utilization of the VM tem-
porarily increased because the workload started to process pend-
ing jobs. This is more likely happen when the CPU utilization of
the migrating VM is higher. The VM that just moved back to a
Shared Server may pop out to a Dedicated Server again due to this
temporal increase, and then the VM will move back to a Shared
Server again. In the worst case, even though the workload does
not change, this round trip continues repeatedly. Therefore, the
threshold value should be small enough to avoid such problems.
5.2.3 The 5 Seconds Average for the Overloading/Idling De-

tection

We use the latest 5-seconds average value of CPU utilization,
because we want to prevent the system to excessively respond a
spiky increase/decrease of CPU utilization. If we choose a small
value for this parameter, the system sometimes performs unnec-
essary migrations. Otherwise, the system sometimes does not

© 2012 Information Processing Society of Japan

perform necessary migrations. For now, we choose 5 seconds for

this, considering trade-off between them.

5.2.4 The 20 Seconds Migration Margin in the Idling Detec-
tion

As written in Section 3.3.2, the system does not move the mi-
grated VM for at least 20 seconds after the last migration ends.
This parameter is intended to prevent the system from doing over-
reaction.

Just after a live migration is completed, the behavior of the
workload on the VM sometime becomes unstable. First, the
workload may temporarily consume more CPU resource to pro-
cess pending jobs. As explained above, this problem is alleviated
by the threshold value in the idling detection.

Second, the workload may temporarily consume less CPU re-
source than expected. When a VM is popping out from a Shared
Server, the overload of the Shared Server and the overhead of the
migration make the VM temporarily slow down. Some kinds of
applications, which change their behaviors in response to how on-
going jobs are processed, may temporarily run slowly by them-
selves just after the migration; after a couple of seconds, they start
running fast as expected. Therefore, the migration margin in the
idling detection is used to mitigate this problem. Considering the
trade-off between the problem and the responsiveness of the sys-
tem, we currently choose 20 seconds, which basically works fine
through experiments.

5.3 ACPI S3 Integration

We are now implementing the suspend/resume feature to our
consolidation system. Although a suspend server node is resumed
approximately in 5 seconds, this transition time will give a neg-
ative impact for performance assurance; a live migration is post-
poned until a target server node is resumed. To alleviate this prob-
lem, we are considering the improved packing algorithm where a
few of server nodes are resumed in advance. The consolidation
system can invoke live migrations without resuming a target des-
tination node. However, this strategy requires additional power
consumption to keep some unused server nodes in the power-on
state. Further discussion regarding energy efficiency will be given
in our upcoming work.

6. Related Work

SnowFlock [11] provides a VM cloning system enabling de-
velopers to easily program distributed systems. A postcopy tech-
nique is used to rapidly copy the state of a master VM to worker
VMs. Reference [5] developed a postcopy live migration mech-
anism for the paravirtualization mode of Xen, which exploited
the swap-in/out code of the Linux kernel for on-demand memory
transfer. As described in our previous work [6], we have devel-
oped a postcopy live migration mechanism for KVM. We will
publish its source code under an open source license [1].

To the best of our knowledge, our study is the first work ex-
ploiting postcopy live migration for dynamic VM consolidation.
The following studies regarding VM consolidation are based on
precopy live migration.

Reference [16] showed that using workload-specific activity
data, such as request arrival rates and response time, makes more

96



IPSJ Transactions on Advanced Computing Systems Vol.5 No.2 86-98 (Mar. 2012)

optimized relocations possible; resource demand of VMs is esti-
mated and predicted by queuing theory and autoregression anal-
ysis. However, this approach is not suitable for laaS datacenters
where various customers can run any type of workloads in their
VMs. In this paper, we have tackled this issue by developing a
reaction-based consolidation, in which postcopy live migration
greatly contributes to performance assurance.

