
IPSJ Transactions on System LSI Design Methodology Vol.5 55–62 (Feb. 2012)

[DOI: 10.2197/ipsjtsldm.5.55]

Regular Paper

A Robust Algorithm for Pessimistic Analysis of
Logic Masking Effects in Combinational Circuits

Taiga Takata1,a) YusukeMatsunaga1

Received: May 27, 2011, Revised: September 2, 2011,
Accepted: October 19, 2011, Released: February 21, 2012

Abstract: Analyzing logic masking effects is an important key to evaluate soft error tolerance of circuits. The com-
puting complexity of analyzing logic masking effects exactly is proportional to the square of circuit size, which is
unacceptable to achieve a scalable analyzer. This paper shows a robust algorithm to analyze logic masking effects
pessimistically with multiple CODCs (Compatible combinations of Observability Don’t Cares). It is guaranteed that
an upper bound of the susceptibility of each gate is estimated using the proposed algorithm. The computing complex-
ity of the proposed algorithm is proportional to circuit size. Experimental results show that the proposed algorithm
runs about 91 times faster than an algorithm which analyzes logic masking effects exactly with fault simulation. The
proposed algorithm estimates average susceptibility 11.5% larger than that of the exact algorithm for circuits in ITC’99
benchmark set. The state-of-the-art heuristic AnS ER estimates average susceptibility with 96% underestimation for
circuits protected with partial TMR (Triple Modular Redundancy) on average, which can be fatal error for soft error
tolerance evaluation. On the other hand, the proposed algorithm estimates average susceptibility with 37.9% overesti-
mation for such circuits on average. The proposed algorithm is useful to estimate an upper bound of the susceptibility
of each gate quickly.

Keywords: soft error, logic masking, don’t care

1. Introduction

Soft errors are transient errors which are temporary inversions
of the output values of logic gates or incorrect bit flips of the val-
ues held in flip-flops (FFs), caused by collisions of neutrons or
alpha particles with silicon atoms in circuits. As transistor size
shrinks, a particle strike could be more likely to cause a soft er-
ror. Soft errors can cause failures which mean incorrect values
observed at primary outputs of circuits. Thus, soft errors are be-
coming an important issue for dependable circuit designs.

Soft error tolerance of circuits generally vary according to in-
dividual design. Thus, designers are needed to evaluate soft error
tolerance of circuits quantitatively to know whether required re-
liabilities have been achieved or not at design phases. Generally,
not all soft errors cause failures. It has been known that many
soft errors can be masked and do not lead to failures. Thus, sus-
ceptibility of each gate, which means probability that an error
occurring at the gate causes one or more failures, is an important
information to evaluate soft error tolerance of a circuit. Further-
more, the susceptibility of each gate can be useful information to
guide some techniques to mitigate failures with small overhead
of delay, area or power. The susceptibility of each gate depends
on the following three factors [6].
• Logic masking

An error propagated at an input of a gate may not be prop-

1 Department of Computer Science and Communication Engineering,
Kyushu University, Fukuoka 819–0395, Japan

a) taiga@soc.ait.kyushu-u.ac.jp

agated to the output of the gate due to the logic function of
the gate. For example, if an input value of an AND gate is 0,
an error at another input does not affect the output value of
the gate.

• Electrical masking
If an error occurring at an input of a gate is a short inversion
of the value, it may be masked due to the electrical property
of the gate.

• Latching-window masking
If an error which is propagated to the input of an FF does not
satisfy the setup and hold time conditions, it may be masked
without being latched in the FF.

Analyzing the effects of each masking factor is the important key
to estimate the susceptibility of each gate accurately. This paper
focuses on the analysis of logic masking effects in combinational
circuits. Analyzing logic masking effects and ignoring electrical
masking and latching-window masking, an upper bound for the
susceptibility of each gate can be estimated.

Whether an error is masked with logic masking effects or not
depends on not only the error location and the structure of the
combinational circuit but also the output value of each gate *1.
The output value of each gate depends on an input vector. Since

This work is partially based on the presentation in the 17th IEEE Inter-
national On-Line Testing Symposium, Athens, Greece, July 2011.

*1 Whether an error is masked with logic masking effects or not does not
depend on the duration of the error. On the other hand, the duration of
an error affects electrical masking and latching-window masking. If an
error is a long inversion of a value, it is hard to be masked due to the
electrical property of a gate, and it tends to be latched into an FF due to
satisfying the setup and hold time conditions.

c© 2012 Information Processing Society of Japan 55

IPSJ Transactions on System LSI Design Methodology Vol.5 55–62 (Feb. 2012)

the number of all the input vectors increases exponentially with
the number of primary inputs, it is difficult to check whether an
error is logically masked or not for each of all the input vec-
tors in large-scale circuits. Several methods to evaluate soft error
tolerance of circuits [6], [11] employ Binary Decision Diagrams
(BDDs) to represent functions whose domain is the set of all the
input vectors efficiently. The exponential complexity, however,
cannot be avoided with employing BDDs in the worst case. In
this paper, a set of sampled input vectors is assumed to be given.
The susceptibility of each gate is approximated with the ratio of
the sampled input vectors where errors occurring at the gate are
not masked with logic masking effects.

