
情報処理学会研究報告
IPSJ SIG Technical Report

単純決定性言語のある部分言語族に対する teachability

但 馬 康 宏†1

単純決定性言語のある部分言語族に対する多項式サンプルでの教示可能性 (teacha-

bility)を示す．文法推論における教示可能性は，サンプルの語の長さに大きな影響を
受け，多項式サンプルでの困難さがいくつか示されている．本研究では，単純決定性
言語のある部分言語族に対して，質問による学習アルゴリズムを示すことにより，教
示可能性を導く．このアルゴリズムは，アルファベットの種類を定数とみなせば多項
式時間の学習アルゴリズムであるが，教示可能性を示す teaching set は，学習文法の
サイズ，および反例の長さに関する多項式である．

Teachability on a subclass of simple deterministic languages

Yasuhiro Tajima†1

We show a subclass of simple deterministic languages which is teachable in
polynomial examples. Teachability on grammatical inference is studied with
the setting called “identification in the limit from polynomial time and data”,
and there are negative results for famous languages. In this paper, we show
a learning algorithm from membership queries and counterexamples for a sub-
class of simple deterministic languages. The time complexity of this algorithm
is bounded by a polynomial if we regard the cardinality of alphabet is con-
stant. On the other hand, we can construct a teaching set for the subclass in
polynomial time without the condition of constant.

1. Introduction

Teaching and learning via queries are deeply related. Teaching in machine learning

problems is a mathematical model which concerns not only the learner’s algorithm but

†1 岡山県立大学 情報システム工学科
Department of Systems Engineering, Okayama Prefectural University

also the teacher’s ability. Goldman has shown that representations which are exam-

ple based query learnable are also teachable7). The polynomial time query learning

algorithm of regular languages4) is an important result, and it leads the polynomial

teachability of regular languages.

In grammatical inference, it is known that teachability is different from other rep-

resentations, DNF formula for example. That is because the length of examples is an

important parameter for grammatical inference, thus it is hard to show the teachability

or query learnability in polynomial only depend on the size of the representation of the

target language. A modification of teachability for grammatical inference is studied and

called “identification in the limit from polynomial time and data” by de la Higuera8).

Neverthless, many famous subclass of context-free languages are not identifiable in the

limit from polynomial time and data. Simple deteministic languages are also not poly-

nomial identifiable because there exists a grammar such that the length of a positive

example can not be bounded by a polynomial of the size of the grammar. So, we

define a new teachability which contains the length of generated words in polynomial

parameters, and call it “teachable in polynomial examples.”

In this setting, we show that the class of stack uniform simple deterministic gram-

mar is teachable in polynomial examples. On the other hand, this subclass of simple

deterministic languages is learnable via membership queries and counterexamples, but

the time complexity is not bounded by a polynomial of the size of the grammar and

the length of counterexamples.

2. Preliminaries

A context-free grammar (CFG for short) is denoted by G = (N,Σ , P, S) where N is

a finite set of nonterminals, Σ is a finite set of teminals, P is a finite set of production

rules and S ∈ N is the start symbol. We call w ∈ Σ∗ a word and the 0-length word is

denoted by ε. The length of a word w ∈ Σ∗ is denoted by |w|, and the cardinality of a

set B is also denoted by |B|.
A CFG G is simple deterministic (SDG for short) if G is in Greibach normal form,

ε-free and holds the following conditions.

• If A → aβ ∈ P for A ∈ N , a ∈ Σ and β ∈ N∗, then A → aγ �∈ P for any γ ∈ N∗

c© 2012 Information Processing Society of Japan1

Vol.2012-AL-139 No.8
2012/3/14

情報処理学会研究報告
IPSJ SIG Technical Report

where γ �= β.

We denote a derivation by γAγ′ ⇒
G

γaβγ′ where γ, γ′ ∈ (N ∪ Σ)∗ and A → aβ ∈ P .

