
IPSJ SIG Technical Report

On Complexity of Flood Filling Games on

Interval Graph Classes

Hiroyuki Fukui,†1 Ryuhei Uehara,†1 Takeaki Uno†2

and Yushi Uno†3

The flooding games on a graph are a kind of graph coloring game, which
are called Flood-It, Mad Virus, or HoneyBee played online. These games are
supposed that each player can color one fixed vertex. It is natural to consider
these games that allow the player to color arbitrary vertex. This version is
called free flooding game. Recently, computational complexities of these games
on some graph classes are studied. For example, one player version is NP-
complete on a tree with maximum degree 3. In this paper, we investigate these
games on some graph classes characterized by interval representations. Our
results state that the number of colors is a key parameter to determine the
difficulty of these games. When the number of colors is a fixed constant, these
games can be solved in polynomial time on an interval graph. On the other
hand, if the number of colors is not bounded, the free flooding game is NP-
complete on a proper interval graph, which has an interval representation with
intervals of unit length.
Keywords: Computational complexity, fixed parameter tractable, flooding
game, graph coloring, interval graph.

1. Introduction

The flooding game is played on a precolored board, and each player colors a
cell on the board in a turn. When a cell is colored with the same color as its
neighbor, they will be merged into one colored area. If a player changes the color
of one of the cells belonging to a colored area of the same color, the color of all
cells in the area are changed. The game finishes when all cells are colored with
one color, and the objective of the game is to minimize the number of turns (or

†1 北陸先端科学技術大学院大学 情報科学研究科 School of Information Science, Japan Advanced
Institute of Science and Technology (JAIST)

†2 国立情報学研究所 National Institute of Informatics (NII)
†3 大阪府立大学理学系研究科 School of Science, Osaka Prefecture University

Fig. 1 A sequence of five moves
on a 5 × 5 Flood-It board.

Fig. 2 The initial screen of the Mad Virus (http://
www.bubblebox.com/play/puzzle/539.htm). The
player changes the cell having eyes.

to finish the game within a given number of turns). The one player flooding
game is known as Flood-It (Figure 1). In Flood-It, each cell is a precolored
square, the board consists of n × n cells, the player always changes the color of
the top-left corner cell, and the goal is to minimize the number of turns. This
game is also called Mad Virus played on a honeycomb board (Figure 2). You
can play all the games online: Flood-It (http://floodit.appspot.com/) and
Mad Virus (http://www.bubblebox.com/play/puzzle/539.htm).

In the original flooding games, each player colors a specified cell. However, it
is natural to extend the game that the player can color any cell. We say that
the original game is fixed and the extended one is free. The game board also can
be generalized to a general graph; that is, the vertex set corresponds to the set
of cells, and two cells are neighbors if and only if the corresponding vertices are
adjacent in the graph. It is also natural to parameterize the number k of colors.
Recently, the generalized flooding game on a general graph is well investigated
from the viewpoint of computational complexity. We summarize resent results
in Table 1.

In this paper, we first investigate the computational complexities of the game
on a graph that has an interval representation. The following results imply that
the game is fixed parameter tractable with respect to the number of colors:

Theorem 1 The free flooding game is NP-complete even on a proper interval
graph.

Theorem 2 (1) The free flooding game on a proper interval graph can be

c© 2012 Information Processing Society of Japan1

Vol.2012-AL-139 No.7
2012/3/14

IPSJ SIG Technical Report

Graph classes fixed fixed, k is bounded
general graphs NP-C NP-C if k ≥ 3 1)

P if k ≤ 2 (trivial)
(�/4/hex.) grids NP-C NP-C if k ≥ 3 2)

paths/cycles O(n2) 2) O(n2) 2)
co-comparability graphs P 3) P 3)

split graphs NP-C 3) P 3)

proper interval graphs P?1 O(8kk2n3) (This)

interval graphs P?1 O(8kk2n3) (This)

Graph classes free free, k is bounded
general graphs NP-C NP-C if k ≥ 3 1)

P if k ≤ 2 2), 4)
(�/4/hex.) grids NP-C NP-C if k ≥ 3 2)

paths/cycles O(n3) 5)?2 O(n3) 5)?2

split graphs NP-C (This) O((k!)2 + n) (This)

proper interval graphs NP-C (This) O(8kk2n3) (This)

interval graphs NP-C (This) O(8kk2n3) (This)
Table 1 Computational complexities of the flooding games on some graph classes.

solved in O(8kk2n3) time. (2) The free flooding game on an interval graph can be
solved in O(8kk2n3) time. That is, the free flooding game in these graph classes
is polynomial time solvable if the number k of colors is fixed.

