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Online TSP in a Simple Polygon

Yuya Higashikawa†1 and Naoki Katoh†1

We consider an online traveling salesman problem in a simple polygon where
starting from a point in the interior of a simple polygon, the searcher is required
to explore a simple polygon to visit its all vertices and finally return to the
initial position as quickly as possible. The information of the polygon is given
online. As the exploration proceeds, the searcher gains more information of
the polygon. We give a 1.219-competitive algorithm for this problem. We also
study the case of a rectilinear simple polygon, and give a 1.167-competitive
algorithm.

1. Introduction

The Tohoku Earthquake attacked East Japan area on March 11, 2011. When

such a big earthquake occurs in an urban area, it is predicted that many buildings

and underground shopping areas will be heavily damaged, and it is seriously

important to efficiently explore the inside of damaged areas in order to rescue

human beings left there. With this motivation, we deal with online traveling

salesman problem (online TSP for short) in a simple polygon. Given a simple

polygon P , suppose the searcher is initially in the interior of P . Starting from

the origin o, the aim of the searcher is to visit all vertices of P at least once

and to return to the starting point as quickly as possible. The information of

the polygon is given online. Namely, at the beginning, the searcher has only

the information of a visible part of the polygon. As the exploration proceeds,

the visible area changes. However, the information of the region which has once

become visible is assumed to be accumulated. So, as the exploration proceeds,

the searcher gains more information of the polygon, and determines which vertex

to visit next based on the information obtained so far.

In general, the performance of an online algorithm is measured by a competitive
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ratio which is defined as follows. Let S denote a class of objects to be explored.

When an online exploration algorithm ALG is used to explore an object S ∈ S,
let |ALG(S)| denote the tour length (cost) required to explore S by ALG. Let

|OPT(S)| denote the tour length (cost) required to explore S by the offline optimal

algorithm. Then the competitive ratio of ALG is defined as follows.

sup
S∈S

|ALG(S)|
|OPT(S)|

.

Previous work: Online TSP has been extensively studied for the case of graphs.

Kalyanasundaram et al.10) presented a 16-competitive algorithm for planar undi-

rected graphs. Megow et al.8) recently extended this result to undirected graphs

with genus g and gave a 16(1+2g)-competitive algorithm. For the case of a cycle,

Miyazaki et al.9) gave an optimal 1.37-competitive algorithm. All these results

are concerned with a single searcher. For the case of p(> 1) searchers, there are

some results. Fraigniaud et al.3) gave an O(p/ log p)-competitive algorithm for

the case of a tree. Higashikawa et al.6) gave (p/ log p + o(1))-competitive algo-

rithm for this problem. Dynia et al.2) showed a lower bound Ω(log p/ log log p)

for any deterministic algorithm for this problem.

There are some papers that deal with online TSP in geometric regions (see sur-

vey paper5)). Kalyanasundaram et al.10) studied the case of a polygon with holes

where all edges are required to traverse. They gave a 17-competitive algorithm

for this case. Hoffmann et al.7) studied the problem that asks to find a tour in

a simple polygon such that every vertex is visible from some point on the tour,

and gave a 26.5-competitive algorithm.

Our results: We will show 1.219-competitive algorithm for an online TSP in

a simple polygon. We also study the case of a rectilinear simple polygon, and

give a 1.167-competitive algorithm. We will give a lower bound result that the

competitive ratio is at least 1.040 within a certain framework of exploration

algorithms.

2. Strategy of AOE

In this report, we define a simple polygon as a closed polygonal chain with no

self-intersction in the plane. In the followings, we use the term polygon to stand

for a simple polygon. Also an edge of a polygon (or a polygon edge) is defined as
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a line segment forming a part of the polygonal chain, a vertex of a polygon (or

a polygon vertex) as a point where two polygon edges meet and the boundary of

polygon as a polygonal chain. Let P be a polygon and o be the origin. Sometimes

we abuse the notation P to stand for the interior (including the boundary) of P .