In Ref.[9], a consolidation system uses a threshold value of
resource usage to trigger VM repacking; if the CPU usage of a
host exceeds this value, the system re-optimizes VM locations,
so that mitigates the risk that application response times (e.g., ser-
vice level agreement in this study) are adversely affected. Refer-
ence [2] exploits an anomaly detection technique based a stochas-
tic model, which determines the VMs and hosts subject to sig-
nificant state changes. This study argues that a threshold-based
algorithm incorrectly detects overloading and mistakenly deter-
mines a reconfiguration plan. Reference [14] discusses the way
of finding turning points of resource demands, where reconfigu-
ration of VM locations is advisable. This technique aims to deter-
mine whether repacking is required or not with small calculation
cost. Entropy [4] is a VM packing management system exploiting
constraint programming techniques. It first determines the min-
imum number of nodes that are necessary to host all VMs, and
then computes an optimal order of migrations to minimizing the
overall reconfiguration time. Reference [15] presents a network-
aware migration scheduling algorithm, which tries to minimize
the bandwidth usage while holding migration deadlines.

We consider that the basic ideas in these techniques are basi-
cally orthogonal to our study. It is possible to extend these tech-
niques to cover postcopy migrations. We believe that researchers
will make further studies by using our publicly-available code of
postcopy live migration.

7. Conclusions

In this paper, we have proposed a reactive VM consolidation
system exploiting postcopy live migration. Postcopy live mi-
gration makes a higher level of performance assurance possible
for dynamic VM consolidation than does precopy live migra-
tion. Sudden overloadings of server nodes are quickly resolved
by switching the execution hosts of VMs within one second.
We developed a prototype of the proposed consolidation system
and conducted experiments to verify its feasibility. Our micro
benchmark program, designed for the metric of performance as-
surance, showed the proposed system greatly alleviated perfor-
mance degradation; the percentage of failed operations averaged
under 12% or less, even for memory intensive workloads. This
is less than half the level when using precopy live migration.
The SPECweb benchmark program showed that our consolida-
tion system with postcopy live migration achieved only 10% per-
formance degradation from an ideal case, which was greatly alle-
viated from the case of using precopy live migration (21%).

Acknowledgments This work was partially supported by
KAKENHI (20700038 and 23700048) and JST/CREST ULP.

© 2012 Information Processing Society of Japan

Reference

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

AIST Cloud Computing Research, available from
(http://grivon.apgrid.org/).

Andreolini, M., Casolari, S., Colajanni, M. and Messori, M.: Dynamic
load management of virtual machines in a cloud architectures, Proc.
IEEE Conference on Cloud Computing, pp.201-214 (2009).

Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C.,
Pratt, I. and Warfield, A.: Live migration of virtual machines, Proc.
2nd Symposium on Networked Systems Design and Implementation,
pp-273-286, USENIX Association (2005).

Hermenier, F., Lorca, X., Menaud, J.-M., Muller, G. and Lawall, J.L.:
Entropy: A consolidation manager for clusters, Proc. 5th International
Conference on Virtual Execution Environments, pp.41-50, ACM Press
(2009).

Hines, M.R. and Gopalan, K.: Post-copy based live virtual machine
migration using adaptive pre-paging and dynamic self-ballooning,
Proc. 5th International Conference on Virtual Execution Environ-
ments, pp.51-60, ACM Press (2009).

Hirofuchi, T., Nakada, H., Itoh, S. and Sekiguchi, S.: Enabling In-
stantaneous Relocation of Virtual Machines with a Lightweight VMM
Extension, Proc. 10th IEEEJACM International Conference on Clus-
ter; Cloud and Grid Computing, pp.73-83, IEEE Computer Society
(2010).

Hirofuchi, T., Nakada, H., Itoh, S. and Sekiguchi, S.: A Guest-
transparent, Post-copy-based VM Migration Mechanism with a
Lightweight Extension to KVM, IPSJ Transactions on Advanced
Computing Systems, Vol.ACS31, pp.248-262 (2010).

Hirofuchi, T., Nakada, H., Ogawa, H., Itoh, S. and Sekiguchi, S.:
Eliminating Datacenter Idle Power with Dynamic and Intelligent VM
Relocation, Distributed Computing and Artificial Intelligence (7th In-
ternational Symposium), Advances in Intelligent and Soft Computing,
Vol.79, pp.645-648, Springer (2010).

Khanna, G., Beaty, K., Kar, G. and Kochut, A.: Applica-
tion Performance Management in Virtualized Server Environments,
Proc. IEEEJIFIP Network Operations and Management Symposium,
pp-373-381 (20006).

