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Abstract: In advanced integrated circuit technology, the soft error tolerance is low. Soft errors ultimately lead to
failure in VLSIs. We propose a method for the exact estimation of error propagation probabilities in sequential cir-
cuits whose FFs latch failure values. The failure due to soft errors in sequential circuits is defined using the modified
product machine. The modified product machine monitors whether failure values appear at any primary output. The
behavior of the modified product machine is analyzed with the Markov model. The probabilities that the failure values
latched into the flip-flops (FFs) appear at any primary output are calculated from the state transition probabilities of the
modified product machine. The time required for solving simultaneous linear equations accounts for a large portion of
the execution time. We also propose two acceleration techniques to enable the application of our estimation method to
larger scale circuits. These acceleration techniques reduce the number of variables in simultaneous linear equations.
We apply the proposed method to ISCAS’89 and MCNC benchmark circuits and estimate error propagation probabil-
ities for sequential circuits. Experimental results show that total execution times for the proposed method with two
acceleration techniques are up to 10 times lesser than the total execution times for a naive implementation.

Keywords: soft error, modified product machine, Markov model, absorption state, sequential circuit

1. Introduction

Soft errors are transient errors caused by neutron strikes from
cosmic rays in very large-scale integrated circuits (VLSIs). Soft
errors might flip the values of memory elements and cause elec-
trical pulses at the outputs of logic gates. Ultimately, soft errors
might result failure. In this paper, we refer to the appearance of
failure values at the primary outputs of VLSIs as failure. The
probability that soft errors result failure is one of the measures of
the soft error tolerance of VLSIs.

Soft error occurrences lead to VLSIs failure over several steps.
VLSIs consist of logic gates and memory elements; soft errors
occur at both these component. The steps from soft error occur-
rences to the failure of VLSIs are classified into two types. In
the case that the soft errors occur at logic gates, failure occurs in
three steps —Step-C1 to Step-C3— explained as follows. Neu-
tron strikes might cause electrical pulses at the outputs of logic
gates (Step-C1). The electrical pulses might propagate to the in-
puts of the flip-flops (FFs) and be latched into the FFs (Step-C2).
Hence, the FFs that latch these electrical pulses hold failure val-
ues. The probability that an FF latches an electrical pulse is cal-
culated from the width of the propagated pulse at the input of
the FF and the latch-window size of the FF. Finally, the failure
values might propagate to primary outputs (Step-C3). Even if
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FFs hold the failure values, failure values may not always propa-
gate to the primary outputs. This is because a state transition can
change the failure values of the FFs to correct values. In the other
case that the soft errors occur at the memory elements (e.g., FFs),
failure occurs in two steps —Step-S1 to Step-S2— explained as
follows. Neutron strikes might flip the values of the FFs (Step-
S1). As a result, the FFs whose values are flipped hold failure
values. These failure values might propagate to primary outputs
(Step-S2). Step-C3 and Step-S2 are essentially the same steps.

In this study, we focus on Step-C3 and Step-S2. We propose
an exact method to estimate error propagation probabilities for
sequential circuits whose FFs latch failure values in Step-C3 and
Step-S2. In the proposed method, the probabilities that the fail-
ure values that are latched into FFs appear at primary outputs are
calculated from the state transition probabilities obtained using
a modified product machine of the given sequential circuit. The
modified product machine is a computational model that consists
of a correct circuit, a faulty circuit, and an error detector. The
behaviors of the correct and faulty circuits correspond to the be-
haviors of the original circuit without and with the effects of a
soft error, respectively. The error detector compares the output
values of the correct circuit with those of the faulty circuit. The
output value of ′′1′′ in the error detector shows the differences
between the output values of the correct circuit and those of the
faulty circuit. In other words, output value 1 implies that failure
values appear at the primary outputs. For each incorrect state that
is changed by the effects of soft errors, the probability of the out-
put value 1 in the error detector is calculated; this probability is
referred to as the absorption probability. If the input vectors of an
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original circuit are probabilistic, the state transitions of the mod-
ified product machine of the original circuit are also probabilis-
tic. Further, if the input vectors and state transitions of the mod-
ified product machine are probabilistic, the probabilities of the
next states depend only on the probabilities of the current states.
Thus, if the input vectors of an original circuit are probabilistic,
probability process of states of the modified product machine can
be regarded as the Markov process. The behavior of the modified
product machine is analyzed using the Markov model to calculate
absorption probabilities. Absorption probabilities are obtained
by solving simultaneous linear equations where the variables are
absorption probabilities. We also propose two acceleration tech-
niques to enable the application of our exact estimation method to
larger scale circuits. The time required for solving simultaneous
linear equations accounts for a large portion of the execution time.
The common aim of the two acceleration techniques is to reduce
the number of variables in the simultaneous linear equations. In
the first technique, the simultaneous linear equations are divided
and each divided simultaneous linear equation is solved. There
are certain variables whose values can be obtained without solv-
ing the simultaneous linear equations. In the second technique,
these variables are identified and removed from the simultaneous
linear equations. From the experimental results, the execution
time of the proposed method for large scale circuits was up to 10
times faster than that of a naive method for large scale circuits.

