均衡型 $\left(C_{5}, C_{10}\right)$－Foil デザインと関連デザイン

潮 和 彦

グラフ理論において，グラフの分解問題は主要な研究テーマである。 C_{5} を 5 点を通 るサイクル，C_{10} を 10 点を通るサイクルとする。 1 点を共有する辺素な t 個の C_{5} と t 個の C_{10} からなるグラフを $\left(C_{5}, C_{10}\right)$－ $2 t$－foil という。本研究では，完全グラフ K_{n} を均衡的に $\left(C_{5}, C_{10}\right)$－ $2 t$－foil 部分グラフに分解する均衡型 $\left(C_{5}, C_{10}\right)$－foil デザ インについて述べる。さらに，均衡型 C_{15}－foil デザイン，均衡型 C_{30}－foil デザイン，均衡型 C_{45}－foil デザイン，均衡型 C_{60}－foil デザイン，均衡型 C_{75}－foil デザイン，均衡型 C_{90}－foil デザイン，均衡型 C_{105}－foil デザイン，均衡型 C_{120}－foil デザイン，均衡型 C_{135}－foil デザイン，均衡型 C_{150}－foil デザインについて述べる。

Balanced $\left(C_{5}, C_{10}\right)$－Foil Designs and Related Designs

Kazuhiko Ushio

Abstract

In graph theory，the decomposition problem of graphs is a very important topic Various type of decompositions of many graphs can be seen in the literature of graph theory．This paper gives balanced $\left(C_{5}, C_{10}\right)$－foil designs，balanced C_{15-} foil designs，and balanced C_{30}－foil designs，and balanced C_{45}－foil designs，and balanced C_{60}－foil designs，and balanced C_{75}－foil designs，and balanced C_{90}－foil designs，and balanced C_{105}－foil designs，and balanced C_{120}－foil designs，and balanced C_{135}－foil designs，and balanced C_{150}－foil designs．

1．Balanced $\left(C_{5}, C_{10}\right)$－Foil Designs

Let K_{n} denote the complete graph of n vertices．Let C_{5} and C_{10} be the 5 －cycle and the 10 －cycle，respectively．The（ C_{5}, C_{10} ）－2t－foil is a graph of t edge－disjoint C_{5}＇s and t

[^0]edge－disjoint C_{10}＇s with a common vertex and the common vertex is called the center of the $\left(C_{5}, C_{10}\right)$－2t－foil．When K_{n} is decomposed into edge－disjoint sum of $\left(C_{5}, C_{10}\right)$－ $2 t$－foils and every vertex of K_{n} appears in the same number of $\left(C_{5}, C_{10}\right)$－ $2 t$－foils，we say that K_{n} has a balanced $\left(C_{5}, C_{10}\right)$－ $2 t$－foil decomposition and this number is called the replication number．This decomposition is known as a balanced（ C_{5}, C_{10} ）－foil design．

Theorem 1．K_{n} has a balanced $\left(C_{5}, C_{10}\right)$－2t－foil design if and only if $n \equiv 1(\bmod 30 t)$ ．

