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Abstract: Dysregulation of epigenetic mechanisms has been implicated in the pathogenesis of Alzheimer’s disease
(AD). It has been shown that epigenetic status in promoter regions can alter levels of gene expressions, but their
influence on correlated expressions of genes and its dependency on the disease are unclear. Using publicly available
microarray and DNA methylation data, this article infer how correlation in gene expression in non-demented (ND) and
AD brain may be influenced by genomic promoter methylation. Pearson correlation coefficients of gene expression
levels between each of 123 known hypomethylated genes and all other genes in the microarray dataset were calcu-
lated, and the mean absolute coefficients were obtained as an overall strength of gene expression correlation of the
hypomethylated gene. The distribution of the mean absolute coefficients showed that the hypomethylated genes can be
divided into two, by the mean coefficients above or below 0.15. The division of the hypomethylated genes by the mean
coefficients was more evident in AD brain than in ND brain. On the other hand, hypermethylated genes had a single
dominant group, and the majority of them had the mean coefficient below 0.15. These results suggest that the lower
the DNA methylation, the higher the correlation of gene expression levels with the other genes in microarray data.
The strength of gene expression correlation was also calculated between known AD risk genes and all other genes in
microarray data. It was found that AD risk genes were more likely to have the mean absolute correlation coefficients
above 0.15 in AD brain, when the evidence for their association with AD was strong, suggesting the link between DNA
methylation and AD. In conclusion DNA methylation status is intimately associated with correlated gene expression,
particularly in AD brain.

Keywords: microarray, gene expression, bioinformatics, Alzheimer’s disease, DNA methylation

1. Background

Alzheimer’s disease (AD) is a neurodegenerative condition and
the most common form of dementia. Recently, it has been sug-
gested that AD pathogenesis may be associated with dysregula-
tion of DNA methylation, which is an important feature of epige-
netic mechanisms [1], [2]. In cancer cells, for example, promoter
regions of tumor suppressor genes are often hypermethylated, re-
sulting in decreased gene expression, whereas intergenic regions
are commonly hypomethylated, which may lead to genomic in-
stability [3]. In addition, DNA methylation status may affect neu-
ral differentiation in a number of ways [4]. For example, global
hypomethylation by inhibition of DNMT1 caused premature as-
troglial differentiation of neural precursor cells [5]. Moreover,
conditional DNMT1 mutant mice in which the DNA of cortical
and hippocampal cells is severely hypomethylated showed signif-
icant neuronal cell death and impaired neuronal maturation [6].
In human AD brain and monkey AD-like regions, DNA methy-
lation of amyloid precursor protein (APP) and presenilin 1 (PS1)
genes are decreased in expression, compared to levels in non-
demented (ND) brain [7], [8], and the brains of AD-affected twin
siblings showed lower levels of DNA methylation [9]. These find-
ings point to a close relationship between DNA hypomethylation
and AD.
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It has been shown that hypermethylation represses transcrip-
tion [10], and that demethylation increases gene expression lev-
els [11]. Therefore, if correlation in gene expressions is reg-
ulated at transcriptional levels, it is possible that altered tran-
scription activities influence correlation in gene expression. In
this report I examine whether correlation patterns of gene ex-
pressions can be associated with DNA methylation status and
whether the association differs between in age-matched ND brain
and in AD brain. This involved the uses of gene expression pro-
files and global DNA methylation profiling data from public data
sources. Although the two sets of data came from different stud-
ies and therefore different collections of brains were used, I found
that methylation status of gene promoters and the strength of
gene correlations were closely linked. Namely, genes reported
to be hypomethylated were more likely to have higher correla-
tion with other genes in the microarray datasets while reportedly-
hypermethylated genes showed the opposite. Moreover genes in
the dataset from AD brain were likely to show the correlation pat-
terns similar to those of hypomethylated genes and their patterns
seemed to be correlated with their associated risk with AD.

2. Results and Discussion

2.1 Correlation Patterns of Hypomethylated and Hyperme-
thylated Genes

First, I selected 123 genes, the promoters of which were specif-
ically hypomethylated in brain compared to promoters in testis or
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Fig. 1 Distribution of mean absolute Pearson correlation coefficients of hypomethylated genes in non-
demented (ND) and Alzheimer’s disease (AD) brains. Hypo-methylated refers to the hypomethy-
lated genes of the work of Schilling and Rehli [12], and control reflects data for 500 randomly
selected genes.

Table 1 The peak counts in histograms for mean absolute Pearson coeffi-
cients of hypomethylated [12] and control genes in non-demented
(ND) and Alzheimer’s disease (AD) brains. Each cell in the table
shows the peak counts below and above the coefficient = 0.15.

