
IPSJ SIG Technical Report

Achieving Effective Fault Tolerance

in FU array by Adding AVF Awareness

Tanvir Ahmed ,†1 Jun Yao †1

and Yasuhiko Nakashima†1

Fault-tolerance now plays an important role to cover the increasing soft/hard
error rates in electronic devices along the advances of process technologies.
Error detection with negligible performance impedance and low hardware over-
head is accordingly a main concern to keep efficient high dependability. In this
paper, a fault-tolerable FU array is proposed with the awareness of architectural
vulnerable factor (AVFs). Specifically, we designed a method to help fast locate
the erroneous execution in FU array by effectively checking the most vulnerable
branches of the data path. It can be further applied to detect multi-site faults
or to reduce less important redundancy.

1. Introduction

With the improvement in the CMOS technology, size of the semiconductor de-
vices is shrinking rapidly, which leads to many advantages in modern micropro-
cessor design like low power consumption, low manufacturing cost, high operating
frequency, and high density of transistors. Conversely, these advantages affect the
noise margins, susceptibility to transient faults, and make the electronic devices
more vulnerable to defects. Specifically, high energy radiation particles and elec-
tromagnetic interference produce a high rate of soft errors. Similarly, transistor
and interconnect reliability wore, due to the shrinking transistor technology and
over heating. Therefore, it is essential to embed fault-tolerance in microprocessor
to get a correct calculation as well as detect the permanent faults at run-time
especially in an environment which may contain many fault attacks.

Different techniques have been proposed for protecting microprocessors against
faults. Error correcting codes are best suited for memory structure than the pro-

†1 Nara Institute of Science & Technology

cessor core, as their area, performance, and power overhead. On the other hand,
redundant execution on the processor core shows better performance. A number
of redundant techniques have been proposed to detect and recover from soft er-
ror [1,2]. Error detection by duplicated instructions for super-scalar processor has
been proposed in [1], where all the instructions are duplicated and checked there-
after. Similarly, fault-tolerant functional unit (FU) array architecture, EReLA,
has been proposed in [2]. Different levels of redundancy have been proposed for
this architecture to provide soft and hard error protection. In order to detect the
soft errors, all the instructions are duplicated but only the final result is checked
before commit to the memory. Therefore, this scheme suffers from a long latency
to detect the error occurred at the early stage of the data flow graph. Besides,
If there is no additional check instruction inside the data path, eventually the
probability of error will accumulate to a large value. When the probability of
error finally turns into an actual error, it is not possible to determine which part
of the data flow graph is erroneous and a through test will be required to lo-
cate the erroneous point, as shown in paper [3]. Many FUs are thus required
for detecting permanent failure, which increase the hardware size and potential
permanent error vulnerabilities

In this paper, we propose an approach for detecting and recovering the error
for FU array based on redundant execution by adding AVF awareness. As this
scheme use multiple check instructions on the data flow graph, the detection
will be faster and overhead for permanent fault detection is smaller than the
approaches proposed in [2,3]. EReLA [4] framework has been used for this study.

The rest of this paper is organized as follows. In Section 2, we gives the def-
inition and calculating method of vulnerability factor of each instruction from
the view of permanent error. We then discuss our proposed algorithm and per-
manent fault detection in Section 3. Section 4 shows the results of the proposed
approach, and Section 5 concludes the whole paper.

2. Calculation of vulnerability factor

Paper [5] has stated that various programs will respond differently to the same
fault rate, according to their different architectural vulnerability factors (AVFs).
AVF gives a measure of the probability that a fault will lead to a visible error.

1 c© 2012 Information Processing Society of Japan

Vol.2012-ARC-199 No.5
2012/3/27



IPSJ SIG Technical Report

Given that the soft event upset occurs in a certain memory block, it will become
an error only when latter calculation depends on this faulty block. Accordingly,
the AVF depends on the program behaviors, as described in [5].

Similarly, we are using the idea of vulnerability factor in this research to se-
lectively add data verification instructions. We extend the above AVF from soft
error only consideration to our purposed permanent fault field. In this research,
we treat that the permanent fault vulnerability factor is linear to the gate number
inside the functional unit. For example, a 1-bit AND operation requires two 2-
input NAND gates, while a 1-bit XOR operation uses four 2-input NAND gates.
As a result, the lifespan of the XOR will be relatively shorter than the AND
unit under a given gate defect ratio. Applying the consideration to arithmetic
operations, the vulnerability factor to permanent defect may be even larger due
to the large size and complex wire interconnections inside the arithmetic opera-
tions. For example, a 1-bit full adder takes fifteen 2-input NAND gates to finish
the calculation. Similarly, a large word-length multiplication uses several stages
of adder chains and partial product generator. It is both weak to single error
transient (SET) faults and permanent defects because of its large hardware area
and relatively long data path. A fault is likely be propagated to the latch after
it to become a visible error.