Proof．（Necessity）Suppose that K_{n} has a balanced（ C_{5}, C_{10} ）－2t－foil decomposi－ tion．Let b be the number of $\left(C_{5}, C_{10}\right)$－2t－foils and r be the replication number．Then $b=n(n-1) / 30 t$ and $r=(13 t+1)(n-1) / 30 t$ ．Among $r\left(C_{5}, C_{10}\right)$－2t－foils having a vertex v of K_{n} ，let r_{1} and r_{2} be the numbers of $\left(C_{5}, C_{10}\right)$－ $2 t$－foils in which v is the center and v is not the center，respectively．Then $r_{1}+r_{2}=r$ ．Counting the number of vertices adjacent to $v, 4 t r_{1}+2 r_{2}=n-1$ ．From these relations，$r_{1}=(n-1) / 30 t$ and $r_{2}=13(n-1) / 30$ ．Therefore，$n \equiv 1(\bmod 30 t)$ is necessary．
（Sufficiency）Put $n=30 s t+1$ and $T=s t$ ．Then $n=30 T+1$ ．Construct a $\left(C_{5}, C_{10}\right)$－ $2 T$－foil as follows：
$\{(30 T+1, T, 18 T, 28 T+1,12 T+1),(30 T+1,8 T+1,10 T+2,14 T+2,20 T+3,9 T+$ $2,18 T+3,13 T+2,5 T+2, T+1)\} \cup$
$\{(30 T+1, T-1,18 T-2,28 T, 12 T+2),(30 T+1,8 T+2,10 T+4,14 T+3,20 T+5,9 T+$ $3,18 T+5,13 T+3,5 T+4, T+2)\} \cup$
$\{(30 T+1, T-2,18 T-4,28 T-1,12 T+3),(30 T+1,8 T+3,10 T+6,14 T+4,20 T+$ $7,9 T+4,18 T+7,13 T+4,5 T+6, T+3)\} \cup$
．．U
$\{(30 T+1,1,16 T+2,27 T+2,13 T),(30 T+1,9 T, 12 T, 15 T+1,22 T+1,10 T+1,20 T+$ $1,14 T+1,7 T, 2 T)\}$
Decompose the $\left(C_{5}, C_{10}\right)$－2T－foil into $s\left(C_{5}, C_{10}\right)$－ $2 t$－foils．Then these starters comprise a balanced $\left(C_{5}, C_{10}\right)$－2t－foil decomposition of K_{n} ．

Example 1．1．Balanced $\left(C_{5}, C_{10}\right)$－2－foil design of K_{31} ．
$\{(31,1,18,29,13),(31,9,12,16,23,11,21,15,7,1)\}$ ．

This starter comprises a balanced $\left(C_{5}, C_{10}\right)$－2－foil decomposition of K_{31} ．

Example 1．2．Balanced $\left(C_{5}, C_{10}\right)$－4－foil design of K_{61} ．

$\{(61,2,36,57,25),(61,17,22,30,43,20,39,28,12,3)\} \cup$
$\{(61,1,34,56,26),(61,18,24,31,45,21,41,29,14,4)\}$ ．
This starter comprises a balanced $\left(C_{5}, C_{10}\right)$－4－foil decomposition of K_{61} ．

Example 1．3．Balanced $\left(C_{5}, C_{10}\right)$－6－foil design of K_{91} ．

$\{(91,3,54,85,37),(91,25,32,44,63,29,57,41,17,4)\} \cup$
$\{(91,2,52,84,38),(91,26,34,45,65,30,59,42,19,5)\} \cup$
$\{(91,1,50,83,39),(91,27,36,46,67,31,61,43,21,6)\}$ ．
This starter comprises a balanced $\left(C_{5}, C_{10}\right)$－6－foil decomposition of K_{91} ．

Example 1．4．Balanced $\left(C_{5}, C_{10}\right)$－8－foil design of K_{121} ．

$\{(121,4,72,113,49),(121,33,42,58,83,38,75,54,22,5)\} \cup$
$\{(121,3,70,112,50),(121,34,44,59,85,39,77,55,24,6)\} \cup$
$\{(121,2,68,111,51),(121,35,46,60,87,40,79,56,26,7)\} \cup$
$\{(121,1,66,110,52),(121,36,48,61,89,41,81,57,28,8)\}$ ．
This starter comprises a balanced $\left(C_{5}, C_{10}\right)$－8－foil decomposition of K_{121} ．