The reflexive and transitive closure of derivations is denoted by
∗⇒
G

or
∗⇒ when G is

obvious. The simple deterministic language (SDL for short) generated by an SDG G is

L(G) = {w ∈ Σ∗ | S
∗⇒
G

w}. In this paper, we assume that every nonterminal A ∈ N is

reachable and live, i.e. for α, β ∈ (N ∪Σ)∗, there exists a derivation S
∗⇒
G

αAβ for every

A ∈ N and there also exists a derivation A
∗⇒
G

w for some w ∈ Σ∗.

Let G = (N,Σ , P, S) be an SDG and A ∈ N ∪Σ . We define a set of derivationi trees

DG(A) =

⎧⎪⎨
⎪⎩

{a} . . . (A = a ∈ Σ)

{A(t1, · · · , tk) | A → B1 · · ·Bk ∈ P,

ti ∈ DG(Bi),∀i = 1, 2, · · · , k} . . . (A ∈ N)

We call DG(S) the set of derivation trees of G. A skeleton sk(t) for t ∈ DG(S) is defined

as follows.

sk(t) =

⎧⎪⎨
⎪⎩

a . . . (t = a, a ∈ Σ)

σ(sk(t1), · · · , sk(tn)

. . . (t = A(t1, · · · , tn), A ∈ N)

here σ is special symbol such that σ �∈ N ∪ Σ . In other words, sk(t) is a tree whose all

internal node labels are replaced by σ.

Let Lt be the learning target language and a representation Gt be a grammar such

that L(Gt) = Lt. A set of word w ∈ Σ∗ and its membership (w ∈ Lt or not) is called

an example.

3. Stack uniform simple deterministic languages

Definition1 An SDG G = (N,Σ , P, S) is stack uniform SDG (uniSDG for short) if

the followings are hold.

• If A → aβ ∈ P for A ∈ N , a ∈ Σ , β ∈ (N ∪ Σ)∗, then |γ| = |β| holds for any rule

B → aγ ∈ P .

A stack uniform SDL (uniSDL for short) is the language generated by G of a uniSDG.

A pushdown automata which accepts a uniSDL moves its stack hight in “uniform”

according to the input symbol. The equivalence problem on stack uniform DPDAs is

solved1) before the equivalence problem between DPDAs are solved.

Definition2 Let G = (N,Σ , P, S) be a uniSDG, a ∈ Σ and A → aβ ∈ P . We

define n(a,G) = |β|. If there are no rules B → cγ ∈ P for any B ∈ N and γ ∈ N∗, then

let n(c,G) = 1 for c ∈ Σ . This is because, such c ∈ Σ , we can assume B → cZ is in P

where Z is not live.

Without loss of generality, we call �nG = (n(a1,G), n(a2,G), · · · , n(aj ,G)) the parameter

vector of G, for Σ = {a1, a2, · · · , aj}. t�n = t(n1, n2, · · · , nj) denotes the transposed

vector of vecn = (n1, n2, · · · , nj).

We define

m(x,a) = |{u · a|x = u · a · v, u, v ∈ Σ∗}|
for x ∈ Σ∗ and a ∈ Σ . In other words, m(x,a) is the number of a in x.

Definition3 For a finite set of words X = {x1, x2, · · · , xk} ⊂ Σ+, we define

MX =

⎛
⎜⎜⎜⎜⎝

m(x1,a1) m(x1,a2) · · · m(x1,aj)

m(x2,a1) m(x2,a2) · · · m(x2,aj)

...

m(xk,a1) m(xk,a2) · · · m(xk,aj)

⎞
⎟⎟⎟⎟⎠

where j = |Σ | and k = |X|.
For a uniSDG G and x ∈ L(G), it holds that

∑
a∈Σ ,m(x,a) �=0

m(x,a)(n(a,G) − 1) = −1 (1)

for x ∈ Σ+ from definitions. Thus, if x′ ∈ Σ∗ does not satisfy the equation (1) then it

holds that x′ �∈ L(G). In addition, if the inverse matrix M−1
X of MX for X ⊂ Σ+ does

not exist then there is no uniSDG G such that X ⊆ L(G).

It is clear that the class of uniSDGs is included in the class of SDGs because of its

definition.