Observability don’t care (ODC) is a useful idea for the analy-
sis of logic masking effects, while it is often employed for logic
optimization in combinational circuits. ODC of a gate is an input
vector where the output of the gate does not affect any value of
primary outputs. The maximum set of ODCs (MODC) of a gate
is the set of all the ODCs of the gate in the set of sampled input
vectors. Using the MODC of a gate, the susceptibility of the gate
is estimated as the ratio of the input vectors which is not included
in the MODC. The computing complexity of the MODCs for all
the gates, however, is proportional to the square of circuit size,
which is unacceptable to achieve a scalable analyzer.

AnS ER [2] is a method to analyze logic masking effects in
combinational circuits using approximate MODCs employed in
Ref. [8]. The computing complexity of AnS ER is proportional
to circuit size. While an approximate MODC computed with
AnS ER may fail to include some ODCs, it may include some
not-ODC input vectors. Thus, the size of an approximate MODC
may larger than the MODC, which may result in optimistic anal-
ysis of susceptibility. AnS ER tends to underestimate susceptibil-
ity especially for circuits partially protected with spatial redun-
dancy, which seems to be not suitable for dependable circuit de-
signs. On the other hand, a compatible combination of ODC sets
(CODC) [1], [9] can be used to estimate the susceptibility of each
gate pessimistically. A CODC is a combination of ODC sets for
all the gates, where any value of primary outputs is not affected
even if the output values of multiple gates are inverted simulta-
neously for an input vector commonly included in the ODC sets
of the gates. The ODC set of each gate in a CODC is a subset of
the MODC. Thus, the analysis for the susceptibility of each gate
is guaranteed to be pessimistic for any circuit. The computing
complexity of a CODC is proportional to circuit size. The ODC
set of each gate in a CODC depends on given priority order of the
inputs of each gate. The ODC set of a gate in one CODC is often
too small to be used as an approximate MODC, which results in
too pessimistic analysis.

This paper presents a robust algorithm to estimate the suscep-
tibility of each gate using an approximate MODC based on mul-
tiple CODCs. At first, a constant number of different CODCs are
calculated with variant priority orders of the inputs of each gate.
Then, the union of the ODC sets in the CODCs is calculated for
each gate. The union is considered as an approximate MODC of
the gate. Since the ODC set for a gate in a CODC is a subset of
the MODC, the union is also a subset of the MODC. Thus, the
proposed algorithm is guaranteed to estimate the susceptibility of

each gate pessimistically for any circuit. During a CODC calcu-
lation, the algorithm employs a heuristic technique to maximize
the number of ODCs. The technique is to decide priority order
of the inputs of each gate with considering the CODCs already
calculated. The computing complexity of the algorithm is propor-
tional to circuit size. Experimental results show that the proposed
algorithm runs about 91 times faster than an algorithm which es-
timates the susceptibility of each gate using the exact MODCs.
The average susceptibility computed with the proposed algorithm
is about 11.5% larger than that computed with the exact MODCs
for original circuits in ITC’99 benchmark set. Furthermore, the
proposed algorithm estimates average susceptibility 37.9% larger
than that for circuits protected with partial TMR, while AnS ER

estimates average susceptibility 96% smaller than that on aver-
age. The proposed algorithm is reasonable to estimate an upper
bound of the susceptibility of each gate quickly, while AnS ER

may underestimate it significantly.
The rest of this paper is organized as the following. Section 2

describes several preliminaries. Section 3 shows the proposed
algorithm. Section 4 presents a short description about an algo-
rithm to compute the exact MODCs and AnS ER. Experimental
results are shown in Section 5. Section 6 concludes this paper.

2. Preliminaries

2.1 Boolean Network
In this section, Boolean network is defined to model combina-

tional circuits.
Boolean network is DAG (Directed Acyclic Graph). Each

node in a Boolean network represents a Boolean function. Let
G denote a Boolean network. Then, V(G) and E(G) denote the
set of all the nodes and the set of all the edges, respectively. A
fanin of a node v is an immediate predecessor of v. The set of
all the fanins of v is defined by FI(v) = {u | ∃(u, v) ∈ E}. A
fanout of a node v is an immediate successor of v. The set of all
the fanouts of v is defined by FO(v) = {w | ∃(v, w) ∈ E}. A node
v with FI(v) = φ is called a primary input. One or more nodes
are labelled as primary output. PI(G) and PO(G) denotes the
set of all the primary inputs and the set of all the primary outputs
of G, respectively. If the length of a bit vector i is |PI(G)| and
if a bijection function from bits in i to all the primary inputs is
defined, then i is called an input vector of G.

The Boolean function of node v ∈ V(G) itself is called lo-
cal function of v, and denoted by fv : B|FI(v)| → B. On the
other hand, the Boolean function from input vectors to the out-
put values of v is called global function of v, and denoted by
Fv : B|PI(G)| → B. The global function of a primary input is a
Boolean variable which represents the value of the primary input
itself. Otherwise, Fv ≡ fv(Fv0 , Fv1 , ..., Fvn), where FI(v) is repre-
sented by {v0, v1, ..., vn}.

2.2 Maximum Set of Observability Don’t Cares (MODC)
If the value at the output of a node v does not affect any value of

primary outputs for an input vector i, then i is called an observ-
ability don’t care (ODC) of v. More exact definition of ODC is
the following.