Example 1．5．Balanced $\left(C_{5}, C_{10}\right)$－10－foil design of K_{151} ． $\{(151,5,90,141,61),(151,41,52,72,103,47,93,67,27,6)\} \cup$ $\{(151,4,88,140,62),(151,42,54,73,105,48,95,68,29,7)\} \cup$ $\{(151,3,86,139,63),(151,43,56,74,107,49,97,69,31,8)\} \cup$ $\{(151,2,84,138,64),(151,44,58,75,109,50,99,70,33,9)\} \cup$ $\{(151,1,82,137,65),(151,45,60,76,110,51,101,71,35,10)\}$
This starter comprises a balanced $\left(C_{5}, C_{10}\right)$－10－foil decomposition of K_{151} ．

Example 1．6．Balanced $\left(C_{5}, C_{10}\right)$－12－foil design of K_{181} ． $\{(181,6,108,169,73),(181,49,62,86,123,56,111,80,32,7)\} \cup$ $\{(181,5,106,168,74),(181,50,64,87,125,57,113,81,34,8)\} \cup$
$\{(181,4,104,167,75),(181,51,66,88,127,58,115,82,36,9)\} \cup$
$\{(181,3,102,166,76),(181,52,68,89,129,59,117,83,38,10)\} \cup$
$\{(181,2,100,165,77),(181,53,70,90,131,60,119,84,40,11)\} \cup$
$\{(181,1,98,164,78),(181,54,72,91,133,61,121,85,42,12)\}$ ．
This starter comprises a balanced $\left(C_{5}, C_{10}\right)$－12－foil decomposition of K_{181} ．

2．Balanced C_{15}－Foil Designs

Let C_{15} be the cycle on 15 vertices．The C_{15}－t－foil is a graph of t edge－disjoint C_{15}＇s with a common vertex and the common vertex is called the center of the $C_{15-t-f o i l . ~}^{\text {．}}$ When K_{n} is decomposed into edge－disjoint sum of $C_{15}-t$－foils and every vertex of K_{n} appears in the same number of C_{15}－t－foils，it is called that K_{n} has a balanced $C_{15}-t$－foil decomposition and this number is called the replication number．This decomposition is known as a balanced C_{15}－foil design．

Theorem 2．K_{n} has a balanced $C_{15}-t$－foil design if and only if $n \equiv 1(\bmod 30 t)$ ．

Proof．（Necessity）Suppose that K_{n} has a balanced C_{15}－t－foil decomposition．Let b be the number of $C_{15}-t$－foils and r be the replication number．Then $b=n(n-1) / 30 t$ and $r=(14 t+1)(n-1) / 30 t$ ．Among $r C_{15}-t$－foils having a vertex v of K_{n} ，let r_{1} and r_{2} be the numbers of $C_{15}-t$－foils in which v is the center and v is not the center，respectively． Then $r_{1}+r_{2}=r$ ．Counting the number of vertices adjacent to $v, 2 t r_{1}+2 r_{2}=n-1$ ． From these relations，$r_{1}=(n-1) / 30 t$ and $r_{2}=14(n-1) / 30$ ．Therefore，$n \equiv 1(\bmod$ $30 t$ ）is necessary．
（Sufficiency）Put $n=30 s t+1, T=s t$ ．Then $n=30 T+1$ ．Construct a C_{15}－T－foil as follows：
$\{(30 T+1, T, 18 T, 28 T+1,12 T+1,20 T+2,8 T+1,10 T+2,14 T+2,20 T+3,9 T+$ $2,18 T+3,13 T+2,5 T+2, T+1)$,
$(30 T+1, T-1,18 T-2,28 T, 12 T+2,20 T+4,8 T+2,10 T+4,14 T+3,20 T+5,9 T+$ $3,18 T+5,13 T+3,5 T+4, T+2)$,
$(30 T+1, T-2,18 T-4,28 T-1,12 T+3,20 T+6,8 T+3,10 T+6,14 T+4,20 T+7,9 T+$
$4,18 T+7,13 T+4,5 T+6, T+3)$,
$(30 T+1,1,16 T+2,27 T+2,13 T, 22 T, 9 T, 12 T, 15 T+1,22 T+1,10 T+1,20 T+1,14 T+$ $1,7 T, 2 T)\}$ ．
Decompose this $C_{15}-T$－foil into $s C_{15}-t$－foils．Then these starters comprise a balanced C_{15}－t－foil decomposition of K_{n} ．