Let V = {v1, v2, ..., vn} be a polygon vertex set of P sorted in clockwise order

along the boundary and E = {e1, e2, ..., en} be a polygon edge set of P composed

of ei = (vi, vi+1) = (v1ei , v
2
ei) with 1 ≤ i ≤ n (vn+1 = v1 is assumed). let |e|

denote the length of edge e ∈ E and L =
∑

e∈E |e| be the boundary length of P .

For any two points x, y ∈ P , let sp(x, y) denote the shortest path from x to y that

lies in the inside of P , |sp(x, y)| be its length and |xy| be the Euclidean distance

from x to y. Note that sp(x, y) = sp(y, x) and |xy| ≤ |sp(x, y)|. Furthermore,

for any two vertices x, y ∈ V , let bp(x, y) denote the clockwise path along the

boundary of P from x to y and |bp(x, y)| be its length. The cost of a TSP tour

is defined to be its length.

For a point x ∈ P and an edge e ∈ E, let

cost(x, e) = |sp(x, v1e)|+ |sp(x, v2e)| − |e|.
In the offline version of this problem, we will prove below that an optimal strategy

is that starting from the origin o, the searcher first goes to one endpoint of some

edge e, namely v2e , then follows the boundary path bp(v2e , v
1
e) and finally comes

back to o. The proof is given in the appendix.

Lemma 1. For offline TSP in a polygon P , the cost of the offline optimal algo-

rithm satisfies the following.

|OPT(P )| = L+min
e∈E

cost(o, e).

Let eopt ∈ E be an edge satisfying the following equation.

cost(o, eopt) = min
e∈E

cost(o, e). (1)

For two points x, y ∈ P , we say that y is visible from x if the line segment xy

lies in the inside of P . Then the visibility polygon V P (P, x) is

V P (P, x) := {y ∈ P | y is visible from x}.
Note that an edge of the visibility polygon is not necessarily an edge of P . For

a polygon vertex b and a point x ∈ P , we call b a blocking vertex with respect

to x if b is visible from x and there is the unique edge incident to b such that

any point on the edge except b is not visible from x. Let b∗ be a point where

the extension of the line segment xb towards b first intersects the boundary of P .

Then we call b∗ a virtual vertex and the line segment bb∗ a cut edge. Without loss

of generality we assume that b∗ does not coincide with any vertex in V . Also let

ê be an edge of P containing b∗ then we regard a visible part of ê as a new edge,

which we call a virtual edge. Note that a cut edge bb∗ divides P in two areas, a

polygon which contains V P (P, x) and the other not. We call the latter area the

invisible polygon IP (P, x, b). Notice that V P (P, x) and IP (P, x, b) share a cut

edge bb∗.

We assume that there is a blocking vertex b with respect to the origin o since

otherwise an optimal solution can be found by Lemma 1. Then we have the

following lemma.

Lemma 2. For an invisible polygon IP (P, o, b) defined by a blocking vertex b, let

e ∈ E be a polygon edge both endpoints of which are in IP (P, o, b), and w ∈ V be

the polygon vertex adjacent to b which is not in IP (P, o, b). Then

cost(o, (b, w)) < cost(o, e).

Proof. First, we remark a simple fact. Let x, y, z be points in P such that both

line segments xz and zy are lying in the inside of P . Then the following inequality

obviously holds.

|sp(x, y)| ≤ |xz|+ |zy|. (2)

Notice the equality holds only when either (i) sp(x, y) is a line segment xy and z

is on xy, or (ii) sp(x, y) is composed of two line segments xz and zy, i.e., y is not

visible from x (z is a blocking vertex with respect to x). From this observation

and since b is visible from o (i.e., |sp(o, b)| = |ob|),
|sp(o, w)| < |ob|+ |bw| = |sp(o, b)|+ |bw|. (3)

Besides, from the triangle inequality with respect to b, v1e and v2e ,

cost(b, e) = |sp(b, v1e)|+ |sp(b, v2e)| − |e| ≥ 0. (4)