Replacing a node v ∈ V(G) with another node v′ denotes an op-

c© 2012 Information Processing Society of Japan 56

IPSJ Transactions on System LSI Design Methodology Vol.5 55–62 (Feb. 2012)

eration which removes edge (v, w) from E(G) for each w ∈ FO(v)
and adds edge (v′, w) to E(G). Then, the global function of each
w ∈ FO(v) changes from fw(..., Fv, ...) to fw(..., Fv′ , ...). Please no-
tice that the global function of each node after replacing does not
depend on the local function of v′. Let G′ denote a Boolean net-
work which is obtained with replacing node v ∈ V(G) with node
v′, and let po : PO(G) → PO(G′) denote a bijection function
which represents correspondences of primary outputs between G

and G′. If the condition ∀o ∈ PO(G), Fo ≡ Fpo(o) is met, then the
global function Fv′ is called a permissible function of v. If and
only if the following function F′ is a permissible function of v, an
input vector i is an ODC of v.

F′(x) =

⎧⎪⎪⎨⎪⎪⎩
Fv(x) if x = i

Fv(x) otherwise

Figure 1 shows an example of a Boolean network. Let an input
vector abcd be 1000. Then, the values of n,m, h, k are 0, 0, 1, 0,
respectively. Even if the value of h is inverted, the value of k stays
0, which indicates that 1000 is an ODC of h. On the other hand,
if the value of m is inverted, the value of K changes to 1, which
indicates that 1000 is not ODC of m.

Let I denote a given set of input vectors. The maximum set
of observability don’t cares (MODC) of a node v is the set of
all the ODCs which are included in I. Then, the susceptibility
of a node v for a given set of input vectors, which is denoted by
S CP(v, I), is defined with the following equation.

S CP(v, I) =
|I − MODC(v, I)|

|I| (1)

MODC(v, I) in the above equation denotes the MODC of v. The
MODC of a node v can be calculated with employing fault simu-
lation. The detail of the algorithm is described in Section 4.1.

Fig. 1 An example of a Boolean network.

Table 1 MODCs and an example of CODC for Fig. 1.

h m n
abcd Fh MODC CODC Fm MODC CODC Fn MODC CODC
0000 0 1 1 0 1 0 0 0 0
0001 0 0 0 1 1 1 0 0 0
0010 0 1 1 0 1 0 0 0 0
0011 0 0 0 1 1 1 0 0 0
0100 0 1 1 0 1 0 0 0 0
0101 0 0 0 1 1 1 0 0 0
0110 1 0 0 1 0 0 1 0 0
0111 1 0 0 1 0 0 1 1 1
1000 1 1 1 0 0 0 0 0 0
1001 1 0 0 1 0 0 0 1 1
1010 1 1 1 0 0 0 0 0 0
1011 1 0 0 1 0 0 0 1 1
1100 1 1 1 0 0 0 0 0 0
1101 1 0 0 1 0 0 0 1 1
1110 1 0 0 1 0 0 1 0 0
1111 1 0 0 1 0 0 1 1 1

2.3 Compatible Combination of ODC Sets (CODC)
Let ODCS be a combination of ODC sets for all the nodes,

and let ODCs(v) be the set of ODCs for a node v contained in the
ODCS . Let V ′ be arbitrary subset of V(G) and let i be arbitrary
input vector which is commonly included in ODCs(v) for each v ∈
V ′. If any values of primary outputs are not affected with simulta-
neously inverting output values of nodes in V ′ for i, then ODCS

is called a compatible combination of ODC sets (CODC) [1],
[9]. More exact definition of CODC is the following.

Onset ON(F) for a Boolean function F is the set of input vec-
tors defined with ON(F) = {i|F(i) = 1}. Let IV be a subset of
ODCs(v). Then, the following PF(v, IV,ODCs(v)) represents a
permissible function of v which is obtained with making the out-
put value of v to be 1 for input vectors in IV and making that to
be 0 for the input vectors in ODCs(v) − IV .

PF(v, IV,ODCs(v))(x)

=

⎧⎪⎪⎨⎪⎪⎩
1 if x ∈ (ON(Fv) − ODCs(v)) ∪ IV

0 otherwise

The following S PF(v,ODCs(v)) represents a set of all the per-
missible functions of vwhich are obtained with making the output
value to be 0 or 1 for each i ∈ ODCs(v).

S PF(v,ODCs(v)) =
⋃

IV∈Power(ODCs(v))

{PF(v, IV,ODCs(v))}

Power(S) denotes the power set of S . Then, ODCS which de-
notes a combination of ODC sets for all the nodes is a CODC if
and only if the following condition is met for any set V ′ ⊆ V(G).
• Replacing each node v ∈ V ′ with a node v′ whose

global function is selected from S PF(v,ODCs(v)) arbitrar-
ily. Please notice that the global function of each node
w � V ′ does not depends on the local function of v′. Let
G′ be a Boolean network obtained with the above multiple
replacing, and let po : PO(G)→ PO(G′) be a bijection func-
tion which represents correspondences of primary outputs
between G and G′. Then, the condition ∀o ∈ PO(G), Fo ≡
Fpo(o) is met.

Multiple CODCs can exist for a Boolean network G and a given
set of input vectors I. ODCs(v) for a node v in a CODC is a subset
of the MODC of v [9].