Hypomethylated Hypomethylated Control Control
coef.<0.15 coef.>0.15 coef.<0.15 coef.>0.15

ND brain 30 23 74 36
AD brain 24 21 65 54

monocytes, according to Schilling and Rehli [12]. To character-
ize gene expression patterns, I obtained correlation coefficients
between each of the hypomethylated genes and all other genes
in the microarray dataset and calculated the mean absolute coeffi-
cient for each hypomethylated gene. In ND brain, the distribution
of the mean correlation coefficients appeared to have two peaks
which could be approximately separated when the threshold value
of the correlation coefficient was set at 0.15 (Fig. 1, top left). The
count of genes at the peak (termed the peak count) below the co-
efficient = 0.15 was 30, while the peak count above coefficient
= 0.15 was 24. The two peaks were also observed in AD brain
(Fig. 1, bottom left), and the peak counts were similar between
above and below the coefficient = 0.15 (Table 1).

As a control, the mean correlation coefficients were calculated
between 500 randomly selected genes and all other genes in the
dataset. In ND brain, the peak above the coefficient = 0.15 was
not evident (Fig. 1, top right) and its peak count was much smaller
than that of the peak below the threshold (Table 1). In AD brain,
two peaks (Fig. 1, bottom right), though less distinct compared to
hypomethylated genes, could be seen in the histogram and simi-
lar peak counts below and above the coefficients = 0.15 (65 and
54, respectively) were observed.

The above results may indicate there were two groups of genes,

with different strength of correlations with other genes. The rel-
ative sizes of the two groups in ND brain were different between
hypomethylated and control genes (Fig. 1 top left and right, re-
spectively) suggesting the influence of methylation on gene ex-
pression correlations. However, the distribution of the correlation
coefficients in AD brain looked similar between hypomethylated
and control genes (Fig. 1 bottom left and right, respectively). This
may be explained by a tendency of genes in AD brain as a whole
toward hypomethylation, compared to in ND brain.

To examine this inference further, I carried out the same anal-
ysis for the list of hypo- and hyper-methylated genes of Chris-
tensen and colleagues [13]. Figure 2 shows histograms for the
mean absolute coefficients of the 200 least and most methylated
genes against all other genes in microarray dataset. The his-
togram of the hypomethylated genes in ND brain did not have
the distinct two peaks seen in the previous case (Fig. 2, top left),
but the peak counts below and above the coefficient = 0.15 were
comparable (Table 2). In AD brain, the mean absolute coefficient
of the hypomethylated genes showed clearer two peak distribu-
tion (Fig. 2, bottom left) and the peak counts were now higher
above the coefficient = 0.15 than below the threshold (Table 2).
These results may imply a stronger hypomethylation tendency in
AD brain compared to in ND brain. On the other hand, the his-
tograms of hypermethylated genes in ND and AD brain had a
dominant peak (Fig. 2, top right and bottom right, respectively)
below the coefficient = 0.15 and an indistinct peak above it. Con-
sequently the peak counts were much higher below the coefficient
= 0.15 than those above the threshold (Table 2). These results
seem to further support the hypothesis that the methylation status
may influence the strength of gene expression correlations.

c© 2012 Information Processing Society of Japan 3



IPSJ Transactions on Bioinformatics Vol.5 2–6 (Feb. 2012)

Fig. 2 Comparison of mean absolute Pearson correlation coefficients of hypo and hypermethylated genes
in non-demented (ND) and Alzheimer’s disease (AD) brains. The hypo- and hyper-methylated
genes are those of Ref. [13].

Table 2 The peak counts in histograms for mean absolute Pearson coefficients of hypomethylated and
hypermethylated genes [13] in non-demented (ND) and Alzheimer’s disease (AD) brains. Each
cell in the table shows the peak counts below and above the coefficient = 0.15.

Hypomethylated Hypomethylated Hypermethylated Hypermethylated
coef.<0.15 coef.>0.15 coef.<0.15 coef.>0.15