Accordingly, we give the vulnerability factors (VFs) to permanent defects
in Table 1. In detail, the area results and their corresponding vulnerable factors
of logical, arithmetic, and media instructions of our baseline ISA used in this
research are given in Table 1. Specifically, we treat that AND operation has a
vulnerability factor of 1%. The other vulnerability factors are thus calculated by
1% × Areaop

AreaAND
. As discussed before, logic operations are relatively less complex

in hardware and their VFs are thus relatively small. The arithmetic instructions
take medium VFs except the very large multiplication unit whose VF reaches
25%. The media operations are combination of logic and arithmetic ones and
thus tend to show large VFs. Finally, for LOAD instruction, it has been assumed
that the memory is protected with error correcting code (ECC) so that the loaded
data can be regarded as error free. The only vulnerability in LOAD comes from
the address calculation part which is same to the ADD operation.

The STORE operation is originally designed to take checked data before real

Table 1 Vulnerability factor of operations

Operation
Operations

No. of Vulnerability
Type Gates Factor (%)

LOGIC

AND 176 1
OR 176 1

XOR 208 1
SLL/SRL 140 0.75

ARITHMETIC

ADD 892 5
SUB 1022 5
MUL 5130 25

SLA/SRA 372 2

MEDIA

SRL 792 5
BYTE-HALF 219 1

SUML/H 996 5
HALF BYTE 854 5

SAD 2970 19
UADD 1320 10
USUB 1398 10
MUL 2569 15

MEMORY LOAD 892 5

commitment, by additionally put a check instruction before it. Its VF is thereby
0%.

3. Proposed algorithm

In this research, the above permanent fault vulnerability factor (VF) has been
taken into account to indicate the suitable position to place additional data check
instructions for a fast detection of defects. This section introduces the pro-
posed algorithm in Section 3.1 and the corresponding permanent defects location
method in Section 3.2.

3.1 Adding check according to VF
Table 1 shows the vulnerability factor of each instruction. Assuming that each

operation takes two source operands and gives one result, we can calculate the
probability of the error of the result as follows:

Pr(out) = 1− (1− Pr(s1))(1− Pr(s2))(1− Pr(op)) (1)
Pr(s1) and Pr(s2) are the probability of error in the source operands, while Pr(op)
is the error probability comes from the operation itself. It can be imaged that
the Pr(op) has a direct connection to the vulnerability factor in Table 1. Assume

2 c© 2012 Information Processing Society of Japan

Vol.2012-ARC-199 No.5
2012/3/27



IPSJ SIG Technical Report

that the whole data path starts from some checked input value which has 0%
probability of error. The output of the first operation will have a probability of
error regarding to the operation itself. The latter dependent data will inherit
this probability of error, and adds new probability when the data goes forwards
through the data flow graph. Although the values of vulnerability factor in Ta-
ble 1 are actually much larger than a practical probability of error, we are still
directly using these values as Pr(op) in the latter parts of this paper to introduce
the idea. By this means, we are able to tag the results with the probability of
permanent error inside the whole data path.

In our research, we are trying to divide the long data path into different seg-
ments. Thus, when some permanent error has occurred in a certain division of
the data path, it is possible to search a relatively small space to locate the perma-
nently defected unit. The above tagging of permanent error probability actually
gives a good way to balancing the division. In our algorithm, we use a predeter-
mined threshold of probability error for this purpose. Firstly, the probability of
error of a data is calculated from Eq.1, by taking inherited error possibilities from
source operands and operation itself. When the probability exceeds the thresh-
old, an additional check instruction will be introduced along the data path. The
check instruction removes the probability from the checked data by making a
determination of its correctness. The data path can thus be divided into several
segments with similar error probabilities.

Fig. 1 gives a detailed illustration of this algorithm. For simplicity, we assume
that the threshold of error probability is 8%. The data flow graph starts by taking
inputs R1, R2, R3 and R4 from register file or memory, which are previously
checked results and protected by ECC. It ends by committing final result R6
into the memory. Basically, every operation will be doubly executed and the
final result R6 will be compared before committing.

In Fig. 1, the VF of each operation is shown beside the operation. Accordingly,
by using our proposed method, we can get the error probabilities along the data
flow graph, as show beside each destination register in Fig. 1. After the second
stage, both R1 and R2 get error probabilities that exceed the threshold. The
check instruction is thus added to make a fast determine whether or not an error
happens there. This also makes zone1 and zone2, as shown in Fig. 1.