Table 1 shows that the MODCs and an example of CODC for

c© 2012 Information Processing Society of Japan 57

IPSJ Transactions on System LSI Design Methodology Vol.5 55–62 (Feb. 2012)

h, m, n in Fig. 1. “MODC” in Table 1 is 1 if and only if an input
vector is included in the MODC. Similarly, “CODC” in Table 1
is 1 if and only if an input vector is included in the set of ODCs in
the CODC. Since there is no ODC of k, it is omitted. Input vector
0000 and 0100 is included in the MODC of h and the MODC of
m. If the output values of h and m are inverted simultaneously,
the output value of k is also inverted. Thus, in any CODC, 0000
and 0100 cannot be included in both the ODC set of h and that of
m. 0000 and 0100 are not included in ODCs(m) in this example.

Saboj proposed a method to calculate a CODC [9]. Let
CODC(v, i) be a Boolean function that returns 1 if and only
if an input vector i is included in ODCs(v) in a CODC. Fur-
thermore, ODC is also defined for each edge in paper [9]. Let
CODC((v, w), i) denotes a Boolean function which returns 1 if
and only if i is included in the ODC set of edge (v, w) in
a CODC. In topological order from primary outputs to pri-
mary inputs, for each node v and each edge (w, x), CODC(v, i)
and CODC((w, x), i) is calculated. For any primary output o,
CODC(o, i) = 0. CODC(v, i) is calculated with the following
expression for v � PO(G) and i ∈ I.

CODC(v, i) =
∏

w∈FO(v)

CODC((v, w), i) (2)

The detailed notation of CODC((v, w), i) is shown in Ref. [9]. In
this paper, CODC((v, w), i) is shown where the local function of
w is AND. Let FI(w) be {v0, ..., vp, ..., vn} and the priority order
of nodes in FI(w) be v0 ≺ ... ≺ vp ≺ ... ≺ vn. If there is a fanin
vq ∈ FI(w)−{vp} where Fvq (i) = 0, then Fw(i) does not depend on
the value of Fvp . Even if the above condition is met, if Fvp (i) = 0
and if there is no fanin vq ∈ {v0, ..., vp−1} where Fvq (i) = 0, Fvp (i)
must be guaranteed to be 0. Thus, CODC((vp, w), i) is calculated
with the following equation.

CODC((v, w), i)

= CODC(w, i) + (
∏

vq∈FI(w)−{vp}
Fvq (i))(Fvp (i) +

p−1∏

q=0

Fvq (i)) (3)

Any node whose local function is not AND can be converted into
a tree constructed with ANDs and inverters. Let G′ be a Boolean
network obtained with converting all the nodes whose local func-
tion is not AND in G into trees constructed with ANDs and in-
verters. Let ROOT : V(G) → V(G′) be a function which returns
the root of a tree which is generated from a node v ∈ V(G). Then,
a CODC of G is obtained with setting the ODC set of ROOT (v)
as the ODC set of v for each v ∈ V(G), where the ODC set of
ROOT (v) is in a CODC computed for G′ using Eqs. (2) and (3).

If |FI(v)| is assumed to be constant at most, the computing
complexity of CODC(v, i) for all the nodes and the computing
complexity of CODC((w, x), i) for all the edges are O(|V(G)|) per
an input vector i. Thus, the computing complexity of a CODC
is O(|I||V(G)|). As shown in the above, a CODC depends on the
priority orders of fanins for each node.

3. A Robust Heuristic to Approximate MODC
Based on Multiple CODCs

3.1 Overview
Given a Boolean network G and a set of input vectors I, an

ApproximateMODC(network G, input vector set I, integer X){
1: for each v ∈ V(G) {
2: AppMODC[v]← {};

}
3: for each i ∈ I {
4: for each v ∈ V(G) in topological order from PI to PO {
5: Computing the output value of v;

}
6: for (int x = 0; x != X; ++x){
7: for each v ∈ V(G) in topological order from PO to PI {
8: Computing CODC(v, i);

9: Setting a priority order of fanins of v;

10: for each w ∈ FI(v) {
11: Computing CODC((w, v), i);

}
// CODC((w, v), i) and CODC(v, i) are

// described in section 2.3.

12: if (CODC(v, i) = true) {
13: AppMODC[v]← AppMODC[v] ∪ {i};

}
}

}
}

14: return AppMODC;

}
Fig. 2 A pseudo code of the proposed algorithm.

algorithm to calculate approximate MODCs for all the nodes is
proposed. The framework of the algorithm is the following.
(1) Multiple CODCs are calculated with variant priority orders

of fanins of each node.
(2) The union of the ODC sets for all the CODCs is calculated

for each v as an approximate MODC of v.
Let {CODC0,CODC1, ...,CODCX−1} be the set of the calculated
CODCs where X CODCs are calculated. Let ODCsx(v) be the
ODC set of v in CODCx. Then, the approximate MODC of v is
calculated with the following equation.

AppMODCv =
⋃

0≤x<X

ODCsx(v) (4)

Because ODCsx(v) is a subset of the MODC of v [9], AppMODCv
is also a subset of the MODC of v. Thus, the approximate suscep-
tibility AppS CP(v, I) shown at the following expression is guar-
anteed to be larger than S CP(v, I) for any node v in any Boolean
network.