Example 2．1．Balanced C_{15} design of K_{31} ．
$\{(31,1,18,29,13,22,9,12,16,23,11,21,15,7,2)\}$ ．
This stater comprises a balanced C_{15}－decomposition of K_{31} ．

Example 2．2．Balanced C_{15}－2－foil design of K_{61} ．
$\{(61,2,36,57,25,42,17,22,30,43,20,39,28,12,3)$ ，
$(61,1,34,56,26,44,18,24,31,45,21,41,29,14,4)\}$ ．
This stater comprises a balanced $C_{15}-2$－foil decomposition of K_{61} ．

Example 2．3．Balanced C_{15}－3－foil design of K_{91} ．

$\{(91,3,54,85,37,62,25,32,44,63,29,57,41,17,4)$ ，
$(91,2,52,84,38,64,26,34,45,65,30,59,42,19,5)$ ，
$(91,1,50,83,39,66,27,36,46,67,31,61,43,21,6)\}$ ．
This stater comprises a balanced $C_{15}-3$－foil decomposition of K_{91} ．

Example 2．4．Balanced C_{15}－4－foil design of K_{121} ．

$\{(121,4,72,113,49,82,33,42,58,83,38,75,54,22,5)$ ，
（121，3，70，112，50，84，34，44，59，85，39，77，55，24，6），
$(121,2,68,111,51,86,35,46,60,87,40,79,56,26,7)$ ，
$(121,1,66,110,52,88,36,48,61,89,41,81,57,28,8)\}$ ．
This stater comprises a balanced $C_{15}-4$－foil decomposition of K_{121} ．

Example 2．5．Balanced C_{15}－5－foil design of K_{151} ．

$\{(151,5,90,141,61,102,41,52,72,103,47,93,67,27,6)$ ，
$(151,4,88,140,62,104,42,54,73,105,48,95,68,29,7)$ ， $(151,3,86,139,63,106,43,56,74,107,49,97,69,31,8)$ ，
$(151,2,84,138,64,108,44,58,75,109,50,99,70,33,9)$ ，
$(151,1,82,137,65,110,45,60,76,110,51,101,71,35,10)\}$ ．
This stater comprises a balanced $C_{15}-5$－foil decomposition of K_{151} ．

Example 2．6．Balanced C_{15}－6－foil design of K_{181} ．

$\{(181,6,108,169,73,122,49,62,86,123,56,111,80,32,7)$ ，
$(181,5,106,168,74,124,50,64,87,125,57,113,81,34,8)$ ，
$(181,4,104,167,75,126,51,66,88,127,58,115,82,36,9)$ ，
$(181,3,102,166,76,128,52,68,89,129,59,117,83,38,10)$ ，
$(181,2,100,165,77,130,53,70,90,131,60,119,84,40,11)$ ，
$(181,1,98,164,78,132,54,72,91,133,61,121,85,42,12)\}$ ．
This stater comprises a balanced $C_{15}-6$－foil decomposition of K_{181} ．

3．Balanced $C_{15 m}$－Foil Designs

Let $C_{15 m}$ be the cycle on $15 m$ vertices．The $C_{15 m}$－t－foil is a graph of t edge－disjoint $C_{15 m}$＇s with a common vertex and the common vertex is called the center of the $C_{15 m}$－ t－foil．When K_{n} is decomposed into edge－disjoint sum of $C_{15 m}-t$－foils and every vertex of K_{n} appears in the same number of $C_{15 m}$－t－foils，it is called that K_{n} has a balanced $C_{15 m}$－t－foil decomposition and this number is called the replication number．This de－ composition is known as a balanced $C_{15 m}$－foil design．