Fig. 1 Data flow graph for proposed algorithm.

It is possible that the data path will take backward data bypassing like op-
eration R4+=R5, as shown before the OP7 in Fig. 1. Considering the data path
represents a loop kernel, operation R4+=R5 takes its first operands from the reg-
ister file in the first iteration and update itself afterward. It is easy to un-
derstand that the first iteration, the correctness possibility of result of OP7
is the multiplication value of the correctness probabilities of first R4, R6 and
OP7 itself. From the second iteration, using Bayes’ theorem, we can have
Pr(R4) = Pr(R5correct, OP7correct | inputR4correct) × Pr(inputR4correct).
Because the input R4 now comes from the output of the 1st iteration, its correct-
ness already means the R5 and OP7 are safe from the permanent defects. Thus
Pr(R5correct, OP7correct | inputR4correct) = 1. Accordingly, the permanent
probability of R4 is fixed and calculated as in Fig. 1.

3.2 Locating Permanently Defected Units
Normally, dual modular redundancy (DMR) mode is used to check whether or

not all the operations are correctly finished along the data path. When the check
instructions detect very frequent errors, permanent failure may have occurred
in the occupied units. Additional mode will be used to locate the permanently
defected unit, as has been introduced in paper [3]. Paper [3] additionally add
maximum numbers of check instructions to help understand the erroneous parts

3 c© 2012 Information Processing Society of Japan

Vol.2012-ARC-199 No.5
2012/3/27



IPSJ SIG Technical Report

(a) Proposed in paper [3]. (b) Proposed approach.

Fig. 2 Locating Permanently Defected Units.

in the data path, as shown in Fig. 2(a). With the help of additional check
instructions according to VF, it is possible to remove some check instructions as
shown in Fig. 2(b), given the situation that in DMR mode, CHK-op5 is the first
to report error. The detailed location algorithm is introduced in paper [3].

4. Results

We tried our algorithm on several loops as F1, F2, F3, unsharp from an image
filter program. Fig. 3 gives the calculated check instruction numbers when set
respectively the error probability threshold to 8%, 10%, 12%, 15% and 20%.
Specifically, threshold 20% will add 12 check instructions and divide programs
into segments of 4 operations in average. In this way we can reduce the cost
under permanent failure location.

Another advantage of the proposed method is that it can help discard part of
the duplicated values of the DMR data path after the check instructions have
been used. It can help to save some additional power. The evaluation of this
part will be studied in detail in future work.

5. Conclusion

This paper proposed an approach to achieve fast permanent failure detection
in an FU array by adding AVF awareness. Specifically, check instructions are
added selectively according to the error probability along the data path. As a

Fig. 3 Number of check instructions w.r.t vulnerability factor threshold for different loops.

result, permanent fault detection requires less number of functional units than
the previous approach. When setting threshold to 20%, by adding 30% checking
instructions to segment programs, only 4% of operations are need to be explored
after a possible permanent failure.

Acknowledgments This work is supported by VLSI Design and Educa-
tion Center (VDEC), University of Tokyo with the collaboration with Synop-
sys Corporation. This work is supported by JST ALCA, JST A-STEP (FS)
No. AS232Z02313A, and Grant-in-Aid for Young Scientists (B) No. 23700060.

References

1) Oh, N., Shirvani, P. and McCluskey, E.: Error detection by duplicated instructions
in super-scalar processors, IEEE Transactions on Reliability, Vol.51, No.1, pp.63
–75 (2002).

2) Oue, S., Yoshimura, K., Yao, J., Nakada, T. and Nakashima, Y.: High Redundancy
Instruction Mapping Scheme on FU Array Accelerator, IPSJ SIG Notes, Vol.2011,
No.19, pp.1–7 (2011).

3) Hazama, Y., Yao, J., Nakada, T., Nakada, T. and Nakashima, Y.: A DMR based
Parmanent Error Locating Method for a Dependable FU Array, IEICE Tech. Rep.,
Vol.111, No.328, pp.47–52 (2011).

4) Yao, J. and Nakashima, Y.: Exploiting Efficiency of Redundant Executions on an
FU Array, IPSJ SIG Notes, Vol.2011, No.9, pp.1–5 (2011-03-03).

5) Mukherjee, S., Weaver, C., Emer, J., Reinhardt, S. and Austin, T.: A sys-
tematic methodology to compute the architectural vulnerability factors for a
high-performance microprocessor, Microarchitecture, 2003. MICRO-36. Proceed-
ings. 36th Annual IEEE/ACM International Symposium on, pp.29 – 40 (2003).

4 c© 2012 Information Processing Society of Japan

Vol.2012-ARC-199 No.5
2012/3/27