AppS CP(v, I) =
|I − AppMODCv|

|I| (5)

Figure 2 shows a pseudo code of the algorithm to calculate
AppMODCv for all the nodes. The codes from line 8 to line 11 is
a process to calculate CODC(v, i) for each node v. If CODC(v, i)
is 1, i is added to AppMODC[v].

Since the complexity of computing a CODC for I is
O(|I||V(G)|), the complexity of computing X CODCs is also
O(X|I||V(G)|).

3.2 Decision of Priority Order of Fanins
During a CODC calculation, to maximize the number of ODCs

in the CODC, the proposed algorithm employs a heuristic tech-
nique to decide a priority order of the fanins of each node. As-
suming xth CODC calculation, the priority order of the fanins of

c© 2012 Information Processing Society of Japan 58

IPSJ Transactions on System LSI Design Methodology Vol.5 55–62 (Feb. 2012)

a node v is decided with considering the following information.
• CODC((w, t), i) which has already calculated in the current

xth CODC calculation, where w is a fanin of v, and t is an-
other node from v.

• A set of already calculated CODCs {CODC0,CODC1, ...,

CODCx−1}.
Let consider to set priority order of {(h, k), (m, k)} where the

output values of h, m, k are 0, 0, 0 for an input vector i in
Fig. 1. If an additional node w and an edge (h, w) exist, and if
CODC((h, w), i) has already decided to be 0, then i cannot be an
ODC of h in the xth CODC. Thus, the priority of (h, k) is set to
be lower than the other edge in this case. On the other hand, if i

has already included in AppMODCh during the past CODC cal-
culation, inducing i to be an ODC of h in the xth CODC is likely
to make almost nothing. Thus, the priority of (h, k) is also set to
be lower than the other edges in this case. For nodes with the
same priority under the above conditions, a random order is set to
them.

4. Related Works

4.1 An Exact Algorithm to Compute MODCs Using Fault
Simulation

This section briefly introduces an exact algorithm to compute
the MODC for each of all the nodes. The algorithm employs
fault simulation. Figure 3 shows a pseudo code of a naive algo-
rithm. Both the computing complexity of line 4 and that of line
6 is O(|V(G)|). The codes from line 6 to line 9 are executed for
|I||V(G)| times. Thus, the computing complexity of the algorithm
is O(|I||V(G)|2). There is a technique to speed up fault simulation
using Fanout Free Region (FFR) [10]. The computing complex-
ity O(|I||V(G)|2), however, cannot be avoided with employing the
technique in the worst case.

4.2 AnSER
AnS ER is the state-of-the-art heuristic to analyze logic mask-

ing effects with approximate MODCs. The procedure to calculate

ExactMODC(network G, input vector set I){
1: for each v ∈ V(G) {
2: MODC[v]← {};

}
3: for each i ∈ I {
4: Output values for all the nodes are computed;

5: for each v ∈ V(G) {
6: For a faulty circuit where v is inverted,

output values for all the successors of v is computed;

7: for each o ∈ PO(G) {
8: if the value of o for the faulty circuit is

different from that for the original circuit {
9: MODC[v]← MODC[v] ∪ {i};

break;

}
}

}
}

10: return MODC;

}
Fig. 3 A pseudo code of a naive algorithm to compute the exact MODCs.

approximate MODC [8] in AnS ER is similar to the procedure to
calculate CODC [9]. The difference is that AnS ER sets the high-
est priority for each of all the fanins of a node, while CODC com-
putation sets a priority order of fanins of a node.

Let G and I be a Boolean network G and a given set of input
vectors, respectively. Let ODCAnS (v, i) be a Boolean function that
is 1 if and only if an input vector i is included in the ODC set of
v. For any primary output o, ODCAnS (o, i) = 0. ODCAnS (v, i) is
calculated for v � PO(G) and i ∈ I by the following equation.

ODCAnS (v, i) =
∏

w∈FO(v)

ODCAnS ((v, w), i)

ODCAnS ((v, w), i) denotes a Boolean function that represents
whether i is an ODC of edge (v, w). ODCAnS ((v, w), i) is 1 if the
inversion of the value of (v, w) does not affect the output value of
w. If ODCAns(w, i) is 1, ODCAnS ((v, w), i) is also 1. Otherwise,
ODCAnS ((v, w), i) is 0. If the local function of node w is AND,
ODCAnS ((v, w), i) is calculated with the following equation.

ODCAnS ((v, w), i) = ODCAnS (w, i) +
∏

q∈FI(w)−{v}
Fq(i)

Please notice that ODCAns((v, w), i) is different from
CODC((v, w), i) in Eq. (3). An example of ODCAnS ((n, h), i) in
Fig. 1 is shown where i is 1111. Then, all the values of nodes n,
h, m, k are 1. Even if the value of (n, h) is inverted from 1 to 0,
the output value of h is still 1. Thus, ODCAnS ((n, h), i) is 1. On
the other hand, ODCAns((a, h), i) is also 1 in the same way. Both
ODCAnS ((a, h), i) and ODCAnS ((n, h), i) are 1 in this case, while
one of CODC((a, h), i) and CODC((n, h), i) must be 1.