The contributions of this study are as follows.
( 1 ) The definition of the failure of sequential circuits with the

modified product machine
( 2 ) An exact procedure to estimate error propagation probabili-

ties with the Markov model
( 3 ) Two techniques to accelerate one of the processes in the pro-

cedure
In this paper, we propose an exact procedure to estimate error

propagation probabilities. The exact proposed method can not be
applied to very large scale circuits for long execution time. How-
ever, the proposed method obtains exact error propagation prob-
abilities of several circuits. The exact error propagation proba-
bilities provide a baseline for estimating approximate methods to
calculate error propagation probabilities.

This paper is organized as follows. In Section 2, we present
an overview of related work. In Section 3, a procedure to esti-
mate error propagation probabilities is proposed. Section 4 intro-
duces two acceleration techniques that can be used to accelerate
the proposed method. The experimental results for ISCAS’89
and MCNC benchmark circuits are shown in Section 5. Finally,
Section 6 concludes this paper.

2. Related Work

Here, we discuss the previous soft error tolerance estimation
methods for sequential circuits. Several methods for estimating
soft error tolerance in Step-C1 have been proposed [1], [5], [8].
The generation probability for each pulse width has been cal-
culated from the results of device simulations [5], [8] and has
been evaluated on the basis of the measurement results using
TEG [1]. Further, a method for estimating soft error tolerance
in Step-C2 [6] and a method for estimating soft error tolerance in

Fig. 1 Example of state transitions.

Step-S1 [7] has also been proposed.
Estimation methods to calculate error propagation probabilities

for sequential circuits whose FFs latch failure values in Step-C3
and Step-S2 have been proposed in several papers [3], [4]. For
instance, Hayes et al. proposed an estimation method to calculate
the error propagation probabilities only k clock cycles after the
soft errors occur [3]. The method is a heuristic method and not an
exact method. Even if k is large, error propagation probabilities
obtained by this method are not always accurate. This is because
there may be cases where the FFs hold flipped values even though
failure values do not appear at the primary outputs after k clock
cycles. When k is large, the execution time of this method is long.
For example, the execution time of this method with k = 2 for
s382 is longer than the execution time of the proposed method,
which is an exact method.

Miskov-Zivanov et al. proposed an estimation method that in-
volves a probabilistic analysis of the behaviors of sequential cir-
cuits after the soft errors occur [4]. The probabilities that failure
values appear at primary outputs are calculated from the steady-
state probabilities of the product machine of sequential circuits
after the soft errors occur. The steady-state probabilities are cal-
culated using the Markov model. This Markov model of the prod-
uct machine of sequential circuits has no absorption state. Thus,
the number of states of the product machine is large, the compu-
tation time to calculate the steady-state probability is long, and
the size of the sequential circuits to be estimated is very small.

Next, we discuss the difference between the probabilities ob-
tained by Miskov-Zivanov et al.’s method [4] and these obtained
by our proposed method. Figure 1 shows an example of the state
transitions of the product machine of a sequential circuit after a
soft error occurs. In Fig. 1, the triangle, squares, and circles rep-
resent the initial state of the product machine, states in which the
failure values appear at primary outputs, and states in which the
FFs hold no failure values, respectively. In this example, fail-
ure values always appear at primary outputs at least once. The
time frame in which the failure values appear is only time frame
2. Failure values do not appear at primary outputs on any time
frame other than time frame 2. This is because FFs hold no fail-
ure values in any the states in time frame 3. Thus, the probability
obtained by the previous method [4] is nearly equal to 0. On the
other hand, the probability obtained by our proposed method is
1. The method [4] is suitable for use in fields such as picture pro-
cessing and communication, where it is important to determine
the probability that failure values appear at the primary outputs
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per time. However, the previous method [4] is not suitable for
use in other fields involving processors and controllers. In other
fields, it is important to determine the probability that failure val-
ues appear at the primary outputs.