Furthermore both sp(o, v1e) and sp(o, v2e) pass through b. Hence, we have

|sp(o, b)|+ |sp(b, v1e)| = |sp(o, v1e)| and |sp(o, b)|+ |sp(b, v2e)| = |sp(o, v2e)|. (5)

Thus,
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Fig. 1 Illustration of sp(b, v1e), sp(b, v
2
e) and sp(o, w)

cost(o, (b, w)) = |sp(o, b)|+ |sp(o, w)| − |bw|
< |sp(o, b)|+ |sp(o, b)|+ |bw| − |bw| (from (3))

≤ 2|sp(o, b)|+ |sp(b, v1e)|+ |sp(b, v2e)| − |e| (from (4))

= cost(o, e) (from (5))

holds.

For eopt defined by (1), the following corollary is immediate from Lemma 2.

Corollary 1. For an invisible polygon IP (P, o, b) defined by a blocking vertex b,

let e ∈ E be a polygon edge both endpoints of which are in IP (P, o, b). Then e

cannot be eopt satisfying (1).

Based on Corollary 1, candidates of eopt are edges of V P (P, o).

In what follows, we propose an online algorithm, AOE(Avoiding One Edge). By

Lemma 1, the offline optimal algorithm chooses the edge eopt which satisfies (1).

But we cannot obtain the whole information about P . So, the seemingly best

strategy based on the information of V P (P, o) is to choose an edge in the same

way as the offline optimal algorithm, assuming that there is no invisible polygon,

namely P = V P (P, o). Let E∗
1 denote an edge set composed of all e ∈ E such

that both endpoints of e are visible from o, E∗
2 denote a set of virtual edges on

the boundary of V P (P, o) and E∗ = E∗
1 ∪ E∗

2 . Also for a virtual edge e ∈ E∗
2 ,

endpoints of e are labeled as v1e , v
2
e in clockwise order around o and let cost(o, e)

denote the value of |sp(o, v1e)|+ |sp(o, v2e)|−|e|. Let e∗ ∈ E∗ be an edge satisfying

the following equation.

cost(o, e∗) = min
e∈E∗

cost(o, e) (6)

Then Algorithm AOE is described as follows.

Step 1: Choose e∗ ∈ E∗ satisfying (6).

Step 2: If e∗ ∈ E∗
1 then let eavoid = e∗, or else let eavoid be an edge of P

containing e∗.

Step 3: Follow the tour sp(o, v2eavoid) → bp(v2eavoid , v
1
eavoid

) → sp(v1eavoid , o).

3. Competitive Analysis of AOE

First, we show the following lemma.

Lemma 3. Let x be a point on the boundary of P and e∗ be an edge satisfying

(6). If x is visible from the origin o, then

cost(o, e∗)

2
≤ |ox|.

Proof. Let e′ ∈ E∗ be an edge of V P (P, o) containing x. Then from (2), we have

|ox| ≥ |sp(o, v1e′)| − |xv1e′ | and |ox| ≥ |sp(o, v2e′)| − |xv2e′ |. Therefore, we obtain

2|ox| ≥ |sp(o, v1e′)|+ |sp(o, v2e′)| − |xv1e′ | − |xv2e′ | = |sp(o, v1e′)|+ |sp(o, v2e′)| − |e′|
≥ cost(o, e∗),

namely |ox| ≥ cost(o, e∗)/2.

Furthermore, we show a lemma which plays a crucial role in our analysis.

Lemma 4. Let L be the length of the boundary of P and e∗ be an edge satisfying

(6). Then the following inequality holds.

L ≥ π · cost(o, e∗). (7)

Proof. Let C be a circle centered at the origin o with the radius of cost(o, e∗)/2.

From Lemma 3, any edge of P does not intersect C. Thus L is greater than the

length of the circumference of C, namely

L ≥ 2π · cost(o, e
∗)

2
= π · cost(o, e∗)

holds.

Theorem 1. The competitive ratio of Algorithm AOE is at most 1.319.

Proof. The cost of Algorithm AOE obviously satisfies
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|AOE(P )| = L+ cost(o, e∗).