Theorem4 The class of uniSDLs is proper subclass of the class of SDL.

Proof: Let G = ({S, A, B}, {a, b}, P, S) with

c© 2012 Information Processing Society of Japan2

Vol.2012-AL-139 No.8
2012/3/14

情報処理学会研究報告
IPSJ SIG Technical Report

P = {S → aA, A → aAB,A → b, B → b}
be an SDG, then L(G) = {aibi | i ≥ 1}. Suppose X = {ab, aabb} ⊂ L(G), then MX

does not have the inverse matrix. Thus L(G) can not express in a uniSDG.

Definition5 We define a regular language L with an end marker as follows.

• L is regular.

• ∀w ∈ L, it holds that w = u# for u ∈ (Σ − {#})∗ and # ∈ Σ .

In other words, every word in L is ended by # and the end marker # must not apper

in middle of any words.

Theorem6 The class of regular languages with end marker is proper contained in

the class of uniSDLs.

Proof: Without loss of generality, any regular language with an end marker can be

represented by a uniSDG G = (N,Σ , P, S) which has the production rules of the form

A → aB or A → # where A, B ∈ N , a ∈ Σ and # ∈ Σ is the end marker.

On the other hand, let G = ({S, T}, {a, b}, P, S) be a uniSDG such that

P = {S → aST, S → b, T → b}
then L(G) = {aibi+1 | i ≥ 0} and this is not regular language. Thus, this theorem

holds.

Following class of linear languages is polynomial time learnable via membership queries

and counterexamples2).

Definition7 Let G = (N,Σ , P, S) be a CFG and π is a rule in P such that

π = (A → β) ∈ P . We denote the derivation with π by

A
π⇒
G

β.

Let ΠG = {π ∈ P} and C ⊆ Π∗
G. Then, we define

L(G, C) = {w ∈ Σ∗ | S
c⇒
G

w, c ∈ C}

Definition8 (Takada2)) A CFG G = ({S}, Σ , P, S) with

P = {S → aSb | a, b ∈ Σ}
∪ {S → a | a ∈ Σ}
∪ {S → ε}

is called a universal ELG. Let U be the set of all universal ELGs for all alphabet Σ ,

and R be the class of regular languages. We define L〉 as follows.

L0 = R
Li = {L(G, C) | G ∈ U,C ∈ Li−1}

Theorem9 For every i ≥ 1, Li is incomparable to the class of uniSDLs.

Proof: Let G1 = (N1, Σ , P1, S) ∈ L1 be

N1 = {S, B, C}
Σ = {a, b, c}
P1 = {S → aBb, S → aCc

B → aBb, B → ε

C → aCc, C → ε}
then L(G1) = {aibi ∪ aici | i ≥ 1}. This is not an SDL3).

On the other hand, let G2 = (N2, Σ , P2, S) be a uniSDG such that

N2 = {S, B, C}
Σ = {a, b, c}
P2 = {S → aSBC, S → b, B → b, C → c}

then L(G2) = {aib(bc)i | i ≥ 0}. Assume that L(G2) ∈ Lj} for some j > 0, then there

exist G = ({S}, {a, b, c}, P, S) ∈ U and C ∈ Lj−1 such that L(G2) = L(G, C). However,

G is a linear grammar, we can not consturct such C.

Thus, this theorem holds.

The class of uniSDGs has the following property.

Lemma10 Let G = (N, Σ , P, S) be a uniSDG. For any w ∈ L(G), we can construct

the skeleton sk(tw) from the parameter vector �nG and Σ , where tw is the derivation

tree of w on G. The time complexity to construct sk(tw) is O(|w|).
Proof: Let A ∈ N and w = a1a2 · · · an ∈ Σ∗ for ai ∈ Σ (i = 1, 2, · · · , n). Reading w

from left to right, sk(tw) can be recursively constructed as follows.

(1) Make root node and let it the current node.

(2) Read one terminal symbol from w and make children according to �nG.

(3) Change the current node besed on the depth first search and back to the previous

step.

Formally, we can show the algorithm in Fig. 1.