3. Procedure to Estimate Error Propagation
Probabilities

3.1 Modified Product Machine
The modified product machine of an original circuit monitors

whether the failure values that are latched into the FFs appear at
any primary output of the original circuit. The modified product
machine is a computational model. In this study, the output value
1 of the modified product machine indicates that failure values
appear at the primary outputs. The modified product machine is
illustrated in Fig. 2.

The modified product machine Mp is a sequential circuit de-
fined by the 6-tuple (S p, S 0p, Ip,Op, δp, λp) where S p is the set of
states; S 0p, the set of initial states; Ip, the set of input vectors; Op,
the set of output vectors; δp, the state transition function S p×Ip →
S p; and λp, the output function S p × Ip → Op. The modi-
fied product machineMp = (Mc,M f ,Me) consists of three se-
quential circuits: the correct circuitMc = (S c, S 0c, Ic,Oc, δc, λc),
the faulty circuit M f = (S f , S 0 f , I f ,Of , δ f , λ f ), and the er-
ror detector Me = (S e, S 0e, Ie,Oe, δe, λe). The original circuit
Mo = (S o, S 0o, Io,Oo, δo, λo) is a given sequential circuit to be
estimated.

The behaviors of the correct and faulty circuits indicate the be-
haviors of the original circuit without and with the effects of the
soft error, respectively. Tuples of the correct circuit and faulty
circuit are shown using tuples of the original circuit as follows.

S o = S c = S f , S 0o = S 0c � S 0 f , Io = Ic = I f ,

Oo = Oc, δo = δc = δ f , λo = λc = λ f .

An initial state of the faulty circuit S 0 f is changed by the effects
of a soft error. These effects of the soft error are only in the faulty
circuit.

The error detector compares the output vectors of the correct
circuit Oc with those of the faulty circuit Of . The output value of
the error detector Oe = {0, 1} shows whether there is a difference
between Oc and Of at least once. In this paper, Oe = 1 implies
that there is a difference between Oc and Of at least once. In
other words, Oe = 1 implies that failure values appear at primary
outputs at least once. As there is a difference between Oc and
Of , the output value Oe and the state S e of the error detector are
always 1. Tuples of the error detector are defined using tuples of
the correct circuit and faulty circuit as follows.

S e = {0, 1}, S 0e = 0,
Ie = (Oc,Of ), Oe = {0, 1},
δe =

⎧⎪⎪⎨⎪⎪⎩
0 (Oc = Of ∧ S e = 0)
1 otherwise

, λe = δe.

Now, we discuss the state transitions from current states to next
states; which occur with the soft error. The next states are the ini-
tial states of the faulty circuit in the modified product machine. It
should be noted that soft errors occur at random. An occurrence
of a soft error does not depend on the current state of the original

Fig. 2 Modified product machine.

circuit or the input values of the original circuit. The probabilities
of the initial states of the correct circuit in the modified product
machine are equal to the probabilities of the next states when soft
errors do not occur. However, the next states depend on the cur-
rent states of the original circuit and the input values of the orig-
inal circuit. The probabilities of the next states can be calculated
using a timing fault simulation.

3.2 Markov Model with Absorption States
The behavior of the modified product machine is analyzed us-

ing the Markov model to calculate the absorption probabilities. In
this study, we assume that the probabilities for each input vector
of the original circuit are given. If the input vectors of an original
circuit are probabilistic, the state transitions of the modified prod-
uct machine of the original circuit are also probabilistic. Further,
if the input vectors and state transitions of the modified product
machine are probabilistic, the probabilities of the next states de-
pend only on the probabilities of the current states. Thus, if the
input vectors of an original circuit are probabilistic, probability
process of states of the modified product machine can be regarded
as the Markov process.