On the other hand, the cost of the offline optimal algorithm satisfies |OPT(P )| =
L+cost(o, eopt) holds from Lemma 1. By the triangle inequality, cost(o, eopt) ≥ 0,

namely |OPT(P )| ≥ L holds. Thus we have

|AOE(P )|
|OPT(P )|

≤ L+ cost(o, e∗)

L
= 1 +

cost(o, e∗)

L
.

From this and (7),

|AOE(P )|
|OPT(P )|

≤ 1 +
cost(o, e∗)

π · cost(o, e∗)
= 1 +

1

π
≤ 1.319

is obtained.

Theorem 1 gives an upper bound of the competitive ratio. In the followings,

we will obtain a better bound by detailed analysis. First, we improve a lower

bound of |OPT(P )|. Note that for some points x, y, z ∈ P such that both y and

z are visible from x and the line segment yz is lying in P , we call ∠yxz the visual

angle at x formed by yz.

Lemma 5. For an edge e∗ ∈ E∗ satisfying (6), let d = cost(o, e∗) and θ (0 ≤
θ ≤ π) be a visual angle at o formed by a visible part of eopt. Then

|OPT(P )| ≥ L+ d− d sin
θ

2
. (8)

Proof. We first show the following claim.

Claim 1. Let b1 ∈ V (resp. b2) be the vertex visible from o such that the path

sp(o, v1eopt) (resp. sp(o, v
2
eopt)) passes through b1 (resp. b2) (see Fig. 2). Then

cost(o, eopt) ≥ |ob1|+ |ob2| − |b1b2|. (9)

Proof. This follows from |sp(o, v1eopt)| = |ob1| + |sp(b1, v1eopt)|, |sp(o, v2eopt)| =

|ob2| + |sp(b2, v2eopt)| and |eopt| = |sp(v1eopt , v
2
eopt)| ≤ |sp(b1, v1eopt)| + |b1b2| +

|sp(b2, v2eopt)|.

From (9), we have

|OPT(P )| = L+ cost(o, eopt)

≥ L+ |ob1|+ |ob2| − |b1b2|. (10)

eopt

o

v1eopt

v2eopt

b1

b2

θ

sp(b1, v1eopt)
sp(b1, v2eopt)

Fig. 2 A visible part of eopt from o

o

b1

b2

u1

u2

d/2

d/2
d sin(θ/2)

θ/2

Fig. 3 u1 and u2

Furthermore b1 and b2 satisfy |ob1| ≥ d/2 and |ob2| ≥ d/2 from Lemma 3. Hence

there exist points u1, u2 on line segments ob1, ob2 such that |ou1| = |ou2| = d/2

(see Fig. 3). Then, from the triangle inequality with respect to u1, u2 and b1,

|u1u2| ≥ |u2b1| − |b1u1| = |u2b1| − (|ob1| −
d

2
)

holds. Similarly we have

|u2b1| ≥ |b1b2| − |u2b2| = |b1b2| − (|ob2| −
d

2
).

Thus we have

d− |u1u2| ≤ d− {|u2b1| − (|ob1| −
d

2
)} =

d

2
+ |ob1| − |u2b1|

≤ d

2
+ |ob1| − {|b1b2| − (|ob2| −

d

2
)} = |ob1|+ |ob2| − |b1b2|. (11)

In addition, the length of u1u2 satisfies the following equation.

|u1u2| =
d

2
· 2 sin θ

2
= d sin

θ

2
. (12)

By (10), (11) and (12),

|OPT(P )| ≥ L+ d− |u1u2| = L+ d− d sin
θ

2
.
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is shown.

Secondly, we show a better lower bound of L.