When this procedure is called recursively, the input word will be decreased. Thus,

c© 2012 Information Processing Society of Japan3

Vol.2012-AL-139 No.8
2012/3/14

情報処理学会研究報告
IPSJ SIG Technical Report

Procedure make skeleton

INPUT: w = a1a2 · · · an ∈ Σ∗

OUTPUT: skeleton sk and u ∈ Σ of w’s suffix

begin

if (|w| = 1 then output sk = σ(a1) and u = ε, and terminate;

for i = 1, 2, · · · , n(a1,G) do

if (i = 1 then

call make skeleton with INPUT: a2a3 · · · an;

(let OUTPUT: sk1, u
′
1)

else

call make skeleton with INPUT: u′
i−1;

(let OUTPUT: ski, u
′
i)

fi

end

Let sk = σ(a1, sk1, sk2, · · · , skn(a1,G));

Let u = u′
n(a1 ,G)

;

output sk and u;

end.

図 1 The skeleton construction algorithm

the number of resursive call is at most |w|, it implies that the time complexity of this

procedure is O(|w|).
Example11 We show an example run of lemma 10. Assume a uniSDG G =

({S, T}, {a, b}, {S → aST, S → b, T → b}, S) and try to make the skeleton for

aabbb ∈ L(G). The parameter vector of G is

�nG = (n(a,G), n(b,G)) = (2, 0)

and we start the procedure “make skeleton(INPUT: aabbb).” Then σ(a, sk1, sk2) and

abbb are returned where sk1 and sk2 are constructed by recursive call of make skeleton().

To make sk1, make skeleton(INPUT: abbb) is called then σ(a, sk3, sk4) and bbb are

returned. To make sk3, make skeleton(INPUT: bbb) is called then σ(b) and bb are re-

turned. To make sk4, make skeleton(INPUT: bb) is called then σ(b) and b are returnd.

Now, sk1 = σ(a, σ(b), σ(b)). To make sk2, make skeleton(INPUT: b) is called then

σ(b) and ε are returned. The final output is σ(a, σ(a, σ(b), σ(b)), σ(b)) and this is the

skeleton of the derivation tree. The time complexity is also O(|w|).
Lemma12 Let X ⊂ Σ+ hold that

{a ∈ Σ | u, w ∈ Σ∗, uaw ∈ X} = Σ .

In other words, for every a ∈ Σ , there exists x ∈ X whose derivation uses a. Then it

holds that

|{ �nG | X ⊆ L(G), G ∈ STKΣ}| = O(l|Σ |)

where l = max{|x| | x ∈ X}.
Proof: Every uniSDG G such that X ⊆ L(G) holds the equation (1) for any x ∈ X.

Suppose that j = |Σ |,

N =

⎛
⎜⎜⎜⎜⎝

na1

na2

...

naj

⎞
⎟⎟⎟⎟⎠

, �−1 =

⎛
⎜⎜⎜⎜⎝

−1

−1
...

−1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

j

⎞
⎟⎟⎟⎟⎠

and k = |X|, then |{ �nG | X ⊆ L(G), Gis uniSDG}| is bounded by the number of

solutions of

MX(N + �−1) = �−1 (2)

with

nai ≥ 0

for i = 1, 2, · · · , j.
Now, if there exists i such that nai ≥ l then some h (1 ≤ h ≤ k) hold that m(xh,ai) > 0.

In addition, it holds that

c© 2012 Information Processing Society of Japan4

Vol.2012-AL-139 No.8
2012/3/14

情報処理学会研究報告
IPSJ SIG Technical Report

j∑
i′=1

m(xh,ai′)(nai′ − 1)

= m(xh,ai)(nai − 1)

+

j∑
i′=1 (i′ �=i)

m(xh,ai′)(nai′ − 1)

≥ (l − 1) − (l − 1) > −1

thus nai < l holds for any i (1 ≤ i ≤ j) if the equation (2) holds. It implies that the

number of solutions of (2) is bounded by l|Σ |.