Theorem 3．K_{n} has a balanced $C_{30}-t$－foil design if and only if $n \equiv 1(\bmod 60 t)$ ．

Example 3．1．Balanced C_{30} design of K_{61} ．

$\{(61,2,36,57,25,42,17,22,30,43,20,39,28,12,3,7,4,14,29,41,21,45,31,24,18,44,26$ ， $56,34,1)\}$ ．
This stater comprises a balanced C_{30}－decomposition of K_{61} ．

Example 3．2．Balanced C_{30}－2－foil design of K_{121} ．

$\{(121,4,72,113,49,82,33,42,58,83,38,75,54,22,5,11,6,24,55,77,39,85,59,44,34,84$ ， $50,112,70,3)$ ，
（121，2，68，111，51，86，35，46，60，87，40，79，56，26，7，15，8，28，57，81，41，89，61，48，36，88， $52,110,66,1)\}$ ．
This stater comprises a balanced C_{30}－2－foil decomposition of K_{121} ．

Example 3．3．Balanced $C_{30}-3$－foil designn of K_{181} ．

$\{(181,6,108,169,73,122,49,62,86,123,56,111,80,32,7,15,8,34,81,113,57,125,87,64$ ， $50,124,74,168,106,5)$ ，
$(181,4,104,167,75,126,51,66,88,127,58,115,82,36,9,19,10,38,83,117,59,129,89,68$ ， $52,128,76,166,102,3)$ ，
$(181,2,100,165,77,130,53,70,90,131,60,119,84,40,11,23,12,42,85,121,61,133,91,72$ ， $54,132,78,164,98,1)\}$ ．
This stater comprises a balanced $C_{30}-3$－foil decomposition of K_{181} ．

Example 3．4．Balanced $C_{30}-4$－foil design of K_{241} ．

$\{(241,8,144,225,97,162,65,82,114,163,74,147,106,42,9,19,10,44,107,149,75,165$ ， $115,84,66,164,98,224,142,7)$ ，
（ $241,6,140,223,99,166,67,86,116,167,76,151,108,46,11,23,12,48,109,153,77,169$ ， $117,88,68,168,100,222,138,5)$ ，
$(241,4,136,221,101,170,69,90,118,171,78,155,110,50,13,27,14,52,111,157,79,173$ ， $119,92,70,172,102,220,134,3)$ ，
（241，2，132，219，103，174，71，94，120，175，80，159，112，54，15，31，16，56，113，161，81，177， $121,96,72,176,104,218,130,1)\}$ ．
This stater comprises a balanced $C_{30}-4$－foil decomposition of K_{241} ．

Example 3．5．Balanced $C_{30}-5$－foil design of K_{301} ．

$\{(301,10,180,281,121,202,81,102,142,203,92,183,132,52,11,23,12,54,133,185,93$ ， $205,143,104,82,204,122,280,178,9)$ ，
（301， $8,176,279,123,206,83,106,144,207,94,187,134,56,13,27,14,58,135,189,95$ ，
$209,145,108,84,208,124,278,174,7)$ ，
$(301,6,172,277,125,210,85,110,146,211,96,191,136,60,15,31,16,62,137,193,97$ ， $213,147,112,86,212,126,276,170,5)$ ，
（301，4，168，275，127，214，87，114，148，215，98，195，138，64，17，35，18，66，139，197，99， $217,149,116,88,216,128,274,166,3)$ ，
$(301,2,164,273,129,218,89,118,150,219,100,199,140,68,19,39,20,70,141,201,101$ ， $221,151,120,90,220,130,272,162,1)\}$
This stater comprises a balanced $C_{30}-5$－foil decomposition of K_{301} ．

Theorem 4．K_{n} has a balanced $C_{45}-t$－foil design if and only if $n \equiv 1(\bmod 90 t)$ ．