Lemma 6. Let d and θ as defined in Lemma 5. Then

L ≥ d(π − θ

2
+ tan

θ

2
). (13)

Proof. Let C be a circle centered at o with radius d/2. From Lemma 3, any

edge of P does not intersect C. Also let endpoints of a visible part of eopt from

o be w1, w2 in clockwise order around o. Then, we consider two cases; (Case 1)

∠ow1w2 ≤ π/2 and ∠ow2w1 ≤ π/2 and (Case 2) ∠ow1w2 > π/2 and ∠ow2w1 ≤
π/2 (see Fig. 4, 5). Note that the case of ∠ow1w2 ≤ π/2,∠ow2w1 > π/2 can be

treated in a manner similar to Case 2. Case 1: Let w∗
1 (resp. w∗

2) be a point on

(1-x)θ

d/2

xθ

(d/2) tan xθ
(d/2) tan (1-x)θ

w*1 w*2

o

eopt

w1
w2

h

Fig. 4 Case 1

(d/2) tan θ

w*1

w*2

o

eopt

w1

w2

w**2

θ

d/2

Fig. 5 Case 2

the line segment ow1 (resp. ow2) such that w1w2 is parallel to w∗
1w

∗
2 and the line

segment w∗
1w

∗
2 touches the circle C and let h be a tangent point of w∗

1w
∗
2 and C.

Also let ∠w1oh = xθ and ∠w2oh = (1− x)θ with some x (0 ≤ x ≤ 1). Then the

length of w∗
1w

∗
2 satisfies

|w∗
1w

∗
2 | =

d

2
tanxθ +

d

2
tan(1− x)θ.

The right-hand side of this equation attains the minimum value when x = 1/2.

Thus

|w∗
1w

∗
2 | ≥

d

2
tan

θ

2
+

d

2
tan

θ

2
= d tan

θ

2
. (14)

Furthermore the sum of the visual angle at o formed by a visible part of the

boundary other than w1w2 is equal to 2π − θ. Hence we have

L ≥ d

2
(2π − θ) + |w1w2|. (15)

Since |w1w2| ≥ |w∗
1w

∗
2 | obviously holds, from (14) and (15), we obtain

L ≥ d

2
(2π − θ) + d tan

θ

2
= d(π − θ

2
+ tan

θ

2
).

Case 2: Let w∗
1 (resp. w∗

2) be a point on the line segment ow1 (resp. ow2) such

that w1w2 is parallel to w∗
1w

∗
2 and |ow∗

1 | = d/2 (the circumference of C passes

through w∗
1). Also let w∗∗

2 an intersection point of the line segment ow2 and the

lineperpendicular to the line segment ow1 through w∗
1 . Then

|w∗
1w

∗
2 | > |w∗

1w
∗∗
2 | = d

2
tan θ ≥ d tan

θ

2
.

In the same way as Case 1, we obtain L ≥ d(π − θ/2 + tan(θ/2)).

By Lemma 5 and 6, we prove the following theorem.

Theorem 2. The competitive ratio of Algorithm AOE is at most 1.219.

Proof. Let d and θ as defined in Lemma 5. Since |AOE(P )| = L+ d holds, from

(8), (13), we have

|AOE(P )|
|OPT(P )|

≤ L+ d

L+ d− d sin θ
2

≤
d(π − θ

2 + tan θ
2 ) + d

d(π − θ
2 + tan θ

2 ) + d− d sin θ
2

=
π − θ

2 + tan θ
2 + 1

π − θ
2 + tan θ

2 + 1− sin θ
2

(0 ≤ θ ≤ π). (16)

In the followings, we compute the maximum value of (16),
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max
0≤θ≤π

{
z(θ) =

π − θ
2 + tan θ

2 + 1

π − θ
2 + tan θ

2 + 1− sin θ
2

}
. (17)

Generally the following fact about the fractional program is known1),11).

Fact 1. Let X ⊆ Rn, f : Rn → R and g : Rn → R. Let us consider the following

fractional program formulated as

maximize

{
h(x) =

f(x)

g(x)

∣∣∣∣ x ∈ X

}
, (18)

where g(x) > 0 is assumed for any x ∈ X. Let x∗ ∈ argmaxx∈X h(x) denote an

optimal solution of (18) and λ∗ = h(x∗) denote the optimal value. Furthermore,

with a real parameter λ, let hλ(x) = f(x) − λg(x) and M(λ) = maxx∈X hλ(x).