4. Learning via membership queries and counterexamples

We show a plynomial time learning algorithm for uniSDGs via membership queries

and counterexamples. In this algorithm, the following queries are used. Let Lt be the

target uniSDL.

[Membership query]

INPUT: w ∈ Σ∗

OUTPUT: yes if w ∈ Lt,

no if w /∈ Lt

[Equivalence query]

INPUT: a hypothesis uniSDG Gh

OUTPUT: yes if L(Gh) = Lt,

no and w ∈ Σ if L(Gh) �= Lt

where w ∈ Σ is a counterexample such that w ∈ (Lt − L(Gh)) ∪ (L(Gh) − Lt).

In the following of this paper, let Gt = (Nt,Σ , Pt, St) be a uniSDG such that

L(Gt) = Lt. We define the following query.

[Equivalence query with a structural counterexample]

INPUT: a hypothesis uniSDG Gh

OUTPUT: yes if L(Gh) = Lt,

no and sk(tw) if L(Gh) �= Lt

where w ∈ (Lt − L(Gh)) ∪ (L(Gh) − Lt), and if w ∈ Lt then sk(tw) is the skeleton

of the derivation tree of w on Gt, else if w ∈ L(Gh) then sk(tw) is that on Gh.

We have shown the following.

Theorem13 SDLs are polynomial time learnable via membership queries and equiv-

alence queries with a structural counterexample5).

The learning algorithm in5) makes membership queries and equivalence queries with a

structural counterexample, then outputs a hypothesis SDG Gh in polynomial of size

of Gt and counterexamples. We call this algorithm LA′. The learning algorithm LA

which is proposed in this paper uses LA′ as follows.

(1) LA makes an equivalence query for the empty hypothesis Gh = ({S}, Σ , {}, S),

and obtains a positive counterexample.

(2) LA finds all parameter vectors which are consistent with all positive examples

obtained by this step. We denote the parameter vectors �nG1 , �nG2 , · · · , �nGk . From

lemma 12, k is O(l|Σ |). Here, l is the length of the longest counterexample.

(3) For every nGj (j = 1, 2, · · · , k), LA runs LA′ in parallel. We denote these algo-

rihtms LA′
1, LA′

2, · · · , LA′
k. For some j, if LA′

j makes an equivalence query with

a structural counterexample whose input is the hypothesis Gh, then LA makes

an equivalence query with Gh and obtains a counterexample w ∈ Σ∗. Then, LA

makes sk(tw) from �nGj and return the skeleton to LA′
j . Such a skeleton can be

constructed in polynomial time from lemma 10.

Let fLA′ be the time complexity of the algorithm LA′. The time complexity of our

learning algorithm LA is O(l|Σ | · fLA′) because one of {nGj | j = 1, 2, · · · , k} is the

correct parameter for Gt.

Let j be the indicator of the correct parameter vector. We show that the hypothesis

of LA′
j can be rewrite into uniSDG. When LA′

j terminates and outputs a hypothesis

SDG Gj = (Nj ,Σ , Pj , Sj) then Pj can be separate into 2 parts5):

Pj = P0 ∪ P1

here P0 is a rule set of uniSDG whose parameter vector is �nGj and all rules in P1 are

of the form A → w for A ∈ Nj and w ∈ Σ∗. Now, every A → w ∈ P1 holds

M{w}(
t �nG + �−1) = �−1

because B
∗⇒

Gt

w for some B ∈ Nt, then we can construct a uniSDG Gw such that

�nGw = �nGj and {w} = L(Gw). Thus, the rule set Pj is in uniSDG and its parameter is

c© 2012 Information Processing Society of Japan5

Vol.2012-AL-139 No.8
2012/3/14

情報処理学会研究報告
IPSJ SIG Technical Report

�nGj .

The time complexity of LA is evaluated by the following theorem.

Theorem14 A uniSDL L(Gt) (Gt = (Nt,Σ , Pt, St)) can be learnable with uniSDGs

via membership queries and counterexamples. If we consider |Σ | is a constant, the time

complexity is bounded by a polynomial of |Nt| and l, here l is the length of the longest

counterexample.

