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Efficient Monte Carlo Optimization with ATMathCoreLib

Reiji Suda†1,†2 and Vivek S. Nittoor†1,†2

In this paper, we discuss a deterministic optimization method for stochastic
simulation with unknown distribution. The problem to solve is the following:
there is a parameter t to which a stochastic cost function f(t, z) is associated,
where z is the nuisance parameter. We want to estimate t with which the
average of f(t, z) is minimum, with as small number of evaluations of f(t, z)
as possible. Our method is based on Bayesian formulation, and utilizes the
information given through the prior distribution.

1. Introduction

Computer simulation is the third paradigm of science — while the first two

paradigms are experiment and theory. Computer simulation gives us insight

into the details of a complex system, for which theoretical analysis is difficult

because of the complexity and experimental study is limited by various factors,

such as difficulties of full control of initial and boundary conditions or inability

of experiments for such systems as cosmic systems and evolutionary systems.

Accompanied by rapid progress of computer performance, the significance of

computer simulation grows rapidly. Now computer simulation is an essential

methodology both for science and technology.

However, methods of optimizing efficiency of computer simulation are not

widely understood and utilized. Perhaps it is partly because the results of sim-

ulation must be seen, understood, and judged by human, and thus it cannot be

fully automated without any human interactions. We cannot overlook the impor-

tance of human understanding of the simulation results. Still, wish for efficient

computer simulation is natural and essential, since many kinds of computer simu-

lation require much resource and long time. In this paper, we discuss an efficient
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method of a kind of computer simulation: optimization of a system simulated by

Monte Carlo method.

There are two kinds of computer simulation. One is deterministic and the

other is stochastic. The latter uses pseudo-random numbers, and thus can be

called a Monte Carlo computation in a wide sense. Another classification, from

the viewpoint of the aim of the computer simulation, is between evaluation and

optimization. Here, “evaluation” aims to understand the behavior of the target

system for a specific set of parameter values. “Optimization” aims to find the

optimal parameter values for a certain criteria defined with the simulation re-

sults. In evaluation, the results should be collected over the specified domain

of parameter values, but in contrast, in optimization, the number of simulation

runs can be a minimum so to achieve the optimization.

In this paper, we show a method of minimization of the number of computer ex-

periments for an optimization of parameters, where the performance is evaluated

in Monte Carlo simulation. The proposed method is derived from a method of

semi-optimized experimental design developed for automatic tuning. Our method

is applicable to the cases where the number of candidates is very big.

The rest of this paper is organized as follows. Section 2 introduces a number of

related works on efficient computer simulation. Section 3 explains the problem to

be solved and our solution. Section 4 reports a small set of synthetic experiments

showing the effectiveness of our method. Section 5 is a short summary with

discussion on possible future research directions.

2. Related Works

Much effort has been spent to finding efficient ways of computer simula-

tion. The methods can be classified into two classes: deterministic methods

and stochastic methods. Taking the classification of computer simulation, which

is discussed in the previous section, into consideration, there are eight kinds of

methods, that is,

{Deterministic | Stochastic} methods of {evaluation | optimization}
with {deterministic | stochastic} simulation.

We assume that the deterministic functions and the probability distribution of

the stochastic functions are unknown. If the probability distribution is known,
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the problem is classified into stochastic programming, which is a related but

different problem. There are deterministic methods of (true) optimization for

stochastic programming. However, in many problems of stochastic programming,

the complexity of the algorithms is too high, and approximate methods based on

Monte Carlo methods must be used. Then the some of the following methods

can be used for problems of stochastic programming.

First we introduce some books that discuss effective and efficient methods of

computer simulation. Note that this is not an exhaustive list.

The book by Fang et al.1) mainly discusses deterministic methods of evalua-

tion with deterministic simulation. The book by Santner et al.2) also develops

deterministic methods of evaluation with deterministic simulation. The latter

has more theoretical flavor than the former, and the former is pragmatic and

practical.

The book by Zabinsky5) is dedicated to stochastic methods of optimization with

deterministic simulation, and characterized with its developments on convergence

of stochastic optimization methods to the global maximum.

The book by Gosavi6) discusses deterministic and stochastic methods of opti-

mization with stochastic simulation. It consists of two parts: the first part treats

parametric optimization, and the second part treats optimization over Markov

chain, mainly Reinforcement Learning. The latter is fully described in the book

by Powell7), under the name of Approximate Dynamic Programming. Text books

on Monte Carlo methods, such as the one by Liu3), usually contain stuff re-

lated to optimization, that is, stochastic methods of optimization with stochastic

simulation. The book by Rubinstein and Kroese4) has more extensive treat-

ments of deterministic and stochastic methods of evaluation and optimization

with stochastic simulation.