Example 4．1．Balanced C_{45} design of K_{91}

$\{(91,3,54,85,37,62,25,32,44,63,29,57,41,17,4,9,5,19,42,59,30,65,45,34,26,64,38$ ， $84,52,2,51,49,50,83,39,66,27,36,46,67,31,61,43,21,6)\}$ ．
This stater comprises a balanced C_{45}－decomposition of K_{91} ．

Example 4．2．Balanced C_{45}－2－foil design of K_{181} ．

$\{(181,6,108,169,73,122,49,62,86,123,56,111,80,32,7,15,8,34,81,113,57,125,87,64$ ， $50,124,74,168,106,101,105,4,104,167,75,126,51,66,88,127,58,115,82,36,9)$ ，
$(181,3,102,166,76,128,52,68,89,129,59,117,83,38,10,21,11,40,84,119,60,131,90,70$ $53,130,77,165,100,2,99,97,98,164,78,132,54,72,91,133,61,121,85,42,12)\}$ ． This stater comprises a balanced C_{45}－2－foil decomposition of K_{181} ．

Example 4．3．Balanced C_{45}－3－foil design of K_{271} ．

$\{(271,9,162,253,109,182,73,92,128,183,83,165,119,47,10,21,11,49,120,167,84,185$ ， $129,94,74,184,110,252,160,8,159,151,158,251,111,186,75,96,130,187,85,169,121$ ， $51,12)$ ，
（271，6，156，250，112，188，76，98，131，189，86，171，122，53，13，27，14，55，123，173，87，191， $132,100,77,190,113,249,154,149,153,4,152,248,114,192,78,102,133,193,88,175,124$ ， $57,15)$ ，
$(271,3,150,247,115,194,79,104,134,195,89,177,125,59,16,33,17,61,126,179,90,197$ ，
$135,106,80,196,116,246,148,2,147,145,146,245,117,198,81,108,136,199,91,181,127$, $63,18)\}$ ．
This stater comprises a balanced C_{45}－3－foil decomposition of K_{271} ．

Theorem 5．K_{n} has a balanced $C_{60}-t$－foil design if and only if $n \equiv 1(\bmod 120 t)$ ．

Example 5．1．Balanced C_{60} design of K_{121} ．

$\{(121,4,72,113,49,82,33,42,58,83,38,75,54,22,5,11,6,24,55,77,39,85,59,44,34,84$ ， $50,112,70,67,69,2,68,111,51,86,35,46,60,87,40,79,56,26,7,15,8,28,57,81,41,89,61$ ， $48,36,88,52,110,66,1)\}$ ．
This stater comprises a balanced C_{60}－decomposition of K_{121} ．

Example 5．2．Balanced C_{60}－2－foil design of K_{241} ．

$\{(241,8,144,225,97,162,65,82,114,163,74,147,106,42,9,19,10,44,107,149,75,165,115$ ， $84,66,164,98,224,142,135,141,6,140,223,99,166,67,86,116,167,76,151,108,46,11,23$ ， $12,48,109,153,77,169,117,88,68,168,100,222,138,5)$ ，
（241，4，136，221，101，170，69，90，118，171，78，155，110，50，13，27，14，52，111，157，79，173，119， $92,70,172,102,220,134,131,133,2,132,219,103,174,71,94,120,175,80,159,112,54,15$ ， $31,16,56,113,161,81,177,121,96,72,176,104,218,130,1)\}$ ．
This stater comprises a balanced C_{602}－2－foil decomposition of K_{241} ．

Theorem 6．K_{n} has a balanced $C_{75}-t$－foil design if and only if $n \equiv 1(\bmod 150 t)$ ．

Example 6．1．Balanced C_{75} design of K_{151} ．
$\{(151,5,90,141,61,102,41,52,72,103,47,93,67,27,6,13,7,29,68,95,48,105,73,54,42$ ， $104,62,140,88,4,87,83,86,139,63,106,43,56,74,107,49,97,69,31,8,17,9,33,70,99$ ， $50,109,75,58,44,108,64,138,84,2,3,1,82,137,65,110,45,60,76,110,51,101,71,35,10)\}$ ． This stater comprises a balanced C_{75}－decomposition of K_{151} ．