We also extend the results for the fixed flooding game on a split graph men-
tioned in 3) to the free flooding game on a split graph. Precisely, the free flooding
game is NP-complete even on a split graph, and it can be solved in O((k!)2 + n)
time.

Although we only consider one player game in this paper, it is also natural
to consider two player flooding game. This is known as HoneyBee, which is
available online at http://www.ursulinen.asn-graz.ac.at/Bugs/htm/games/
biene.htm. Fleischer and Woeginger also investigate this game from the view-
point of computational complexity. See 3) for further details.

?1 The class of co-comparability graphs properly contains interval graphs and hence proper
interval graphs. Since this game is polynomial time solvable on a co-comparability graph,
so they follow.

?2 In 5), the authors gave an O(kn3) algorithm. However, it can be improved to O(n3) easily
in the same way in 2).

2. Preliminaries

We model the flooding game in the following graph-theoretic manner. The
game board is a connected, simple, loopless, undirected graph G = (V, E). We
denote by n and m the number of vertices and edges, respectively. There is a
set C = {1, 2, . . . , k} of colors, and every vertex v ∈ V is precolored (as input)
with some color col(v) ∈ C. Note that we may have an edge {u, v} ∈ E with
col(u) = col(v). For a color c ∈ C, the subset Vc contains all vertices in V of
color c. For a vertex v ∈ V and color c ∈ C, we define the color-c-neighborhood
Nc(v) as the set of vertices in Vc either adjacent to v or connected to v by a
path of vertices of color c. Similarly, we denote by Nc(W) = ∪w∈W Nc(w) the
color-c-neighborhood of a subset W ⊆ V . For a given graph G = (V,E) and
the precoloring col(), a coloring operation (v, c) for v ∈ V and c ∈ C is defined
by, for each vertex v′ ∈ Nc′(v) ∪ {v} with c′ = col(v), setting col(v′) = c. For
a given graph G = (V,E) and a sequence (v1, c1), (v2, c2), . . . , (vt, ct) of coloring
operations in V ×C, we let G0 = G and Gi is the graph obtained by the coloring
operation (vi, ci) on Gi−1 for each i = 1, 2, . . . , t. In the case, we denote by
Gi−1 →(vi,ci) Gi and G0 →i Gi for each 0 ≤ i ≤ t. Then the problem in this
paper are defined as follows?3:
Problem 1: Free flooding game
Input : A graph G = (V, E) such that each vertex in V is precolored with

col(v) ∈ C and an integer t;
Output: Determine if there is a sequence of coloring operations

((v1, c1), (v2, c2), . . . , (vt, ct)) of length t such that all vertices in the
resulting graph G′ (i.e. G →k G′) have the same color;

For the problem, if a sequence of operations of length t colors the graph, the
sequence is called a solution of length t.

A graph (V,E) with V = {v1, v2, · · · , vn} is an interval graph if there is a set of
intervals I = {Iv1 , Iv2 , · · · , Ivn

} such that {vi, vj} ∈ E if and only if Ivi
∩ Ivj

6= ∅
for each i and j with 1 ≤ i, j ≤ n. We call the set I of intervals an interval

?3 In the fixed flooding game, v1 = v2 = · · · = vt is also required.

c© 2012 Information Processing Society of Japan2

Vol.2012-AL-139 No.7
2012/3/14

IPSJ SIG Technical Report

representation of the graph. For each interval I, we denote by L(I) and R(I) the
left and right endpoints of the interval, respectively (hence we have L(I) ≤ R(I)
and I = [L(I), R(I)]). For a point p, let N [p] denote the set of intervals containing
the point p.

An interval representation is proper if no two distinct intervals I and J exist
such that I properly contains J or vice versa. That is, either I ≺ J or J ≺ I holds
for every pair of intervals I and J . An interval graph is proper if it has a proper
interval representation. If an interval graph G has an interval representation I
such that every interval in I has the same length, G is said to be a unit interval
graph. Such interval representation is called a unit interval representation. It is
well known that proper interval graphs coincide with unit interval graphs6). That
is, given a proper interval representation, we can transform it to a unit interval
representation. A simple constructive way of the transformation can be found in
7). With perturbations if necessary, we can assume without loss of generality that
L(I) 6= L(J) (and hence R(I) 6= R(J)), and R(I) 6= L(J) for any two distinct
intervals I and J in a unit interval representation I.