Proof: Let X+ be the positive examples and X− be the negative examples such

that LA obtained. From lemma 12, the number of solutions of MX+(N + �−1) = �−1 is

O(l|Σ |). From theorem 13, LA′ terminates in polynomial time of l and the size of Gt.

We denote it fLA′ . Thus, both |X+| and |X−| is O(l|Σ | · fLA′).

The time complexity to transform the hypothesis into uniSDG is also O(l · fLA′) and

construct the skeleton for LA′ is O(l).

Example15 This is an example run of LA. Let the target language be Lt =

{aibic | i > 0} and the grammar be Gt = ({S, A, B, C},Σ = {a, b, c}, Pt, S) where

Pt = {S → aAC,A → aAB,A → b, B → b, C → c}. The first hypothesis of LA

is Gh = ({Sh}, Σ , {}, Sh), and let the first counterexample is abc, i.e. X+ = {abc}.
Solutions of equations MX+(N + �−1) = �−1 are N1 = (na, nb, nc) = (2, 0, 0) and

N2 = (na, nb, nc) = (1, 1, 0). Now, two algorithms, LA′
N1

whose parameter vector

is N1 and LA′
N2 whose parameter vector is N2, are run in parallel.

LA executes LA′
N1 and LA′

N2 alternately. Either LA′
N1 or LA′

N2 makes an equivalence

query with structural counterexample, then LA makes an equivalence query. If positive

counterexample has been returned, LA adding the skelton according to the parameter

vector of LA′
N1

or LA′
N2

.

When either LA′
N1

or LA′
N2

terminates, LA terminates with the hypothesis. In this

example, LA′
N1

terminates in polynomial time. The time complexity of LA is 2fLA′
N1

where fLA′
N1

is that of LA′
N1

.

5. Teachability

Teachability is one of a variation of machine learning problems. There are some dif-

ferent settings6)7) but we concern Goldman and Mathias’s T/L-teachablity7). In this

setting, the teacher makes a teaching set T which is a set of examples for the learner

at first. Then, the adversary adds a set of examples A to T arbitrarily. The learner

takes A ∪ T and try to identify the target language. If the teacher can make T in

polynomial time of the size of a representation Gt for the target language Lt and the

learner can identify in polynomial time of the size of Gt and the size of A ∪ T , then

such a representation class is polynomially T/L-teachable. If the teacher’s complexity

is not bounded then we call such a representation class is semi-poly T/L-teachable.

It is known that learnability via queries leads teachability.

Theorem16 (Goldman and Mathias) A representation class which is polyno-

mial time learnable via example based queries is semi-poly T/L-teachable.

Here, both of membership query and equivalence query are example based query.

Neverthless, on grammatical inference, there is difficulty in polynomial teachability.

Let T be a finite set of examples of the target language. A consistency-easy class is a

representation class which can express any T and we can find such a representation in

polynomial time of the size and the total length of T . It is trivial that uniSDG, SDG,

CFG are consistency-easy class.

Definition17 (de la Higuera8)) A representation class R is identifiable in the

limit from polynomial time and data iff there exist two polynomials p() and q() and an

algorithm A such that :

(1) Given any examples S of size m, A returns a representation r ∈ R compatible

with S in O(p(m)) time.

(2) For each representation r of size n, there exists a characteristic example CS of

size less than q(n) for which , if CS ⊆ S, A returns a representation r′ equivalent

with r.

In this setting, some positive identifiability has been shown9). Then, following theorems

hold.

Theorem18 (8)) A consistency-easy class is identifiable in the limit from polyno-

mial time and data iff it is semi-poly T/L-teachable.

Theorem19 (8)) The class of SDGs is not identifiable in the limit from polynomial

time and data.

Proof: Suppose Gt = ({Ai | i = 1, 2, · · · , n}, {a, b}, P, A1) where

c© 2012 Information Processing Society of Japan6

Vol.2012-AL-139 No.8
2012/3/14

情報処理学会研究報告
IPSJ SIG Technical Report

P = { Ai → aAi+1Ai+1 (i = 1, 2, · · · , n − 1),

An → b }

then L(Gt) contains just one word and the length is 2n − 1. If the teacher makes a

teaching set T , T must contain the positive example, but the size of T is not bounded

by a polynomial of |Nt| = n.