Example 6．2．Balanced C_{75}－2－foil design of K_{301} ．

$\{(301,10,180,281,121,202,81,102,142,203,92,183,132,52,11,23,12,54,133,185,93$ ，
$205,143,104,82,204,122,280,178,169,177,8,176,279,123,206,83,106,144,207,94$ ， $187,134,56,13,27,14,58,135,189,95,209,145,108,84,208,124,278,174,167,173,6$ ， $172,277,125,210,85,110,146,211,96,191,136,60,15)$ ， （301，5，170，276，126，212，86，112，147，213，97，193，137，62，16，33，17，64，138，195，98， $215,148,114,87,214,127,275,168,4,7,3,166,274,128,216,88,116,149,217,99,197$ ， $139,66,18,37,19,68,140,199,100,219,150,118,89,218,129,273,164,2,163,161,162$ ， $272,130,220,90,120,151,221,101,201,141,70,20)\}$ ．
This stater comprises a balanced C_{75}－2－foil decomposition of K_{301} ．

Theorem 7．K_{n} has a balanced $C_{90}-t$－foil design if and only if $n \equiv 1(\bmod 180 t)$ ．

Example 7．1．Balanced C_{90} design of K_{181} ．
$\{(181,6,108,169,73,122,49,62,86,123,56,111,80,32,7,15,8,34,81,113,57,125,87,64$ ， $50,124,74,168,106,101,105,4,104,167,75,126,51,66,88,127,58,115,82,36,9,19,10,38$ ， $83,117,59,129,89,68,52,128,76,166,102,3,5,2,100,165,77,130,53,70,90,131,60,119$ ， $84,40,11,23,12,42,85,121,61,133,91,72,54,132,78,164,98,1)\}$ ．
This stater comprises a balanced C_{90}－decomposition of K_{181} ．

Theorem 8．K_{n} has a balanced $C_{105}-t$－foil design if and only if $n \equiv 1(\bmod 210 t)$ ．

Example 8．1．Balanced C_{105} design of K_{211} ．
$\{(211,7,126,197,85,142,57,72,100,143,65,129,93,37,8,17,9,39,94,131,66,145,101$ ， $74,58,144,86,196,124,6,123,117,122,195,87,146,59,76,102,147,67,133,95,41,10,21$ ， $11,43,96,135,68,149,103,78,60,148,88,194,120,4,119,115,118,193,89,150,61,80,104$ ， $151,69,137,97,45,12,25,13,47,98,139,70,153,105,82,62,152,90,192,116,2,3,1,114,191$ ， $91,154,63,84,106,155,71,141,99,49,14)\}$ ．
This stater comprises a balanced C_{105}－decomposition of K_{211} ．

Theorem 9．K_{n} has a balanced $C_{120}-t$－foil design if and only if $n \equiv 1(\bmod 240 t)$ ．

Example 9．1．Balanced C_{120} design of K_{241} ．
$\{(241,8,144,225,97,162,65,82,114,163,74,147,106,42,9,19,10,44,107,149,75,165,115$ ， $84,66,164,98,224,142,135,141,6,140,223,99,166,67,86,116,167,76,151,108,46,11,23$ ， $12,48,109,153,77,169,117,88,68,168,100,222,138,133,137,4,136,221,101,170,69,90$ ， $118,171,78,155,110,50,13,27,14,52,111,157,79,173,119,92,70,172,102,220,134,3,5,2$ ， $132,219,103,174,71,94,120,175,80,159,112,54,15,31,16,56,113,161,81,177,121,96,72$ ， $176,104,218,130,1)\}$ ．
This stater comprises a balanced C_{120}－decomposition of K_{241} ．