Then M(λ) is monotone decreasing for λ and the followings hold.

(i) M(λ) < 0 ⇔ λ > λ∗, (ii) M(λ) = 0 ⇔ λ = λ∗, (iii) M(λ) > 0 ⇔ λ < λ∗.

In the same way as Theorem 2, with a real parameter λ, we define zλ(θ) and

M(λ) for z(θ) as follows.

zλ(θ) = π − θ

2
+ tan

θ

2
+ 1− λ(π − θ

2
+ tan

θ

2
+ 1− sin

θ

2
) (0 ≤ θ ≤ π),

M(λ) = max
0≤θ≤π

zλ(θ).

From Fact 1 (ii), λ∗ satisfying M(λ∗) = 0 is equal to (17), i.e., the maximum

value of z(θ). Hence we only need to compute λ∗.

Finally, let θ∗λ ∈ argmax0≤θ≤π zλ(θ), then we show θ∗λ is unique. A derivative

of zλ(θ) is calculated as

dzλ
dθ

= −λ− 1

2
tan2

θ

2
+

λ

2
cos

θ

2
.

This derivative is monotone decreasing in the interval 0 ≤ θ ≤ π, therefore

zλ(θ) is concave in this interval, then θ∗λ is unique. Indeed when λ = 1.219,

θ∗λ ≃ 2.0706 then M(1.219) ≃ −0.0010 < 0. Also when λ = 1.218, θ∗λ ≃ 2.0718

then M(1.218) ≃ 0.0029 > 0. Thus we obtain 1.218 < λ∗ < 1.219.

3.1 Lower Bound

Theorem 3. The competitive ratio of Algorithm AOE is at least 1.040.

10.00

8.18
19.17

16.36 14.04

8.18
19.17

14.04

ε

o

b

h

gfed

c

a

Fig. 6 Worst case polygon WP

Proof. We consider how Algorithm AOE works for a polygon WP illustrated in

Fig. 6. We assume that the greater arc from h to c in clockwise ordering of a

circle with radius 10.00 centered at o in the figure is in fact a chain composed

of sufficiently many small edges of length ϵ. For each edge e along the arc hc,

cost(o, e) = 20.00−ϵ holds. Also the algorithm calculates the cost of a virtual edge

(e, f) as cost(o, (e, f)) ≃ 10.00+ 8.18+ 10.00+ 8.18− 18.36 = 20.00. Comparing

these two values, the algorithm chooses an edge (a, b). Since L ≃ 136.26 holds,

the cost of Algorithm AOE for WP satisfies

|AOE(WP )| ≃ 136.26 + 20.00− ϵ ≥ 156.26− ϵ. (19)

On the other hand, (d, g) = eopt because cost(o, (d, g)) ≃ 13.89 < 20.00 − ϵ

holds. Thus the cost of the offline optimal algorithm for WP satisfies

|OPT(WP )| ≃ 136.26 + 13.89 ≤ 150.16. (20)

From (19) and (20), we obtain

|AOE(WP )|
|OPT(WP )|

≥ 156.26− ϵ

150.16
≥ 1.0406− ϵ

150.16
.

By letting ϵ be sufficiently small, we prove the theorem.
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4. Competitive Analysis for Rectilinear Polygon

o

width

height

Fig. 7 A rectilinear polygon

In this section, we analyze the competitive ratio of AOE for a rectilinear poly-

gon. Generally a rectilinear polygon is defined as a simple polygon all of whose

interior angles are π/2 or 3π/2. Edges of the rectilinear polygon are classified

as horizontal or vertical edges. Let R be a rectilinear polygon and R′ be the

minimum enclosing rectangle of R. Then we define the height of R′ as the height

of R and also the width of R′ as the width of R. Note that the searcher follows

the Euclidean shortest path even if he/she is in the rectilinear polygon.