Kivity, A., Kamay, Y., Laor, D. and Liguori, A.: kvm: The Linux
Virtual Machine Monitor, Proceedings of the Linux Symposium, The
Linux Symposium, pp.225-230 (2007).

Lagar-Cavilla, H.A., Whitney, J.A., Scannell, A., Patchin, P., Rumble,
S.M., de Lara, E., Brudno, M. and Satyanarayanan, M.: SnowFlock:
Rapid Virtual Machine Cloning for Cloud Computing, Proc. 4th ACM
European Conference on Computer Systems, pp.1-12, ACM Press
(2009).

Mirkin, A., Kuznetsov, A. and Kolyshkin, K.: Containers checkpoint-
ing and live migration, Proc. Linux Symposium, The Linux Sympo-
sium, pp.85-92 (2008).

Nelson, M., Lim, B.-H. and Hutchins, G.: Fast transparent migra-
tion for virtual machines, Proc. USENIX Annual Technical Confer-
ence, pp.391-394, USENIX Association (2005).

Setzer, T. and Stage, A.: Decision Support for Virtual Machine Re-
assignments in Enterprise Data Centers, Proc. 5th IEEE/IFIP In-
ternational Workshop on Business-driven IT Management, pp.88-94
(2010).

Stage, A. and Setzer, T.. Network-aware migration control and
scheduling of differentiated virtual machine workloads, Proc. 2009
ICSE Workshop on Software Engineering Challenges of Cloud Com-
puting, pp.9—14, IEEE Computer Society (2009).

Wood, T., Shenoy, P.J., Venkataramani, A. and Yousif, M.S.: Black-
box and Gray-box Strategies for Virtual Machine Migration, Proc.
4th Symposium on Networked Systems Design and Implementation,
pp.229-242, USENIX Association (2007).

97



IPSJ Transactions on Advanced Computing Systems Vol.5 No.2 86-98 (Mar. 2012)

Takahiro Hirofuchi is a researcher of
National Institute of Advanced Industrial
Science and Technology (AIST) in Japan.
He is working on virtualization technolo-
gies for advanced cloud computing and
Green IT. He obtained a Ph.D. of En-
gineering in March 2007 at the Graduate

School of Information Science of Nara In-
stitute of Science and Technology (NAIST). He obtained a B.S.
of Geophysics at Faculty of Science in Kyoto University in March
2002. He is an expert of operating system, virtual machine, and
network technologies.

Hidemoto Nakada graduated the Uni-
versity of Tokyo, in 1995. He earned
a Ph.D. in Computer Engineering from
the University of Tokyo and joined Elec-
trotechnical Laboratory (ETL). Now he
is working for National Institute of Ad-
vanced Industrial Science and Technol-

ogy (AIST) as a Senior Research Scien-
tist. His research interests include distributed and parallel com-
puting, grid and cloud computing. Member of IPSJ and ACM.

Satoshi Itoh obtained a Ph.D. in physics
from University of Tsukuba, Japan, in
1987. From 1987 to 2002 he worked for
high-performance and parallel computing
in the both area of material science and
business application at Central Research
Laboratory, Hitachi, Ltd. In 2002, he
moved to National Institute of Advanced

Industrial Science and Technology (AIST), Japan and has re-
searched on grid computing, cloud computing, and green IT. He
is currently the Deputy Director of Information Technology Re-
search Institute, AIST.

Satoshi Sekiguchi received a B.S. from
the University of Tokyo, a M.E. from Uni-
versity of Tsukuba, and a Ph.D. in In-
formation Science and Technology from
the University of Tokyo, respectively.
He joined Electrotechnical Laboratory
(ETL), Japan in 1984 to engage research

in high-performance computing widely
from its system architecture to applications. His expertise also in-
cludes applying I'T-based solutions to many of society’s problems
related to global climate change, environmental management and
resource efficiency. He served as the director of Grid Technol-
ogy Research Center, National Institute of Advanced Industrial
Science and Technology (AIST) in 2002-2008, and is currently
the Director of Information Technology Research Institute, AIST.
He has been contributing to the Open Grid Forum as a member
of board of directors, is a member of IEEE, SIAM, and IPSJ.

© 2012 Information Processing Society of Japan

98