In the following, we discuss existing methods of optimization with stochastic

simulation. Refer a survey paper by Tekin and Sabuncuoglu8) and one by Fu et

al.9) for further details. We classify the existing methods into three groups.

The first group consists of methods of exhaustive evaluation of candidates

with considering the stochastic variance of the simulation results. Ranking-

and-Selection10) applies the frequentist methods of hypothesis testing to op-

timization with stochastic simulation. There are two strategies to that pur-

pose: indifference-zone formulation and subset-selection formulation. In the

indifference-zone formulation, the number of trials for each candidate is optimally

chosen so that a candidate within δ from the best is chosen with a probability

no less than 1 − α. In the subset-selection formulation, a set of candidates is

determined so that it contains the best solution with a probability no less than

1−α. Multiple Comparisonmethods attain similar goals (there are several formu-

lations) by pairwise comparisons. Ordinal Optimization11) is a method similar to

subset-selection: it computes a subset in which at least k of the top-n candidates

are included. The key idea there is that the convergence of the estimate of the dif-

ference of two candidates s1− s2 is O(1/
√
N), but the convergence of estimating

the order s1 ≤ s2 is exponential. Optimal Computing Budget Allocation (OCBA)

gives a different view of the same problem, that is, optimization of the probabil-

ity of correct selection of the best solution under a given number of total trials.

Those methods are applicable to the problems of fairly small search space, since

they require a fixed number of initial trials for all candidates. Iterative Ranking-

and-Selection, developed by Ólafsson12), is applicable to larger problems. It is

an iterative method of optimization, for which asymptotic convergence to the

optimal solution is established.

The second group consists of local (or global) search methods for stochastic

functions, whose mean forms a continuous function, traditionally called response

surface. Response Surface Methodology (RSM) is a class of methods where the

data are locally fit into a regression model (usually of a low-degree polynomial)

and the optimum solution is approximated by the optimizer of the regression

model. That methodology is the one widely used in the experimental design

in other application fields such as physical experiments. Gradient-based methods

estimate the gradient of the response surface. Finite Difference Estimate, Pertur-

bation Analysis, Frequency-Domain Analysis, and Likelihood Ratio Estimators are

major methods in this class. Stochastic Approximation can be seen as a stochastic

version of the steepest descent method. Gradient Surface Method14), Estimation

of Distribution Algorithms15), may be categorized here. Cross-Entropy Method4)

and Stochastic Model Reference Adaptive Search18) employ a different formula-

tion to find a probability function over the search space that peaks at the optimal

candidate. A similar approach is taken in Probability Collectives19). In addition
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to them, methods that are used for local optimization of deterministic function,

such as Nelder-Mead simplex method and Bayesian / Sampling Method16), have

been applied to optimization of stochastic functions.

The third group consists of stochastic global search methods for determinis-

tic functions, which could be applied to stochastic functions. Well-known meta-

heuristics, such as Genetic Algorithms, Simulated Annealing, Tabu Search, Scatter

Search and Ant Colony Optimization, are classified in this group. Pure Random

Search, which is also called Random Search17) and Monte Carlo, samples candi-

dates randomly, and chooses the best observed candidate.

3. Proposed Method

Our method is classified into the first group discussed in the previous section. It

assumes discrete variables, which can be finite or infinite. The biggest difference

of our method from the existing approaches is that we employ Bayesian formula-

tion. It could be compared with Bayesian / Sampling methods16) and Stochastic

Model Reference Adaptive Search18): they employ Bayesian formulation with

different criteria of optimization.

3.1 Target Problem

The search space is discrete, and the candidates are represented as t1, t2, t3,

. . . . Let T represent the entire search space, that is, T = {ti}. The search space

can be finite or infinite, but in the case of infinite search space, we need some

method for finding the next sample from the infinite search space according to

the rule explained below.

For each candidate t, a cost function f(t, z) is accompanied, where z represents

a perturbation factor (nuisance parameter) unobservable to us. That is, the cost

function is stochastic, and we want to find t which minimizes the average cost

function

xt = Ez(f(t, z)),

where Ez()̇ represents an average over z. Therefore the problem is to find topt
defined as

topt = argmin{xt | t ∈ T}.
Our method assumes a Bayesian formulation, where we have a prior distribu-

tion πt0(xt) for xt. The prior πt0(xt) represents our vague knowledge about the

possible value of xt, and we expect xt is more probable where πt0(xt) is larger.

In a later section, we will discuss how we constructed priors in our experiments.