The set of all the states of the modified product machine Π
is separated into three sets: the failure set Π f , the masked set
Πm, and the transition set Πt. The state of the modified prod-
uct machine S p consists of the state of the correct circuit S c,
the state of the faulty circuit S f , and the state of the error detec-
tor S e. S p is called an MPM (modified product machine) state;
S p = (S c, S f , S e). Once S e is transferred from 0 to 1, it cannot
be transferred from 1 to 0. Π f = {S p|S e = 1} is called the failure
set Π f . Once S f is transferred to the same state of S c, then S f

is always equal to S c. Πm = {S p|S e = 0 ∧ S c = S f } is called
the masked set Πm. The transition set Πt is the other state set.
Πt = {S p|S e = 0 ∧ S c � S f } is called the transition set Πt. The
set of the MPM states satisfies the following two conditions.
• Π = Πt ∪ Π f ∪ Πm.
• Πt ∩ Πm = Πm ∩ Π f = Π f ∩ Πt = φ.
Each of the MPM states in the failure set could be considered as

the failure state. The failure state can be transferred to itself by
any input vector. Each of the MPM states in the masked set could
be considered as the masked state. The masked state can also be
transferred to itself by any input vector. A state which is always
transferred to itself is called the absorption state. Hence, both the
failure state and masked state are the absorption state. Figure 3
shows an example of the Markov model with absorption states.

If an MPM state π ∈ Π is the state immediately after a soft
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Fig. 3 Markov Model with absorption states.

error occurrence, then the state π is called the initial state. The
probability that an initial state is absorbed to the failure state is
called the absorption probability.

3.3 Calculation Method for Absorption Probability
In this section, we show a method for calculating the absorp-

tion probability. The probability that the failure values that are
latched into FFs appear at the primary outputs is called the prob-
ability Pf ail. Let Π be the set of all the MPM states; Πt ⊆ Π, the
set of all the transient states; π f , the failure state; and Πinit, the set
of all the initial states. Ptr(πi, π j) is the probability of the transfer
of an MPM state from πi to π j in one clock cycle. The probability
of the model in the MPM state π f to be absorbed to the failure
state is Pabs(πi). Pf ail is shown in Eq. (1).

Pf ail =
∑

π∈Πinit

Pinit(π) · Pabs(π) (1)

The probability Pabs(πi) is the probability that πi finally trans-
fers to the failure state π f . Paths of state transition from an MPM
state to the failure state are classified into two groups: (a) a direct
path of state transition from the MPM state to the failure state
and (b) state transition from the MPM state to the failure state via
transient states. The absorption probability Pabs(πi) is shown in
Eq. (2).

Pabs(πi) = Ptr(πi, π f ) +
∑

π j∈Πt

Ptr(πi, π j) · Pabs(π j) (2)

The probability Pinit(πi) is the probability that the MPM state
is πi when a soft error occurs. S o denotes the set of all the states
of the original circuit. es,πi denotes the probability that the MPM
state πi is an initial state under the condition that the state of the
original circuit is s ∈ S o when a soft error occurs. The initial state
probability of πi ∈ Πinit is shown in Eq. (3).

Pinit(πi) =
∑

s∈S o

Psteady(s) · es,πi (3)

Psteady(s) denotes the steady-state probability of a state s ∈ S o,
i.e., the probability that the state of the original circuit is s.
Ptr(si, s j) is the probability that a state si ∈ S o transfers to a state
s j ∈ S o at one clock cycle. The steady-state probability of s j is
shown in Eq. (4).

Psteady(s j) =
∑

si∈S o

Psteady(si) · Ptr(si, s j) (4)

The sum of the steady-state probabilities for all states in the
original circuit is 1.
∑

s∈S o

Psteady(s) = 1 (5)

If the state transition probability for each ordered pair of states
of the original circuit is known, simultaneous linear equations
whose variables can be steady-state probabilities are formulated
using Eqs. (4), (5). In general, es,π is obtained based on probabil-
ities such as the probability that a soft error occurs at an FF.

If the state transition probability for each ordered pair of MPM
states is known, the absorption probabilities Pabs(πi) are obtained
by solving the simultaneous linear equations whose variables are
Pabs(πi).