ND brain 33 25 55 15
AD brain 30 33 42 13

2.2 Correlation Patterns of AD Related Genes
The analysis of the absolute mean correlation coefficients of

genes in ND and AD brains implied that DNA methylation may
be linked to AD in one way or another. In order to gain more in-
sights into this association, I selected the 30 genes most strongly
associated with AD according to the Alzgene database [14] and
calculated mean absolute correlation coefficients between such
genes and all other genes in microarray datasets from ND and AD
brain. The Alzgene database classifies the 30 genes into grades
A, B, and C, based on the strength of epidemiological evidence.
In Table 3 these genes are shown, with the mean absolute cor-
relation coefficients in ND and AD brains for each gene. Two
of the eight genes of grade A had correlation coefficients above
0.15 in ND brain but the number increased to six in AD brain.
The change in the mean coefficients was particularly large with
CLU and TNK1, and these genes may be useful in the study of
disease-dependent changes in DNA methylation and the influence
thereof in correlated gene expression. On the other hand, only 1
of 4 genes of grade B had coefficients above 0.15 in both brains,
while 4 and 5, respectively, of 18 genes of grade C, had correla-
tion coefficients above 0.15 in ND and AD brains. This suggests
that AD-related genes are more likely to show correlation patterns
similar to those of hypomethylated genes when evidence for their
involvement in AD is stronger, thus supporting a link between
AD and DNA methylation.

3. Conclusions

In this paper the methylation status of genes was found to be as-
sociated with gene correlation patterns, particularly in AD brain.
Namely, less methylated genes showed more correlations with
other genes, probably because such genes exhibited higher tran-
scriptional plasticity [15]. It appears that AD brain has a tendency
toward hypomethylation, which may occur in a gene-specific
manner, given that high-risk AD genes were prone to show high
degrees of correlation, comparable to those of hypomethylated
genes. This should be investigated further by global methylation
profiling of ND and AD brains, combined with expression profil-
ing, to test if modified methylation indeed affects gene expression
levels and correlation patterns.

4. Methods

4.1 Microarray Data
The microarray data set GSE15222 from Gene Expression

Omnibus [16] was used in analysis. This dataset was originally
obtained by Webster and colleagues [17], and includes microar-
ray data from 188 neuropathologically normal cortex samples
and 176 cortex samples from patients with neuropathologically
confirmed late-onset AD (LOAD) patients. Expression levels of
24,354 transcripts in the dataset were obtained using the Illumina
Human Refseq-8 Expression BeadChip (Illumina, San Diego,
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Table 3 Mean absolute coefficients of risk genes for Alzheimer’s disease
from Alzgene. Values above 0.15 are shown in bold.

Genes Normal AD Grade
APOE 0.170 0.166 A
CLU 0.110 0.161 A
PICALM 0.155 0.153 A
TNK1 0.148 0.223 A
ACE 0.090 0.119 A
TFAM 0.147 0.156 A
CST3 0.131 0.159 A
IL1B 0.085 0.092 A
CR1 0.100 0.090 B
SORL1 0.174 0.103 B
CHRNB2 0.100 0.082 B
SORCS1 0.120 0.192 B
DAPK1 0.207 0.204 C
PRNP 0.185 0.209 C
MTHFR 0.075 0.098 C
GAB2 0.165 0.226 C
BDNF 0.117 0.202 C
NEDD9 0.128 0.132 C
CH25H 0.117 0.122 C
IL1A 0.096 0.114 C
TF 0.102 0.144 C
TNF 0.061 0.059 C
PGBD1 0.174 0.213 C
THRA 0.130 0.134 C
ENTPD7 0.103 0.113 C
IL33 0.135 0.130 C
GAPDHS 0.057 0.066 C
OTC 0.079 0.075 C
GALP 0.062 0.092 C
PSEN1 0.089 0.079 C

CA). I processed the data using the quantile normalization func-
tion (quantilenorm) of the Matlab Bioinformatics Toolbox (the
MathWorks, Natick, MA).

4.2 DNA Methylation Data
DNA methylation data were obtained from the studies of

Schilling and Rehli [12] and of Christensen and colleagues [13].
The first study examined CpG island methylations in about
20,000 promoters from testis, monocytes, and brain. Promoters
were grouped as hypomethylated in brain if they were less methy-
lated, by more than 2.4-fold, than those in testis and monocytes.
The cited authors found 123 genes with hypomethylated promot-
ers in the brain. The second study analyzed the methylation status
of 214 normal human tissues, including brain, at 1,413 autosomal
CpG loci. I selected the 200 least- and most-methylated loci and
used genes associated with these loci in analysis.

4.3 List of AD Risk Genes
Thirty risk genes for AD showing the strongest epidemiologi-

cal evidence were obtained from Alzgene website [14]. This site
grades each gene by overall epidemiological credibility, based on
the amount of reported evidence, consistency of data replication,
and minimization of bias. The grades were used in this paper to
classify AD risk genes and compare their patterns of gene expres-
sion correlations.

4.4 Statistical Analysis
Correlation of expression levels between any two genes was

calculated as a Pearson correlation coefficient (PC) using the corr
function in Matlab. The dendrogram of AD samples was created

using the pdist (with the ‘correlation’ option), linkage (with the
‘average’ option), and dendrogram functions, from the Matlab
Statistics toolbox.
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