AnS ER might be significantly inaccurate to analyze the sus-
ceptibility of each node for circuits protected with spatial redun-
dancy like partial TMR [7]. Partial TMR is a technique to mit-
igate soft error vulnerability of circuits with triplicating parts of
circuits. At first, an original circuit is parted into two sub-circuits
F1, F2. Then, F2 is triplicated. A voter is inserted to calcu-
late the majority vote of the outputs of the copies. Figure 4 il-
lustrates an example of a network which is protected with par-
tial TMR, where k0, k1, k2 are protected. The values of all the
nodes for an input vector i = 0110 are 1. ODCAnS ((k0, voter), i),
ODCAnS ((k1, voter), i) and ODCAnS ((k2, voter), i) are 1, since the
voter masks the inversion of one of the input values. Then,
ODCAnS (k0, i),ODCAnS (k1, i) and ODCAnS (k2, i) are 1. Since i

is an ODC for each of all the fanouts of h, ODCAnS (h, i) is 1. In
a similar way, ODCAnS (m, i) is also 1. Then, ODCAnS (n, i) is 1,
since i is judged as an ODC for each of all the fanouts of n. In
fact, however, i is not an ODC of n, h and m because an error at
n, h or m affects the output of the voter. Thus, an approximate

Fig. 4 A simple example of partial TMR.

c© 2012 Information Processing Society of Japan 59

IPSJ Transactions on System LSI Design Methodology Vol.5 55–62 (Feb. 2012)

Fig. 5 A sequential circuit and the unrolled circuit for multiple time frames.

MODC of a node v computed with AnS ER may smaller than the
MODC of v, which may results in underestimation of the suscep-
tibility of v. On the other hand, the proposed algorithm does not
make such mistakes because an approximate MODC computed
with the proposed algorithm is a subset of MODC. In the above
example, two of CODC((k0, voter), i), CODC((k1, voter), i) and
CODC((k2, voter), i) must be 0. That is because inverting two or
more values of k0, k1 and k2 simultaneously makes value inver-
sion of voter, which violates the condition to be a CODC. Then,
CODC(h, i), CODC(m, i), and CODC(n, i) is 0.

5. Experiments

5.1 Settings
Experimental results to evaluate the proposed algorithm are

shown in this section. The following algorithms are implemented
as programs using C + + program language.
• ex : an exact algorithm to compute MODCs with fault sim-

ulation. The speed-up technique [10] is employed.
• ans : AnS ER.
• codcs : the proposed algorithm.

Using the above algorithms, average susceptibility (ASCP) de-
noted with the following expression is calculated, where C and I

denote a circuit and a set of input vectors.

AS CP(C, I) =
1

|V(C)|
∑

v∈V(C)

S CP′(v, I)

V(C) denotes the set of all the gates in C. S CP′(v, I) for ex is
equal to S CP(v, I). S CP′(v, I) for ans and codcs is calculated
with the following expression, where AppMODC(v, I) denotes
the approximate MODC for v.

S CP′(v, I) =
|I − AppMODC(v, I)|

|I|
19200 input vectors are generated with random sampling to pre-
pare I.

The benchmark circuits are the 14 largest circuits in ITC’99
benchmark set. The number of gates of the benchmark circuits
ranges from about 10,000 to 90,000. Another 14 benchmark cir-
cuits are generated with protecting the above circuits with partial
TMR. 20% gates of all the gates for each original circuit are se-
lected in an order from primary outputs to primary inputs. The se-

Fig. 6 Experimental results for original b14.

lected gates are triplicated, and voters are inserted. All the bench-
mark circuits are sequential circuits. Each circuit is unrolled for
2 time frames as shown in Fig. 5 to be converted into a combi-
national circuit. The FFs immediately before the first time frame
are considered as pseudo primary inputs, while the FFs immedi-
ately after the last time frame are considered as pseudo primary
outputs.

The CPU of the computing machine is Intel Core i7 2.93 GHz,
and the memory size is 6 GB.

5.2 Impacts of the Heuristic Technique to Decide Priority
Orders

At first, the heuristic technique employed in codcs to decide
priority orders of the fanins of each node is evaluated. An algo-
rithm is implemented as a program rand codcs which estimates
the susceptibility of each gate in a similar way to codcs except
that priority orders are completely random.

Figures 6 and 7 show the results for original b14 and the results
for b14 protected with partial TMR, respectively. The horizontal
axis shows the number of CODCs. The vertical axis shows ASCP
calculated with the algorithms divided by ASCP calculated with
ex. Both the run-time of rand codcs and that of codcs are pro-
portional to the number of CODCs. If the number of CODCs is
the same, rand codcs is tend to be slightly faster. This results
show that codcs can estimate ASCP of b14 more accurate than
rand codcs for each number of CODCs. The similar results are

c© 2012 Information Processing Society of Japan 60

IPSJ Transactions on System LSI Design Methodology Vol.5 55–62 (Feb. 2012)

Table 2 Experimental results for original circuits.