Theorem 10．K_{n} has a balanced $C_{135}-t$－foil design if and only if $n \equiv 1(\bmod 270 t)$ ．

Example 10．1．Balanced C_{135} design of K_{271} ．

$\{(271,9,162,253,109,182,73,92,128,183,83,165,119,47,10,21,11,49,120,167,84,185$ ， $129,94,74,184,110,252,160,8,159,151,158,251,111,186,75,96,130,187,85,169,121,51$ ， $12,25,13,53,122,171,86,189,131,98,76,188,112,250,156,6,155,149,154,249,113,190$ ， $77,100,132,191,87,173,123,55,14,29,15,57,124,175,88,193,133,102,78,192,114,248$ ， $152,4,7,3,150,247,115,194,79,104,134,195,89,177,125,59,16,33,17,61,126,179,90$ ， $197,135,106,80,196,116,246,148,2,147,145,146,245,117,198,81,108,136,199,91,181$ ， $127,63,18)\}$ ．
This stater comprises a balanced C_{135}－decomposition of K_{271} ．

Theorem 11．K_{n} has a balanced $C_{150}-t$－foil design if and only if $n \equiv 1(\bmod 300 t)$ ．

Example 11．1．Balanced C_{150} design of K_{301} ．

$\{(301,10,180,281,121,202,81,102,142,203,92,183,132,52,11,23,12,54,133,185,93$ ， $205,143,104,82,204,122,280,178,169,177,8,176,279,123,206,83,106,144,207,94,187$ ， $134,56,13,27,14,58,135,189,95,209,145,108,84,208,124,278,174,167,173,6,172,277$ ， $125,210,85,110,146,211,96,191,136,60,15,31,16,62,137,193,97,213,147,112,86,212$ ， $126,276,170,5,9,4,168,275,127,214,87,114,148,215,98,195,138,64,17,35,18,66,139$ ， $197,99,217,149,116,88,216,128,274,166,163,165,2,164,273,129,218,89,118,150,219$ ， $100,199,140,68,19,39,20,70,141,201,101,221,151,120,90,220,130,272,162,1)\}$ ． This stater comprises a balanced C_{150}－decomposition of K_{301} ．

参 考 文 献

1）Ushio，K．and Fujimoto，H．：Balanced bowtie and trefoil decomposition of com－ plete tripartite multigraphs，IEICE Trans．Fundamentals，Vol．E84－A，No．3，pp 839－844（2001）．
2）Ushio，K．and Fujimoto，H．：Balanced foil decomposition of complete graphs，IE－ ICE Trans．Fundamentals，Vol．E84－A，No．12，pp．3132－3137（2001）．
3）Ushio，K．and Fujimoto，H．：Balanced bowtie decomposition of complete multi－ graphs，IEICE Trans．Fundamentals，Vol．E86－A，No．9，pp．2360－2365（2003）．
4）Ushio，K．and Fujimoto，H．：Balanced bowtie decomposition of symmetric com－ plete multi－digraphs，IEICE Trans．Fundamentals，Vol．E87－A，No．10，pp．2769－2773 （2004）．
5）Ushio，K．and Fujimoto，H．：Balanced quatrefoil decomposition of complete multi－ graphs，IEICE Trans．Information and Systems，Vol．E88－D，No．1，pp．19－22（2005）
6）Ushio，K．and Fujimoto，H．：Balanced C_{4}－bowtie decomposition of complete multi graphs，IEICE Trans．Fundamentals，Vol．E88－A，No．5，pp．1148－1154（2005）．
7）Ushio，K．and Fujimoto，H．：Balanced C_{4}－trefoil decomposition of complete multi－ graphs，IEICE Trans．Fundamentals，Vol．E89－A，No．5，pp．1173－1180（2006）．

[^0]: $\dagger 1$ 近畿大学理工学部情報学科
 Department of Informatics，Faculty of Science and Technology，Kinki University