3.4 Procedure of the Proposed Calculation Method
A procedure to calculate the probability Pf ail discussed in Sec-

tion 3.3 is as follows:
( 1 ) Enumeration of reachable states of the original circuits
( 2 ) Calculation of state transition probabilities Ptr(si, s j)
( 3 ) Calculation of initial state probabilities Pinit(πi)
( 4 ) Enumeration of reachable MPM states
( 5 ) Calculation of state transition probabilities Ptr(πi, π j)
( 6 ) Calculation of absorption probabilities Pabs(πi)
( 7 ) Calculation of the probability Pf ail

First, the state transition probabilities Ptr(si, s j) between each
ordered pair of all reachable states in the original circuit are ob-
tained. A logic simulation or an implicit enumeration using bi-
nary decision diagrams [2] are used to enumerate all reachable
states and calculate state transition probabilities for each ordered
pair of all reachable states. Steady-state probabilities Psteady(s)
are obtained using state transition probabilities Ptr(si, s j). How-
ever, state transition probabilities from unreachable states to
reachable states are unnecessary to calculate steady-state prob-
abilities. Steady-state probabilities are obtained by solving si-
multaneous linear equations. Since es,π is given in this paper, the
probability of an initial state Pinit(πi) is obtained using Eq. (3).
State transition probabilities of the modified product machine
Ptr(πi, π j) are obtained as well as state transition probabilities
of the original circuits. Absorption probabilities Pabs(πi) are ob-
tained by solving simultaneous linear equations where variables
are Pabs(πi). Finally, Pf ail is calculated using Eq. (1).

If the above procedure is naively implemented, the total exe-
cution time might be very long. The execution time for the cal-
culation of state transition probabilities of the modified product
machine Ptr(πi, π j) and the calculation of absorption probabilities
Pabs(πi) accounts for a very large portion of the total execution
time. If the number of FFs in the original circuit is k, the number
of states in the modified product machine is 22k in the worst case.
Let |Ip| be the number of input vectors of the modified product
machine. If the state transition probabilities Ptr(πi, π j) are cal-
culated using logic simulation, then logic simulation is executed
22k×|Ip| times. If the simultaneous linear equations are solved us-
ing a Gaussian elimination method, the execution time is propor-
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tional to the number of variables to the power of three. Because
the number of variables is the number of states of the modified
product machine, the execution time to obtain absorption proba-
bilities Pabs(πi) is proportional to (22k)3 = 26k in the worst case.

4. Two Acceleration Techniques

The aim of the two proposed acceleration techniques is a reduc-
tion in the execution time when the proposed procedure is applied
to larger scale circuits. The calculation of the absorption proba-
bilities accounts for a large portion of the execution time. The
two acceleration techniques reduce the number of variables in the
simultaneous linear equations. The first technique involves di-
viding the simultaneous linear equations and solving the divided
equations several times. Hence, the first technique reduces the
number of variables in each divided equation. Next, there are
certain variables whose values can be obtained without solving
the simultaneous linear equations. In the second technique, these
variables are identified and removed from the simultaneous lin-
ear equations. Hence, the second technique reduces the number
of variables in the overall simultaneous linear equations.

4.1 Dividing the Simultaneous Linear Equations
When the absorption probability Pabs(πi) of an MPM state πi is

obtained, it is unnecessary to solve the simultaneous linear equa-
tions whose variables correspond to Pabs(π j) for all π j ∈ Π. Let
R(πi) be the set of all MPM states that are reachable from the
MPM state πi. Pabs(πi) can be obtained by solving the simultane-
ous linear equations whose variables correspond to Pabs(π j) for
only all π j ∈ R(πi). The number of states in R(πi) for each initial
state πi ∈ Πinit is equal to or less than the number of all the MPM
states.

In general, the total execution time to solve all divided simulta-
neous linear equations decreases. Let Nvorg be the number of vari-
ables of an original simultaneous linear equation; Nd, the number
by which the original simultaneous linear equations are divided;
and Nvmax , the maximum number of variables for all the divided
simultaneous linear equations. The computational complex to
solve the original simultaneous linear equations is O(Nvorg

3), and
the computational complex to solve all the divided simultaneous
linear equations is O(Nd × Nvmax

3). If Nd × Nvmax
3 is smaller than

Nvorg
3, the total execution time to solve all the divided simultane-

ous linear equations decreases.
Figure 4 shows an example of the divided MPM states. In

Fig. 4, π1 and π2 are the initial states, πi(3 ≤ i ≤ 8) are the tran-
sient states, and π f is the failure state. When absorption prob-
abilities of both π1 and π2 are obtained by solving the simulta-
neous linear equations without dividing the simultaneous linear
equations, the number of variables is 8. To obtain the absorp-
tion probability of π1, it is necessary to solve the simultaneous
linear equations whose variables are Pabs(π) for all π ∈ R(π1).
The number of elements in R(π1) = {π1, π3, π4, π6, π7, π8} is 6.
The number of elements in R(π2) = {π2, π4, π5, π7, π8} is 5. Since
2 × 63 is smaller than 83, dividing the simultaneous linear equa-
tions reduces the total execution time of solving the simultaneous
linear equations.