This Gt is also uniSDG. Thus, the class of uniSDG is also not identifiable in the limit

from polynomial time and data.

On the other hand, the length of a counterexample is an important parameter for

polynomial time query learning. We think, for teachiability, that the length of words

which generated by Gt is corresponds to that of counterexamples.

Definition20 Let Gt = (Nt, Σ , Pt, St) be a uniSDG. The thickness of A ∈ Nt is

the length of the shortest word which is generated from A, and is denoted by tck(A).

The thickness of A → β ∈ Pt is the length of the shortest word which is generated

from β, and is denoted by tck(A → β). The thickness of Gt is max({tck(A) | A ∈
Nt} ∪ {tck(A → β) | A → β ∈ Pt}), and denoted by tck(Gt).

If a class of CFGs is T/L-teachable in polynomial of the size of Gt and tck(Gt), then

we call the class of CFGs teachable in polynomial examples.

We can claim immediately that the class of uniSDG is teachable in polynomial ex-

amples if |Σ | is considered a constant.

In addition, the following theorem removes l|Σ | factor from the polynomial.

Theorem21 The class of uniSDGs is teachable in polynomial examples.

Proof: The number of solutions of the equation (2) has been decreased if positive ex-

amples are increased. At most |Σ | positive examples minimize the number of solutions.

In addition, all such solutions can become the parameter vector of Gt. Thus, teacher

can make a teaching set T whose size is polynomial of the size of Gt and tck(Gt).

The learner can also find one of the parameter vector of Gt in polynomial time of the

size of given examples. Thus, the time complexity to identify Gt is O(l · |Σ | · fLA′).

6. Conclusions

We have shown that:

• The class of uniSDLs is learnable via membership queries and counterexamples.

But the time complexity is O(l|Σ | · fLA′), here l is the maximum length of coun-

terexamples and fLA′ is the time complexity of the learning algorithm for SDLs via

membership queries and structural counterexamples.

• The class of uniSDLs is teachable in polynomial examples. The size of the teaching

set T can be bounded by O(l · |Σ | · fLA′), here l is the thickness of Gt.

参 考 文 献

1) M. Linna, “Two decidability results for deterministic pushdown automata”, Jour-

nal of Computer and System Sciences, vol.18, no.1, pp.92–107, Feb. 1979.

2) Y. Takada, “A hierarchy of languages families learnable by regular language learn-

ing”, Information and Computation, vol.123, no.2, pp.138–145, 1995.

3) M. A. Harrison, “Introduction to Formal Language Theory”, Addison-Wesley,

Reading MA, 1978.

4) D. Angluin, “Learning regular sets from queries and counterexamples”, Informa-

tion and Computation, vol.75, no.2, pp.87-106, 1987.

5) Y. Tajima, E. Tomita and M. Wakatsuki, “Polynomial time MAT learning of sim-

ple deterministic languages with structural counterexamples”, The IEICE Trans-

actions on Information and Systems (in Japanese), vol.J82-D-I, no.4, pp.521–532,

1999.

6) A. Shinohara and S. Miyano, “Teachability in computational learning”, New Gen-

eration Computing, vol.8, pp.337–347, 1991.

7) S. A. Goldman and H. D. Mathias, “Teaching a smart learner”, Journal of Com-

puter and System Sciences, vol.52, pp.255–267, 1996.

8) C. de la Higuera, “Characteristic sets for polynomial time grammatical inference”,

Machine Learning, vol.27, no.2, pp.125–138, 1997.

9) C. de la Higuera and J. Oncina, “On sufficient conditions to identify in the limit

classes of grammars from polynomial time and data”, LNAI 2484 (Proc. of ICGI

2002), pp.134–148, 2002.

c© 2012 Information Processing Society of Japan7

Vol.2012-AL-139 No.8
2012/3/14