A graph G = (V, E) is a split graph if V can be partitioned into C and I such
that G[C] induces a clique and G[I] induces an independent set.

3. Interval Graphs

Let G = (V, E) be an interval graph precolored with at most k colors. We first
show the NP-completeness of the flooding game on G even if G is a proper interval
graph. Next we show an algorithm that solves the flooding game in O(8kk2n3).
That is, the flooding game is fixed parameter tractable on an interval graph with
respect to the number of colors.

3.1 NP-completeness on proper interval graphs
To prove Theorem 1, we reduce the following well-known NP-complete problem

to our problem (See 8) [GT1]):

Problem 2: Vertex Cover
Input : A graph G = (V,E) and an integer k;
Output: Determine if there is a subset S of V such that for each edge

e = {u, v} ∈ E, e ∩ S 6= ∅ and |S| = k;

v1

b b b b b

v1

v2

v1

v3

v1

v4

v3

v4

w
1
1

w
1
2

w
1
3

w
1
1

w
1
2

w
1
3

w
2
1

w
2
2

w
2
3

w
2
1

w
2
2

w
2
3

v2

v3

v4

Fig. 3 Reduction from Vertex Cover to Flooding game.

Let G = (V,E) and k be an instance of the vertex cover problem. Let n = |V |,
m = |E|. We construct a proper interval representation I and coloring of the
graph?1 as follows (see also Figure 3).
(1) Let C be the color set V ∪ {wj

i | 1 ≤ i ≤ m − 1, 1 ≤ j ≤ m} ∪ {b} of
n + m(m − 1) + 1 different colors.

(2) For each 0 ≤ i ≤ m, we put an interval Ii = [4i, 4i + 1] with precolor
col(I) = b. We call these m + 1 intervals backbones.

(3) For each ei = {u, v} ∈ E with 0 ≤ i < m, we add two identical intervals
Ji = [4i + 2, 4i + 3] and J ′

i = [4i + 2, 4i + 3] with precolor col(Ji) = u and
col(J ′

i) = v. (Note that the ordering of the edges is arbitrary.)
(4) We join backbones and the pair intervals by a path of length m; precisely,

the intervals I = [4i, 4i + 1] and Ji = [4i + 2, 4i + 3] are joined by a path
(vm, vm−1, . . . , v1, v0) such that Ivm = [4i, 4i + 1] and Iv0 = [4i + 2, 4i + 3].
(Note that v1 has three neighbors v2, v0 and another vertex v′0 with Iv0 =
Iv′

0
= [4i+2, 4i+3].) Then each vertex vj with 1 ≤ j ≤ m−1 is precolored

by wi
j . The intervals Ii = [4i+2, 4i+3] and I = [4i+4, 4i+5] are joined in

a symmetric way. That is, they are joined by a path (v0, v1, . . . , vm−1, vm)
such that Iv0 = [4i + 2, 4i + 3], Ivm = [4i + 4, 4i + 5], and col(vj) = wi

j with
1 ≤ j ≤ n.

Now we show a lemma that immediately implies Theorem 1.
Lemma 3 In the reduction above, the original graph G has a vertex cover

of size k if and only if there is a sequence of coloring operations of length m2 + k

to make the resulting interval representation in monochrome.
Proof. We first suppose that the graph G has a vertex cover S of size k. Then
we can construct a sequence of coloring operations of length m2 + k as follows.
First step is joining the backbones. For an edge {u, v} ∈ E with u ∈ S, pick up

?1 We sometimes identify an interval graph and its interval representation.

c© 2012 Information Processing Society of Japan3

Vol.2012-AL-139 No.7
2012/3/14

IPSJ SIG Technical Report

v (we do not mind if v is in S). Then we color v by w1, w2, . . . , wm−1, and b.
Repeat this process for every edge. Then all the backbones are connected and
colored by b after m2 colorings. We then still have |E| intervals corresponding
to the vertices in S. Thus we pick up each vertex v in S and color the backbone
by col(v). After |S| colorings, all vertices become monochrome.