In this acceleration technique, there might be some MPM states

Fig. 4 Example of dividing MPM states.

that are reachable from different initial states. For such states,
it is unnecessary to calculate the absorption probability multiple
times.

4.2 Removing Pre-failure States
The absorption probability Pabs(πp f ) of a specific MPM state

πp f is obtained without solving the simultaneous linear equations.
The specific MPM state πp f is a transient state whose next state
is the failure state by any input vector and is hence called the pre-
failure state. The absorption probability of a pre-failure state πp f

is shown in Eq. (6).

Pabs(πp f ) = Ptr(πp f , π f ) +
∑

π j∈Πt

Ptr(πp f , π j) · Pabs(π j)

= Ptr(πp f , π f )

= 1 (6)

According to the definition of pre-failure state, all the state
transition probabilities Ptr(πp f , π j) are 0 and both the state transi-
tion probability Ptr(πp f , π f ) and absorption probability Pabs(πp f )
are 1. The variables of pre-failure states can be removed from
the simultaneous linear equations to obtain absorption probabili-
ties. Therefore, the number of variables of the simultaneous lin-
ear equations and the execution time to solve these equations are
reduced by removing the variables of the pre-failure states. Let
Πp f ⊆ Πt be the set of pre-failure states. The absorption proba-
bility Pabs(πi) of a state πi ∈ Π is shown in Eq. (7).

Pabs(πi) = Ptr(πi, π f ) +
∑

πk∈Πp f

Ptr(πi, πk)

+
∑

π j∈{Πt−Πp f }
Ptr(πi, π j)Pabs(π j) (7)

5. Experimental Results

In this section, we discuss the experimental assessment of the
proposed procedure and two acceleration techniques. The proce-
dure is implemented on C++. The machine for the experiments
is equipped with Intel Xeon 3.3 GHz and 32 GB memory. The
benchmark circuits are chosen from the ISCAS’89 and MCNC
suite. Logic simulation is employed to obtain state transition
probabilities. In these experiments, four assumptions are made:
soft errors occur only at FFs, a soft error occurs only once, the
occurrence probability of each input vector is uniform, and the
probability that the value of an FF is flipped is uniform. The sus-
ceptibility of an FF is a measure of the soft error tolerance for
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sequential circuits and is defined as the probability that a failure
value that is flipped on the FF appears at the primary outputs. The
susceptibilities of FFs are calculated from the absorption proba-
bilities. In these experiments, we use the susceptibilities of FFs
as the soft error tolerance of the sequential circuits. The suscepti-
bilities of FFs are calculated using four implementation methods.
• naive: a naive implementation
• partition: an implementation with divided states
• pre-failure: an implementation with reduced pre-failure

states
• partition+pre-failure: an implementation with divided

states and reduced pre-failure states
Table 1 lists the susceptibilities of FFs. In Table 1, “bench,”

“sum,” “max,” and “min” denote the circuit name, the sum of
the susceptibilities for all the FFs, the maximum susceptibil-
ities for all the FFs, and the minimum susceptibilities for all
the FFs, respectively. Please note that the “min” value for
s382, i.e., “<1.00E-16” indicates that susceptibility was less than
1.00×10−16. If the probabilities that the values of FFs are flipped
are uniform, then “sum” shows a soft error tolerance for all FFs
in the sequential circuits. Both maximum and minimum suscepti-
bilities of s27 are small and those of s208.1 are 1. The difference
between the maximum susceptibilities of s382 and the minimum

Table 1 Susceptibilities of FFs.