3.2 Bayesian Inference

Bayesian inference is derived by Bayes’ Theorem

P (X|Y ) =
P (X,Y )

P (Y )
=

P (Y |X)

P (Y )
P (X).

Here, P (X) is the prior distribution, and P (X|Y ) is the posterior distribution.

We assume P (X) and P (Y |X) are (assumed to be) known. The calculation of

the marginal distribution P (Y ) is not compulsory, since P (X|Y ) can be derived

from the condition that
∫
P (X|Y )dX = 1. Thus let us simplify the formula as

P (X|Y ) ∝ P (Y |X)P (X).

We understand the formula in this way: P (X) represents the vague knowledge

about the value of X before experiments, and after observing Y , the knowledge

about X is updated as P (X|Y ).

Let xtj represent the observed cost function at the jth observation of the can-

didate t. Applying Bayesian inference to our case, the posterior distribution after

k observations of t will be

πtk(xt) ∝ P (xt1, xt2, . . . , xtk | xt)πt0(xt).

In our best knowledge, we can predict the value of the cost function of the

candidate t in its k + 1st observation, xt,k+1, so that it follows πtk(xt,k+1). Fur-

ther, assuming that the value x will be observed in the next observation, we can

predict the posterior distribution

πt,k+1(x) ∝ P (x | xt)πtk(xt)

with the probability πtk(xt,k+1). This is called the preposterior distribution.

3.3 One Step Approximation

We have proposed a sub-optimal sequential experimental design for online au-

tomatic tuning20) and one for offline automatic tuning21). We call them One Step

Approximation collectively. The method in this paper is derived from them.

Assume the situation after K observations have been done. Let kt be the

number of observations for the candidate t. Thus it holds that K =
∑

t∈T kt.

The posterior (or prior, if t is not observed yet) distribution for the candidate t

at this situation is πtkt(xt). Without loss of generality, let us assume that t0 is

the current best:
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t0 = argmaxt∈T {ξi},
where ξi is defined as

ξi =

∫
xπtiki

(x)dx,

where we simplify kti into ki. If we stop the observation now, we will choose t0,

and the expected average cost is ξ0.

First assume that the candidate ti (i > 0) will be observed in the next obser-

vation, and will result in an observation of the cost xti,ki+1. In our prediction,

xti,ki+1 follows the distribution πtiki . After observing xti,ki+1, the posterior dis-

tribution for ti will be updated into πti,ki+1(x|xti,ki+1). Let ξi,ki+1(xti,ki+1) be

its average. Here, xti,ki+1 is inserted to emphasize that they are dependent on

the unseen result xti,ki+1, but sometimes we will omit it. If the cost to be ob-

served xti,ki+1 is very low, and ξi,ki+1 is to be less than the current best ξ0,

then we will choose ti rather than t0 after the observation, and the expected cost

will be ξi,ki+1. Otherwise, we will choose t0, and the expected cost will be ξ0.

Considering both cases, the mean of the expected cost can be calculated as

wi =

∫
min{ξ0, ξi,ki+1(x)}πti,ki(x)dx.

Next assume that the current best candidate t0 will be observed in the next

observation. Let t1 be the second best candidate, without loss of generality, and

ξ1 be its expected cost. If the next observation xt0,k0+1 is to be a very large

value, and the updated expected cost ξ0,k0+1(xt0,k0+1) is larger than ξ1, then we

will choose t1 rather than t0, and the expected cost will be ξ1. Otherwise we will

choose t0 and the expected cost will be ξ0,k0+1. Then the mean of the expected

cost can be calculated as

w0 =

∫
min{ξ1, ξ0,k0+1(x)}πt0,k0(x)dx.

The value wi is the mean of the expected cost after the next observation, in

which the candidate ti is chosen to be observed. So our method chooses the

candidate ti that minimizes wi:
i = argmini|ti∈T {wi}.

3.4 Discussion

The proposed method is a Bayesian method which requires prior distribu-

tions. This is both advantage and disadvantage of the proposed method (and

the Bayesian methods in general) compared to the frequentist approaches. If

the prior distribution represents the uncertainty appropriately, then the pro-

posed method can search the optimal solution quickly with referring to the prior.

However, if the prior distribution is not appropriate, Bayesian methods can be

inefficient or unable to find the optimum solution.

Our method is sequential in its nature. This property is convenient in computer

implementation in a classic way. However, it is difficult to extend it to parallel

computing. Although the existing methods based on the frequentist formulation

do not provide full freedom of controlling the number of trials, those methods

request multiple trials for each step, and thus it is somewhat easier to apply them

to parallel experiments.