Next we suppose that we have a sequence of coloring operations of length m2+k

that makes the representation in monochrome. We extract a vertex cover of size
k from this operations. In the representation, for each i with 1 ≤ i ≤ m, we have
2 distinct paths (wi

1, w
i
2, . . . , w

i
m−1). Hence we have 2m distinct paths in total,

and each of them requires m coloring operations. Since k is the (potential) size
of a vertex cover, we can assume that k < m without loss of generality. First,
we observe that the sequence of coloring operation includes (v, wi

1) or (u,wi
1) for

each edge ei = (u, v). Otherwise, we need 2m coloring operations to connect the
neighboring backbones (colored b). The operations never help to connect other
backbones. Thus the length of any sequence is no less than m2 + m. Therefore,
we can see either (v, wi

1) or (u, wi
1) appears in the sequence. We say that v is

selected if (v, wi
1) appears before (u, wi

1) (or (u,wi
1) may not appear).

Let R be the set of vertices v such that it is not selected in some edge ei =
(v, u). Then R is a vertex cover. Since the sequence makes all the vertices in
monochrome, the sequence includes either (v, w1) or (∗, v) for each unselected
vertex v and edge ei = (v, u). We call such operations cover operations. Thus,
the number of cover operations is no less than |R|. Remind that m2 operations
are needed to connect the selected intervals and paths, and these operations are
either of form (∗, wi

j) or (u, ∗) for selected u. This implies that the length of the
sequence is no less than m2 + |R|, and thus |R| = k.

The reduction can be done in polynomial time, and the flooding game is clearly
in NP. Hence, by Lemma 3, Theorem 1 immediately follows.

3.2 Polynomial time algorithm on interval graphs
We first assume that G = (V,E) is a proper interval graph, and later, we extend

the algorithm for an interval graph.
3.3 Algorithm for a proper interval graph
Let I(G) be an interval representation of the proper interval graph G = (V, E).

The interval representation is given in a compact form (see 9) for the details).

Precisely, each endpoint is a positive integer, N [p] 6= N [p + 1] for each integer
p, and there are no indices N [p] ⊂ N [p + 1] or vice versa for each integer p with
N [p] 6= ∅ (otherwise we can shrink it). Intuitively, each integer point corresponds
to a set of different endpoints since the representation has no redundancy. Then,
it is known that I(G) is unique up to isomorphism (see 10)), and it is clear that
I(G) can be placed in [0..P] for some P ≤ 2n− 1. Moving a point p from 0 to P

on the representation, the color set N [p] differs according to p. More precisely, we
obtain 2P + 1 different color sets for each p = 0, 0.5, 1, 1.5, 2, 2.5, . . . , P − 0.5, P .
Let Si be the color set obtained by the ith p (to simplify, we use from S0 to S2P).
Since the color set C has size k, each Si consists of at most k colors. That is, the
possible number of color sets is 2k − 1 (since Si 6= ∅).

Now we can regard the interval representation as a path P = (Ŝ0, Ŝ1, . . . , ˆS2P),
where each vertex Ŝi is precolored by the color set Si. Then we can use a dynamic
programming technique, which is similar to the algorithms for the flooding game
on a path2),5). However, we have to take care of the influence of changing a color
of a vertex. In the algorithms for an ordinary path2),5), when the color of v is
changed, it has an influence to two neighbors of it. In our case, when we change a
color c in Si to c′, all reachable color sets joined by c from Ŝi are changed. Thus
we have to remove c from Sj and add c′ to Sj for each j with i′ ≤ j ≤ i′′, where
i′ and i′′ are the leftmost and the rightmost vertices reachable from Ŝi joined by
the color c. This can be handled by the dynamic programming table. But by
this coloring operation, some colors may be left independent on the backbone of
color c′. To deal with these color sets, we maintain a table f(`, r, c, S) that is the
minimum number of coloring operations to satisfy the following conditions: (1)
c ∈ Si for each i with ` ≤ i ≤ r, and (2) ∪`≤i≤rSi ⊆ (S∪{c}). That is, f(`, r, c, S)
gives the minimum number of coloring operations to make this interval connected
by the color c, and the remaining colors in this interval is contained in S. Once
we obtain f(0, 2P, c, S) for all c and S on P, that implies the solution by taking

c© 2012 Information Processing Society of Japan4

Vol.2012-AL-139 No.7
2012/3/14

IPSJ SIG Technical Report

minc,S(f(0, 2P, c, S)+|S|). This function satisfies the following recursive relation.
f(`, r, c, S) = min{
min`<i≤r f(`, i − 1, c, S′) + f(i, r, c′, S′′) + 1 such that S′, S′′ ⊆ S ∪ {c}
min`<i≤r f(`, i − 1, c′, S′) + 1 + f(i, r, c, S′′) such that S′, S′′ ⊆ S ∪ {c}
min`<i≤r f(`, i − 1, c, S′) + f(i, r, c, S′′) such that S′, S′′ ⊆ S

}
Hence we have the following lemma.