bench sum max min
s27 0.59992 0.22829 0.14544
s820 4.21529 0.99954 0.75932
s386 4.19913 0.87852 0.61663
s510 5.87054 1.00000 0.90094
s1488 5.70505 0.99984 0.79583
s208.1 8.00000 1.00000 1.00000
mm4a 1.24260 0.25000 0.00367
s298 9.74507 1.00000 0.10728
s344 11.23206 1.00000 0.15137
s1196 3.36120 1.00000 0.00014
s382 7.50005 1.00000 <1.00E-16

Table 2 Comparison of proposed method with estimation method using k−time expansion model.

circuit method susceptibility
FF1 FF2 FF3 FF4 FF5 FF6 FF7 FF8 FF9 FF10 FF11 FF12 FF13 FF14

exact 0.2283 0.2262 0.1454
s27 1−time 0.2283 0.2262 0.3086

2−time 0.2283 0.2262 0.1765
exact 0.9264 0.9995 0.7594 0.7593 0.7707

s820 1−time 0.9448 0.9996 0.7594 0.7594 0.7994
2−time 0.9310 0.9996 0.7594 0.7593 0.7742
exact 0.6319 0.6166 0.7970 0.8785 0.6423 0.6327

s386 1−time 0.6789 0.6634 0.8031 0.8846 0.6938 0.6540
2−time 0.6352 0.6167 0.7972 0.8786 0.6469 0.6328
exact 0.9900 0.8976 0.9397 0.9921 0.9809 1.0000

s510 1−time 1.0000 0.9575 1.0000 1.0000 0.9858 1.0000
2−time 0.9988 0.9198 1.0000 0.9965 0.9823 1.0000
exact 0.9616 0.9894 0.9972 0.9998 0.9612 0.7958

s1488 1−time 0.9616 0.9894 0.9973 0.9999 0.9617 0.7958
2−time 0.9616 0.9894 0.9972 0.9999 0.9617 0.7958
exact 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

s208.1 1−time 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2−time 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
exact 0.2500 0.2500 0.2500 0.2500 0.0115 0.0218 0.0364 0.0655 0.0037 0.0150 0.0297 0.0589

mm4a 1−time 0.2500 0.2500 0.2500 0.2500 0.0150 0.0223 0.0369 0.0660 0.0150 0.0223 0.0369 0.0660
2−time 0.2500 0.2500 0.2500 0.2500 0.0117 0.0219 0.0365 0.0656 0.0040 0.0151 0.0298 0.0591
exact 0.1073 0.1957 0.3331 0.9179 0.7951 0.9991 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.1136 0.2832

s298 1−time 0.5007 0.5620 0.5625 0.9381 0.8814 0.9991 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5007 0.5000
2−time 0.2901 0.3547 0.3905 0.9228 0.8265 0.9991 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.2516 0.3812

susceptibilities of s382 is very large.
Table 2 shows the accuracy of the estimation method using

k−time expansion model. In the estimation method using k−time
expansion model [3], the failure of the sequential circuits is the
case that the failure values appear at any primary output or any
input of FF on k−time frame. This table lists the susceptibility of
each FF. In this table, “method,” “exact,” “1−time,” and “2−time”
denote the evaluation methods, the exact proposed method for se-
quential circuits, the estimation method using 1−time expansion
model and the estimation method using 2−time expansion model,
respectively. The difference between the probability of the ex-
act method and the probability of the estimation method using
k−time expansion model gives the probability that failure values
propagate to any FF on k−time frame and that the failure values
do not appear at any primary output. The difference between the
probability of the exact method and the probability of the estima-
tion method using 2−time expansion model is small for all the
FFs of s820, s386, s510, s1488, s208.1, and mm4a and large for
FF3 of s27 and some of the FFs of s298. The susceptibilities of
all the FFs in all the benchmark circuits are overestimated by the
method using k−time expansion model.