ASCP Run-time
Circuit #Node ex ans codcs ans/ex codcs/ex ex (sec.) ans (sec.) codcs (sec.) ans/ex codcs/ex

b14 13320 0.108 0.108 0.118 100.2% 109.4% 255.4 0.7 6.1 0.3% 2.4%
b14 1 8977 0.149 0.150 0.165 100.1% 110.1% 136.7 0.4 3.6 0.3% 2.6%

b15 11419 0.236 0.238 0.270 100.6% 114.4% 304.2 0.6 5.7 0.2% 1.9%
b15 1 17107 0.171 0.170 0.198 99.4% 115.7% 484.5 0.9 8.2 0.2% 1.7%

b17 49489 0.181 0.182 0.218 100.4% 120.5% 5219.9 3.1 27.4 0.1% 0.5%
b17 1 51795 0.170 0.170 0.194 99.9% 114.3% 5662.9 3.4 29.9 0.1% 0.5%

b18 92281 0.183 0.182 0.198 99.4% 108.2% 47473.1 9.6 84.5 0.0% 0.2%
b18 1 86937 0.193 0.192 0.209 99.3% 108.1% 42312.7 8.7 76.8 0.0% 0.2%

b20 26754 0.121 0.120 0.132 99.7% 109.8% 1445.6 1.7 15.0 0.1% 1.0%
b20 1 18567 0.165 0.164 0.182 99.7% 110.6% 778.4 1.1 9.2 0.1% 1.2%

b21 27246 0.121 0.120 0.132 99.7% 109.8% 1438.4 1.6 14.4 0.1% 1.0%
b21 1 18679 0.167 0.167 0.185 99.8% 110.8% 759.3 1.0 9.4 0.1% 1.2%

b22 39679 0.123 0.123 0.134 99.9% 109.2% 3078.0 2.4 21.8 0.1% 0.7%
b22 1 28136 0.164 0.164 0.181 99.7% 110.4% 2053.0 1.8 15.9 0.1% 0.8%

Average 99.8% 111.5% 0.1% 1.1%

Table 3 Experimental results for protected with partial TMR.

ASCP Run-time
Circuit #Node ex ans codcs ans/ex codcs/ex ex (sec.) ans (sec.) codcs (sec.) ans/ex codcs/ex

b14 18946 0.0162 0.0030 0.0224 18.7% 137.8% 708.9 1.1 92.2 0.2% 13.0%
b14 1 12866 0.0357 0.0042 0.0403 11.7% 112.9% 334.1 0.7 59.3 0.2% 17.7%

b15 16504 0.1009 0.0042 0.1151 4.2% 114.1% 1170.4 1.1 90.7 0.1% 7.8%
b15 1 24468 0.0548 0.0029 0.0628 5.2% 114.7% 1635.1 1.5 123.7 0.1% 7.6%

b17 70793 0.0653 0.0014 0.0922 2.1% 141.1% 15464.2 4.8 390.2 0.0% 2.5%
b17 1 74024 0.0537 0.0013 0.0615 2.4% 114.6% 15691.2 5.3 426.2 0.0% 2.7%

b18 132531 0.0556 0.0002 0.0679 0.4% 122.1% 112794.0 14.6 1171.8 0.0% 1.0%
b18 1 125049 0.0625 0.0002 0.0756 0.3% 121.0% 100874.0 13.3 1082.5 0.0% 1.1%

b20 37965 0.0309 0.0007 0.0532 2.2% 172.1% 3186.4 2.6 214.2 0.1% 6.7%
b20 1 26505 0.0524 0.0008 0.0640 1.6% 122.2% 1971.2 1.6 142.1 0.1% 7.2%

b21 38655 0.0289 0.0007 0.0526 2.3% 181.8% 3009.6 2.5 203.8 0.1% 6.8%
b21 1 26661 0.0500 0.0008 0.0659 1.6% 131.7% 1853.2 1.7 140.8 0.1% 7.6%

b22 56305 0.0302 0.0004 0.0601 1.5% 198.8% 6698.9 3.7 310.3 0.1% 4.6%
b22 1 40147 0.0487 0.0005 0.0709 1.1% 145.6% 4635.2 2.8 235.4 0.1% 5.1%

Average 4.0% 137.9% 0.1% 6.5%

Fig. 7 Experimental results for b14 protected with partial TMR.

shown for each of all the other circuits. This results show that
the heuristic technique is effective to estimate susceptibility ac-
curately.

If the number of CODCs is small, adding a CODC leads to
large improvement in accuracy of ASCP for both algorithms. On
the other hand, if the number of CODCs is large, adding more
CODCs makes just a little improvement in accuracy.

5.3 Comparisons of the Proposed Algorithm and AnSER
Table 2 shows experimental results for original circuits, where

10 CODCs are employed. ans runs significantly faster than ex

for each of all the circuits. ans estimates ASCP with little error
for the original circuits. On the other hand, codcs overestimates

ASCP for all the circuits. codcs estimates ASCP about 11.5%
larger than ex on average. The run-time of codcs ranges from
0.2% to 2.6% for the run-time of ex. codc runs about 91 times
faster than ex on average.

Table 3 shows experimental results for circuits protected with
partial TMR, where 100 CODCs are employed. ans estimates
ASCP about 96% smaller than ex on average, which may be fatal
error to evaluate soft error tolerance. On the other hand, codcs

overestimates ASCP for all the circuits. codcs estimates ASCP
about 37.9% larger than ex on average. The run-time of codcs

ranges from 1.0% to 17.7% of the run-time of ex. codcs runs 15
times faster than ex on average. codcs is reasonable to estimate
an upper bound of the susceptibility of each node quickly, while
ans may underestimate it significantly.