Lemma 4 The value of minc,S(f(0, 2P, c, S) + |S|) can be computed in
O(8kk2n3) time.
Proof. This can be done in a standard dynamic programming technique. Initial-
ization step is that, for each i, f(i, i, c, S) = 0 if c ∈ S and f(i, i, c, S) = 1 if c 6∈ S

. This step requires (2P + 1) × k × 2k = O(2kkn).
In general step, the algorithm computes f(`, r, c, S) for each pair ` and r with

` < r. The algorithm computes all pairs ` and r in the order r − ` = 1, r −
` = 2, r − ` = 3, . . ., r − ` = 2P . For a pair `, r with ` < r, the algorithm
next fix the color c. Then the algorithm generates all possible subsets S of C.
Using the above recursive relation, a value of f(`, r, c, S) can be computed in
O(k(`−r)2|S|+1 ·2|S|+1) time. Therefore, in total, f(0, 2P, c, S) can be computed
in O(n2 · k · 2k · k · n · 2k · 2k) = O(8kk2n3) time. This completes the proof.

We note that we assume that whether a color c is in a color set S or not can
be determined in O(1) time. If |S| is large, say O(n), the running time increases
to O(8kk2(log k)n3).

By Lemma 4, Theorem 2(1) is obtained.
3.4 Extension to interval graphs
A proper interval graph has a simple interval representation. Its interval rep-

resentation is essentially unique up to isomorphism. On the other hand, an in-
terval graph has exponentially many different interval representations. However,
it has essentially unique tree representation called MPQ-tree. The MPQ-tree
is stands for modified PQ-tree, introduced by Korte and Möhring to solve the
graph isomorphism problem for interval graphs11). In this paper, we omit the
details of definitions of MPQ-tree (see Appendix A). A parent-child relationship
on the MPQ-tree of an interval graph G = (V, E) represents inclusion relation-
ship. Thus, if a vertex v is an ancestor of another vertex u in the MPQ-tree,

Iv always contains Iu. Thus, for a connected interval graph G = (V,E), the
set of intervals corresponding to the vertices belonging to the root node of the
MPQ-tree contains all other intervals. Hence the algorithm for the free flooding
game on an interval graph consists of two phases; (1) it connects the intervals
and makes a monochrome backbone only using the intervals in the root node of
the MPQ-tree, and (2) join the remaining vertices by changing the color of the
backbone. It is easy to see that the induced subgraph by the set of intervals be-
longing to the root node has a unique interval representation. (If it is a P-node,
the induced subgraph is a clique, and if it is a Q-node, the representation is es-
sentially unique up to isomorphism by its definition.) Therefore, the first phase
is essentially the same as the algorithm for proper interval graphs. The algorithm
makes the sequence of color sets, and regards it as a path, and proceeds. In that
time, all other vertices (or small intervals) belonging to the other nodes are put
in the set S of uncolored vertices. This implies Theorem 2(2).

We can also extend it to circular arc graphs:
Corollary 5 The free flooding game for one player on a circular arc graph

can be solved in O(8kk2n3) time.

4. Split Graphs

In 3), the fixed flooding game on a split graph is investigated. Using a similar
idea in 5), we can extend the results for the fixed flooding game to the free
flooding game.

Theorem 6 (1) The free flooding game is NP-complete even on a split graph.
(2) The free flooding game on a split graph can be solved in O(k! + n) time.
Proof.(Sketch) (1) In 3), the feedback vertex set problem is reduced to the fixed
flooding game on a split graph G = (V, E). The resulting graph G consists of
a clique K and an independent set I. Each vertex in I has degree one except
one universal vertex u incident to all vertices in K. It is easy to see that this
universal vertex u can be one of the clique K. Now we add |K| vertices to I and
join them to u, and each of them is colored by |K| colors that are same to the
colors of vertices in K. Then, the resultant graph is still split graph. We consider
the free flooding game on this new split graph. Then, using the similar argument
in 5), this graph has a solution if and only if there is a sequence of operations

c© 2012 Information Processing Society of Japan5

Vol.2012-AL-139 No.7
2012/3/14

IPSJ SIG Technical Report

that always colors the universal vertex u. Thus the feedback vertex set problem
has a solution if and only if the free flooding game has a solution.