Tables 3 and 4 show the execution time and number of vari-
ables, respectively, for various circuits. In Table 3, “#input”
and “#FF” denote the number of inputs and number of FFs in
the benchmark circuits, respectively. In Table 3, “total” and
“abs prob” denote the total execution time of the entire proposed
procedure and the execution time for only the calculation of the
absorption probabilities in the proposed procedure, respectively.
“< 0.01” and “—” indicate that execution time was less than 0.01
seconds and execution time was more than 3 days, respectively.
In Table 4, “#variables,” “max,” and “sum” denote the number of
variables, the maximum number of variables for all the divided
state sets, and the total number of variables for all the divided
state sets, respectively.
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Table 3 Execution time.

time[sec]
bench #input #FF naive partition pre-failure partition+pre-failure k−time expansion

total abs prob total abs prob total abs prob total abs prob 1−time 2−time
s27 4 3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01
s820 18 5 93.44 <0.01 92.16 <0.01 93.27 <0.0 92.37 <0.01 59.62 —
s386 7 5 0.03 <0.01 0.02 <0.01 0.02 <0.01 0.03 <0.01 0.01 2.13
s510 19 6 416.80 <0.01 416.93 <0.01 414.34 <0.01 410.24 <0.01 168.52 —
s1488 8 6 0.28 <0.01 0.28 <0.01 0.33 <0.01 0.34 <0.01 0.25 126.99
s208.1 10 8 7.98 0.03 7.87 <0.01 7.98 0.03 7.85 <0.01 1.14 1959.30
mm4a 7 12 4.77 0.30 4.60 0.06 4.80 0.30 4.59 0.06 1.30 132.56
s298 3 14 0.49 0.11 0.46 0.03 0.44 0.03 0.45 0.02 0.13 0.34
s344 9 15 12,646.09 11,522.14 5,865.96 4,750.53 1,111.54 3.79 1,109.52 2.16 39.98 13448.40
s1196 14 18 4,076.59 372.44 3,863.48 0.91 3,873.84 19.64 3,865.78 0.86 1912.65 —
s382 3 21 8,9398.83 8,7834.66 6,5208.42 6,4923.48 6,3091.25 61,536.03 42,788.79 41,180.84 809.39 818.87

Table 4 Number of variables.

#unknown
bench #input #FF naive partition pre-failure partition+pre-failure

max sum max sum
s27 4 3 18 6 18 18 6 18
s820 18 5 186 94 280 108 79 196
s386 7 5 91 30 144 77 25 126
s510 19 6 452 97 486 97 24 100
s1488 8 6 350 72 374 63 16 71
s208.1 10 8 3,840 512 3,840 3,840 512 3,840
mm4a 7 12 10,577 1,328 12,661 10,577 1,328 12,661
s298 3 14 6,332 1,645 7,730 3,192 1,102 4,144
s344 9 15 678,160 266,901 806,399 33,145 14,125 41,590
s1196 14 18 47,656 4,422 51,681 42,346 4,422 45,958
s382 3 21 1,502,857 777,881 2,217,277 1,150,087 642,249 1,738,535

The execution time of the proposed method for s344 is 1,100
seconds; which is up to 10 times lesser than that of a naive
method. In all the circuits expect s382, the execution times of
proposed method are lesser than the execution time of the estima-
tion method of 2−time expansion model. This is because the exe-
cution time for the estimation method of k−time expansion model
exponentially increases with k. In all the circuits except s382, the
abs prob time is very short. The execution time exponentially in-
creases with the number of FFs. This is because the execution
time for logic simulation in order to obtain the state transition
probabilities of the original circuit and the modified product ma-
chine is very long.

The total number of variables involved in the partition imple-
mentation is close to the total number of variables involved in
the naive implementation. The number of transient states that are
reachable from different initial states is small. On the other hand,
the total execution time for small benchmark circuits does not de-
crease because the number of FFs in these circuits and the number
of all the MPM states are small.

The number of variables involved in the acceleration method
does not exponentially increase with the number of FFs in all the
benchmark circuits. Because the number of FFs in the original
circuit increases, the initial states and the number of divisions
also increases exponentially.

6. Conclusion

In this paper, we proposed a procedure for the exact estima-
tion of error propagation probability of sequential circuits and
also proposed two acceleration techniques that involve dividing
simultaneous linear equations into small problems and remov-

ing the variables of pre-failure states. Experimental results show
the susceptibilities of FFs in various sequential circuits. The to-
tal execution time for the proposed method is found to be up to
10 times lesser than that for a naive implementation. However,
there are still a few processes in this method, which are proving
to be bottlenecks, for instance, the calculation of the state tran-
sition probabilities of the modified product machine. One topic
for research is the acceleration of the calculation of state transi-
tion probabilities in order to apply the exact estimation method to
larger scale circuits. Another topic for future research is the de-
velopment of a heuristic estimation method for sequential circuits
with accuracy assurance.
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