Our method tries to find the best solution. It will not seek a good estimate

of the expected cost ξ0, and rather it computes as rough estimate as possible so

that the number of experiments could be as small as possible. In our method, we

can compute a quantitative estimate how much the chosen candidate t0 is likely

to be the best.

3.5 Implementation

The value of wi is defined as an integral. If we choose Gaussian distributions

for the priors πt0 and the conditional distributions P (x|xt), that integral can be

represented with the exponential function and the Gauss error function.

We implemented our method based on ATMathCoreLib22). The current version

of ATMathCoreLib implements the method for online automatic tuning, and it

is easy to modify it for offline automatic tuning and optimization of stochastic

simulation. The main difference of the method for optimization of stochastic

simulation from online automatic tuning and offline automatic tuning is that the

costs of experiments are not included in the objective function.

4. Experiments and Results

In this section, we report a simple set of experiments to see the effects of our

method.

4.1 Experimental Setup

In the experiments, we use random numbers to generate synthetic problems.
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The number of experiments is fixed to 10,000. Thus the number of the can-

didates is chosen to be 10,000, since no more candidates could be observed in

10,000 observations. This setting mimics the case of infinitely many candidates.

However, if the candidates are actually infinitely many, our algorithm requires

random sampling of the candidates, since otherwise it will be severely affected

by bias induced by non-random choice of candidates.

The true means of the candidates are determined following the standard normal

distribution N(0, 1). The true variances of the candidates are ones, uniformly.

To build the prior distribution, in the first 100 observations, 10 candidates are

observed 10 times for each. From those 100 observations, we calculate the sample

means and the sample variances:

ξi =
1

10

∑
k

xik, τ2i =
1

9

∑
k

(xik − ξi)
2.

With using those values, we build the initial prior distribution πi ∼ N(Ξ, S2)

where

Ξ =
1

10

∑
i

ξi, S2 =
1

9

∑
i

(ξi − Ξ)2.

In our experiments, the variance of the observation is assumed to be a constant

log T 2 =
1

10

∑
i

log τ2i

for any candidate. This formulation is known as “normal distribution with known

variance” in the Bayesian statistics literature.

Those parameters of the prior distributions are recomputed in the same way

after each observation; an empirical Bayes method.

4.2 Naive Method to Compare

To a comparison purpose, we also implemented a naive method, where each

candidate is observed 10 times. Since there are 10,000 observations in total,

only 1,000 candidates are observed in the naive method. Then the naive method

choses the candidate with the minimum sample average cost.

4.3 Results

Table 1 shows the experimental results. The first column (“Exp.ID”) shows

the experiment ID, which is the seed of the random numbers. The second column

(“Optimum”) shows the true mean of the true optimum. Since the values are

generated as N(0, 1), the minimum value is usually negative. The third column

(“Naive”) shows the true mean of the candidate chosen by the naive method.

The fourth column (“Proposed”) shows the true mean of the candidate chosen

by the proposed method. The fifth column (“# Trials”) shows the number of the

observations of the chosen candidate in the proposed method. The corresponding

value for the naive method is not shown because it is always 10. The last column

(“# Observed”) shows the number of candidates which are observed at least once

in the proposed method. For the naive method it is always 1,000.

Table 1 Results with 10,000 observations. Lower is better.

Exp.ID Optimum Naive Proposed # Trials # Observed
20 -3.84 -3.07 -3.61 12 9624
21 -3.75 -3.37 -3.37 16 9373
22 -3.71 -2.85 -3.17 13 9704
23 -4.38 -2.58 -4.38 6 9664
24 -3.99 -2.80 -3.58 10 9490

As is seen in the results, the proposed method gives a better result than the

naive method, almost constantly. The proposed method tries more than 9,100

candidates in 10,000 observations. Note that the first 100 observations are used

for initial estimate of prior distributions, and thus more than 90% of the can-

didates are observed only once. That implies that our method does not spend

costly observations for not-promising candidates. The chosen candidates are ob-

served 6 to 16 times in our method. Our method observes those candidates many

times to see whether it is really likely to be the optimal, because the variance

of the perturbation is as large as the variance of the means. Thus spending the

efforts into promising candidates, our method could find much better candidates

than the naive method.

5. Conclusion

In this paper, we discussed a deterministic optimization method for stochastic
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simulation, typically Monte Carlo simulation. Our method is based on Bayesian

formulation, and derived from our online and offline autotuning methods. We

implemented our method by modifying ATMathCoreLib, and compared it with

a naive experimental design where all candidates are evaluated ten times. Our

method gave much better results than the naive method.

Our algorithm is sequential in nature. Our next research topic is an extension

of our method into a method which utilizes high parallelism of contemporary

supercomputers.
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