(2) We can observe that there is a solution of length at most 2k that first makes
all vertices in K having the same color, and changes the color of the clique to
join the vertices in I. We can also see that there is an optimum solution of this
form. This means that we always change the color of a clique vertex. Since the
vertices in K of the same color are always connected, the number of possibilities
of each operation is at most k′(k′ − 1), where k′ is the current number of colors
used in K. Thus, we can find an optimum solution in O((k!)2 + n) time.

5. Concluding remarks

In this paper, we investigate the free flooding game on graphs that have interval
representations. We show that this game is fixed parameter tractable with respect
to the number of colors. We also show the similar results for split graphs. In
3), it is shown that the fixed flooding game on a co-comparability graph can be
solved in polynomial time based on a dynamic programming technique. In this
case, computing a shortest path on a co-comparability graph is better idea than
using the dynamic programming. In the case, the idea can be extended to the
free flooding game on a co-comparability graph, and we can obtain a polynomial
time algorithm.

Acknowledgment

The authors thank Eric Theirry for sending 2).

References

1) David Arthur, Raphaël Clifford, Markus Jalsenius, Ashley Montanaro, and Ben-
jamin Sach. The Complexity of Flood Filling Games. In FUN 2010, pages 307–318.
Lecture Notes in Computer Science Vol.6099, Springer-Verlag, 2010.

2) A. Lagoutte, M.Naual, and E.Thierry. Flooding games on graphs. In Latin-
American Algorithms, Graphs and Optimization Symposium (LAGOS 2011), 2011.

3) Rudolf Fleischer and GerhardJ. Woeginger. An Algorithmic Analysis of the Honey-
Bee Game. In FUN 2010, pages 178–189. Lecture Notes in Computer Science
Vol.6099, Springer-Verlag, 2010.

4) Aurélie Lagoutte. 2-Free-Flood-It is polynomial. Technical report,
arXiv:1008.3091v1, 2010.

5) H.Fukui, A.Nakanishi, R.Uehara, T.Uno, and Y.Uno. The Complexity of Free
Flood Filling Game. In WAAC 2011, pages 51–56, 2011.

6) F.S. Roberts. Indifference graphs. In F.Harary, editor, Proof Techniques in Graph
Theory, pages 139–146. Academic Press, 1969.

7) K.P. Bogart and D.B. West. A short proof that ‘proper=unit’. Discrete Mathe-
matics, 201:21–23, 1999.

8) M.R. Garey and D.S. Johnson. Computers and Intractability — A Guide to the
Theory of NP-Completeness. Freeman, 1979.

9) R.Uehara and Y.Uno. On Computing Longest Paths in Small Graph Classes.
International Journal of Foundations of Computer Science, 18(5):911–930, 2007.

10) Toshiki Saitoh, Katsuhisa Yamanaka, Masashi Kiyomi, and Ryuhei Uehara. Ran-
dom Generation and Enumeration of Proper Interval Graphs. IEICE Transactions
on Information and Systems, E93-D(7):1816–1823, 2010.

11) N.Korte and R.H. Möhring. An Incremental Linear-Time Algorithm for Recog-
nizing Interval Graphs. SIAM Journal on Computing, 18(1):68–81, 1989.

12) K.S. Booth and G.S. Lueker. Testing for the Consecutive Ones Property, Interval
Graphs, and Graph Planarity Using PQ-Tree Algorithms. Journal of Computer
and System Sciences, 13:335–379, 1976.

13) G.S. Lueker and K.S. Booth. A Linear Time Algorithm for Deciding Interval
Graph Isomorphism. Journal of the ACM, 26(2):183–195, 1979.

14) C.J. Colbourn and K.S. Booth. Linear Time Automorphism Algorithms for Trees,
Interval Graphs, and Planar Graphs. SIAM Journal on Computing, 10(1):203–225,
1981.