6. Conclusions

This paper presents a robust algorithm to analyze logic mask-
ing effects pessimistically using multiple CODCs. Logic masking
analysis with the proposed algorithm is helpful to judge whether
required reliability has been achieved or not, since the logic mask-
ing analysis is guaranteed to be pessimistic, and it runs in reason-
able time. Experimental results show that the proposed algorithm
runs about 91 times faster than the algorithm which analyzes logic
masking effects exactly with employing fault simulation. The
proposed algorithm estimates average susceptibility about 11.5%
larger than that estimates with the exact algorithm. For circuits
protected with partial TMR, the proposed algorithm estimates av-

c© 2012 Information Processing Society of Japan 61

IPSJ Transactions on System LSI Design Methodology Vol.5 55–62 (Feb. 2012)

erage susceptibility with 37.9% overestimation, while AnS ER es-
timates it with 96% underestimation on average.

One of the future works is to study SAT (SATisfiability
problem)-based approach to analyze logic masking effects. It is
necessary to compare the proposed approach with SAT-based ap-
proaches to generate ODCs [3], [4], [5]. The future works also
include evaluating soft error rate with considering not only logic
masking effects but also electrical masking effects and temporary
masking effects.

Acknowledgments This work has been supported by
CREST-DVLSI of JST.

Reference

[1] Brayton, R.: Compatible Observability Don’t Cares Revisited, Proc.
2001 IEEE/ACM International Conference on Computer-aided design,
pp.618–623 (2001).

[2] Krishnaswamy, S., Plaza, S., Markov, I. and Hayes, J.: Signature-
based SER Analysis and Design of Logic Circuits, IEEE Trans. CAD
of Integrated Circuits and Systems, Vol.28, pp.74–86 (2009).

[3] Mishchenko, A. and Brayton, R.: SAT-Based Complete Don’t-care
Computation for Network Optimization, Proc. Conference on Design,
Automation and Test in Europe, pp.412–417 (2005).

[4] Mishchenko, A., Brayton, R., Jiang, J.-H.R. and Jang, S.: Scal-
able Don’t-care-based Logic Optimization and Resynthesis, Proc.
ACM/SIGDA International Symposium on FPGAs, pp.151–160
(2009).

[5] Mishchenko, A., Zhang, J., Sinha, S., Burch, J., Brayton, R. and
Chrzanowska-Jeske, M.: Using Simulation and Satisfiability to Com-
pute Flexibilities in Boolean Networks, IEEE Trans. CAD of Inte-
grated Circuits and Systems, Vol.25, No.5, pp.743–755 (2006).

[6] Miskov-Zivanov, N. and Marculescu, D.: MARS-C: Modeling and
Reduction of Soft Errors in Combinational Circuits, Proc. 43rd
ACM/IEEE Design Automation Conference, pp.767–772 (2006).

[7] Mohanram, K. and Touba, N.: Partial Error Masking to Reduce Soft
Error Failure Rate in Logic Circuits, Proc. 18th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, pp.433–
440 (2003).

[8] Plaza, S., hui Chang, K., Markov, I. and Bertacco, V.: Node Mergers
in the Presence of Don’t Cares, Proc. Asia and South Pacific Design
Automation Conference (2007).

[9] Savoj, H. and Brayton, R.: The Use of Observability and External
Don’t Cares for the Simplification of Multi-level Networks, Proc. 27th
ACM/IEEE Design Automation Conference, pp.297–301 (1990).

[10] Waicukauski, J.: Fault Simulation of Structured VLSI, VLSI Systems
Design (1985).

[11] Zhang, B., Wang, W.-S. and Orshansky, M.: FASER: Fast Analysis of
Soft Error Susceptibility for Cell-Based Designs, Proc. 7th Interna-
tional Symposium on Quality Electronic Design, pp.755–760 (2006).

Taiga Takata received his B.E., M.E.
and Ph.D. degrees from Kyushu Uni-
versity, Fukuoka, Japan, in 2005, 2007
and 2010, respectively. He is cur-
rently a research fellow at the Department
of Advanced Information Technology in
Kyushu University. His current research
interests include logic synthesis, technol-

ogy mapping and formal verification for VLSI designs. He is a
member of ACM and IPSJ.

Yusuke Matsunaga received his B.E.,
M.E. and Ph.D. degrees in Electronics
and Communications Engineering from
Waseda University, Tokyo, Japan, in
1985, 1987 and 1997, respectively. He
joined Fujitsu Laboratories in Kawasaki,
Japan, in 1987 and he has been involved
in research and development of the CAD

for digital systems. From October 1991 to November 1992, he
has been a visiting Industrial Fellow at the University of Cali-
fornia, Berkeley, in the Department of Electrical Engineering and
Computer Sciences. In 2001, he joined the faculty at Kyushu Uni-
versity. He is currently an associate professor of the Department
of Computer Science and Communication Engineering. His re-
search interest includes logic synthesis, formal verification, high-
level synthesis and automatic test patterns generation. He is a
member of IEICE, IEEE, ACM and IPSJ.

(Recommended by Associate Editor: Toshinori Hosokawa)

c© 2012 Information Processing Society of Japan 62