Lemma 7. For an edge e∗ ∈ E∗ satisfying (6), let d = cost(o, e∗) and θ (0 ≤
θ ≤ π) be a visual angle at o formed by a visible part of eopt. Then

L ≥ max{4d, 2d+ 2d tan
θ

2
}. (21)

Proof. First, we show L ≥ 4d. Let C be a circle centered at o with the radius

of d/2. From Lemma 3, any edge of R does not intersect C (see Fig. 8). Thus

each of the height and width of R is greater than d (the diameter of C), namely

L ≥ 4d holds. Secondly, we show L ≥ 2d + 2d tan(θ/2). Note that we should

just consider the case of 4d ≤ 2d + 2d tan(θ/2), namely π/2 ≤ θ ≤ π because

L ≥ 4d has been proved. Without loss of generality we assume that eopt is a

horizontal edge. We label endpoints of a visible part of eopt from o as w1, w2

o

d/2 d/2

Fig. 8 L ≥ 4d

(1-x)θ

d/2

xθ

(d/2) tan xθ (d/2) tan (1-x)θ

o

eopt

w2w1

w*1 w*2h

Fig. 9 L ≥ 2d+ 2d tan(θ/2)

in clockwise order around o. Let w∗
1 (resp. w∗

2) be a point on the line segment

ow1 (resp. ow2) such that w1w2 is parallel to w∗
1w

∗
2 and the line segment w∗

1w
∗
2

touches the circle C and h be a tangent point of w∗
1w

∗
2 and C (see Fig. 9). Also

let ∠w1oh = xθ and ∠w2oh = (1−x)θ with some x (0 ≤ x ≤ 1). Then the length

of w∗
1w

∗
2 satisfies

|w∗
1w

∗
2 | =

d

2
tanxθ +

d

2
tan(1− x)θ

≥ d

2
tan

θ

2
+

d

2
tan

θ

2
= d tan

θ

2
.

Thus the width of R is greater than d tan(θ/2) and the height of R is greater

than d, then L ≥ 2d+ 2d tan(θ/2) holds.

By Lemma 7, we prove the following theorem.

Theorem 4. For a rectilinear polygon, the competitive ratio of Algorithm AOE

is at most 1.167.

Proof. Based on (21), we consider two cases; (Case 1) 0 ≤ θ < π/2 and (Case

2) π/2 ≤ θ ≤ π. Note that 4d > 2d + 2d tan(θ/2) holds in Case 1 and 4d ≤
2d+ 2d tan(θ/2) holds in the other.

Case 1: From L ≥ 4d, (8) and (13), we obtain

|AOE(P )|
|OPT(P )|

≤ L+ d

L+ d− d sin θ
2

≤ 4d+ d

4d+ d− d sin θ
2

=
5

5− sin θ
2

<
5

5− sin π
4

≤ 1.165.
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Case 2: From L ≥ 2d+ 2d tan(θ/2), (8) and (13), we obtain

|AOE(P )|
|OPT(P )|

≤ L+ d

L+ d− d sin θ
2

≤
2d+ 2d tan θ

2 + d

2d+ 2d tan θ
2 + d− d sin θ

2

=
3 + 2 tan θ

2

3 + 2 tan θ
2 − sin θ

2

. (22)

We will compute the maximum value of (22) as in the proof of Theorem 2 by

defining zλ(θ) and M(λ) for a real parameter λ as follows.

zλ(θ) = 3 + 2 tan
θ

2
− λ(3 + 2 tan

θ

2
− sin

θ

2
) (

π

2
≤ θ ≤ π)

M(λ) = max
π
2 ≤θ≤π

zλ(θ)

Let θ∗λ ∈ argmax0≤θ≤π zλ(θ), then a derivative of zλ(θ) is calculated as
dzλ
dθ

= −(λ− 1)
1

cos2 θ
2

+
λ

2
cos

θ

2
.