Appendix

A.1 Definitions and Notations for MPQ-trees
The notion of PQ-tree was introduced by Booth and Lueker12), and that can be

used to recognize interval graphs as follows. A PQ-tree is a rooted tree T with two
types of internal nodes: P and Q, which will be represented by circles and rectangles,
respectively. The leaves of T are labeled 1-1 with the maximal cliques of the interval
graph G. The frontier of a PQ-tree T is the permutation of the maximal cliques
obtained by the ordering of the leaves of T from left to right. PQ-tree T and T ′ are
equivalent, if one can be obtained from the other by applying the following rules a finite
number of times;
(1) arbitrarily permute the successor nodes of a P-node, or
(2) reverse the order of the successor nodes of a Q-node.
In 12), Booth and Lueker showed that a graph G is an interval graph if and only if there
is a PQ-tree T whose frontier represents a consecutive arrangement of the maximal
cliques of G. They also developed a linear time algorithm that either constructs a

c© 2012 Information Processing Society of Japan6

Vol.2012-AL-139 No.7
2012/3/14

IPSJ SIG Technical Report

PQ-tree for G, or states that G is not an interval graph. The algorithm by Booth
and Lueker contains an update procedure that constructs, from a given PQ-tree T for
a system M , a PQ-tree T ′ representing M plus one additional constraint set. This
is done in a bottom-up way along the tree T by comparing parts of the tree with a
fixed number of patterns that induce certain local replacements in T . If G is an interval
graph, then all consecutive arrangements of the maximal cliques of G are obtained
by taking equivalent PQ-trees. The PQ-tree with appropriate label defined by the
maximal cliques is canonical; that is, given interval graphs G1 and G2 are isomorphic
if and only if corresponding labeled PQ-trees T1 and T2 are isomorphic. Since we can
determine if two labeled PQ-trees T1 and T2 are isomorphic, the isomorphism of interval
graphs can be determined in linear time (see 12)–14) for further details).

The MPQ-tree model, which stands for modified PQ-tree, is developed by Korte and
Möhring to simplify the PQ-tree11).The MPQ-tree T ∗ assigns sets of vertices (possibly
empty) to the nodes of a PQ-tree T representing an interval graph G = (V, E). A P-
node is assigned only one set, while a Q-node has a set for each of its sons (ordered
from left to right according to the ordering of the sons).

For a P-node P , this set consists of those vertices of G contained in all maximal
cliques represented by the subtree of P in T , but in no other cliques.

For a Q-node Q, the definition is more involved. Let Q1, · · · , Qm be the set of the
sons (in consecutive order) of Q, and let Ti be the subtree of T with root Qi (note that
m ≥ 3). We then assign a set Si, called section, to Q for each Qi. Section Si contains
all vertices that are contained in all maximal cliques of Ti and some other Tj , but not in
any clique belonging to some other subtree of T that is not below Q. The key property
of MPQ-trees is summarized as follows:

Theorem 7 (11) [Theorem 2.1]) Let T be a PQ-tree for an interval graph G =
(V, E) and let T ∗ be the associated MPQ-tree. Then we have the following:
(a) T ∗ can be obtained from T in O(|V |+ |E|) time and represents G in O(|V |) space.
(b) Each maximal clique of G corresponds to a path in T ∗ from the root to a leaf,

where each vertex v ∈ V is as close as possible to the root.
(c) In T ∗, each vertex v appears in either one leaf, one P-node, or consecutive sections

Si, Si+1, · · · , Si+j for some Q-node with j > 0.
Property (b) is the essential property of MPQ-trees. For example, the root of T ∗ con-
tains all vertices belonging to all maximal cliques, and the leaves contain the simplicial
vertices of G. In 11), they did not state Theorem 7(c) explicitly. Theorem 7(c) is
immediately obtained from the fact that the maximal cliques containing a fixed vertex
occur consecutively in T .

In order to solve the graph isomorphism problem, a PQ-tree has additional informa-
tion which is called characteristic node in 13), 14). This is the unique node which roots
the subtree whose leaves are exactly the cliques to which the vertex belongs. As noted
in 14) [p.212], the term characteristic node to mean the leaf, P-node, or portion of a
Q-node which contains those cliques. It is easy to see that each vertex v in MPQ-tree

directly corresponds to the characteristic node in the PQ-tree. In 11), they did not
discuss the uniqueness of MPQ-tree. However, their algorithm certainly constructs
the unique MPQ-tree for a given interval graph up to isomorphism.

c© 2012 Information Processing Society of Japan7

Vol.2012-AL-139 No.7
2012/3/14