This derivative is monotone decreasing in the interval π/2 ≤ θ ≤ π, therefore

zλ(θ) is concave in this interval, then θ∗λ is unique. Indeed when λ = 1.167,

θ∗λ ≃ 1.7026 then M(1.167) ≃ −0.0044 < 0. Also when λ = 1.166, θ∗λ ≃ 1.7056

then M(1.166) ≃ 7.6× 10−5 > 0. Thus we obtain 1.166 < λ∗ < 1.167.

5. Discussion and Open Problems

We believe that the upper bound of the competitive ratio can be improved: the

least upper bound could be close to the lower bound 1.04 given in Section 3.1.

As one of many variations of online TSP, we could consider online TSP with

multiple searchers. In this problem, all searchers are initially at the same origin

o ∈ P . The goal of the exploration is that each vertex is visited by at least one

searcher and that all searchers return to the origin o. We regard the time when

the last searcher comes back to the origin as the cost of the exploration. Note that

our algorithm can be easily adapted to the case of online TSP with 2-searchers.

For offline TSP with k-searchers, Frederickson et al.4) proposed a (e+ 1− 1/k)-

approximation algorithm, where e is the approximation ratio of some 1-searcher

algorithm. Their idea is splitting a TSP tour given by some 1-searcher algorithm

into k parts such that the cost of each part is equal, where the cost of a part is the

length of the shortest tour from o which passes along the part. When k = 2, we

can apply this idea to our algorithm as follows. First, choose similarly e∗ ∈ E∗

satisfying (6). Then let one searcher go to v1e∗ and walk counterclockwise along

the boundary of P , and let symmetrically the other go to v2e∗ and walk clockwise.

When two searchers meet at a point on the boundary, two searchers come back

together to o along the shortest path in the inside P . In this case, we obtain an

upper bound 1.719. However, when k ≥ 3, the above-mentioned idea cannot be

directly applied. So, it remains open.

Acknowledgments This work is supported by JSPS Grant-in-Aid for Sci-

entific Research(B)(21300003).

References

1) W.Dinkelbach, “On nonlinear fractional programming”, Management Science,
13(7), pp. 492-498, 1967.

2) M.Dynia, J.Lopuszański and C.Schindelhauer, “Why robots need maps”, In Proc.
SIROCCO 2007 (LNCS 4474), pp. 41-50, 2007.

3) P.Fraigniaud, L.Gsieniec, D.R.Kowalski, A.Pelc, “Collective tree exploration”,
Networks, 48(3), pp. 166-177, 2006.

4) G.N.Frederickson, M.S.Hecht and C.E.Kim, “Approximation algorithms for some
routing problems”, SIAM J.Comput., 7, pp. 178-193, 1978.

5) S.K.Ghosh and R.Klein, “Online algorithms for searching and exploration in the
plane”, Computer Science Review, 4(4), pp. 189-201, 2010.

6) Y.Higashikawa, N.Katoh, S.Langerman and S.Tanigawa, “Online Graph Explo-
ration Algorithms for Cycles and Trees by Multiple Searchers”, In Proc. 3rd AAAC
Annual Meeting, 2010.

7) F.Hoffmann, C.Icking, R.Klein and K.Kriegel, “The polygon exploration prob-
lem”, SIAM J.Comput., 31(2), pp. 577-600, 2002.

8) N.Megow, K.Mehlhorn and P.Schweitzer, “Online graph exploration: New results
on old and new algorithms”, In Proc. 38th ICALP (LNCS 6756), pp. 478-489, 2011.

9) S.Miyazaki, N.Morimoto and Y.Okabe, “The online graph exploration problem
on restricted graphs”, IEICE Trans.Inf.& Syst., E92-D(9), pp. 1620-1627, 2009.

10) B.Kalyanasundaram and K.R.Pruhs, “Constructing competitive tours from local
information”, Theoretical Computer Science, 130, pp. 125-138, 1994.

11) S.Schaible and T.Ibaraki, “Fractional programming”, European Journal of Oper-
ational Research, 12, pp. 325-338, 1983.

8 c⃝ 2012 Information Processing Society of Japan

Vol.2012-AL-139 No.10
2012/3/14


