均衡型 $\left(C_{5}, C_{8}\right)$－Foil デザインと関連デザイン

潮 和 彦

グラフ理論において，グラフの分解問題は主要な研究テーマである。 C_{5} を 5 点を通 るサイクル，C_{8} を 8 点を通るサイクルとする。 1 点を共有する辺素な t 個の C_{5} と t 個の C_{8} からなるグラフを $\left(C_{5}, C_{8}\right)$－ $2 t$－foil という。本研究では，完全グラフ K_{n} を均衡的に $\left(C_{5}, C_{8}\right)$－ $2 t$－foil 部分グラフに分解する均衡型 $\left(C_{5}, C_{8}\right)$－foil デザインに ついて述べる。さらに，均衡型 C_{13}－foil デザイン，均衡型 C_{26}－foil デザイン，均衡型 C_{39}－foil デザイン，均衡型 C_{52}－foil デザイン，均衡型 C_{65}－foil デザイン，均衡型 C_{78}－foil デザイン，均衡型 C_{91}－foil デザイン，均衡型 C_{104}－foil デザイン，均衡型 C_{117}－foil デザイン，均衡型 C_{130}－foil デザインについて述べる。

Balanced $\left(C_{5}, C_{8}\right)$－Foil Designs and Related Designs

Kazuhiko Ushio

In graph theory，the decomposition problem of graphs is a very important topic． Various type of decompositions of many graphs can be seen in the literature of graph theory．This paper gives balanced（ C_{5}, C_{8} ）－foil designs，balanced C_{13-} foil designs，and balanced C_{26}－foil designs，and balanced C_{39}－foil designs，and balanced C_{52}－foil designs，and balanced C_{65}－foil designs，and balanced C_{78}－ foil designs，and balanced C_{91}－foil designs，and balanced C_{104}－foil designs，and balanced C_{117}－foil designs，and balanced C_{130}－foil designs．

1．Balanced $\left(C_{5}, C_{8}\right)$－Foil Designs

Let K_{n} denote the complete graph of n vertices．Let C_{5} and C_{8} be the 5 －cycle and the 8 －cycle，respectively．The $\left(C_{5}, C_{8}\right)$－ $2 t$－foil is a graph of t edge－disjoint C_{5}＇s and t

[^0]edge－disjoint C_{8}＇s with a common vertex and the common vertex is called the center of the（ C_{5}, C_{8} ）－2t－foil．When K_{n} is decomposed into edge－disjoint sum of（ C_{5}, C_{8} ）－2t－foils and every vertex of K_{n} appears in the same number of（ C_{5}, C_{8} ）－2t－foils，we say that K_{n} has a balanced（ C_{5}, C_{8} ）－2t－foil decomposition and this number is called the replication number．This decomposition is known as a balanced（ C_{5}, C_{8} ）－foil design．

Theorem 1．K_{n} has a balanced $\left(C_{5}, C_{8}\right)$－2t－foil design if and only if $n \equiv 1(\bmod 26 t)$ ．
Proof．（Necessity）Suppose that K_{n} has a balanced（ C_{5}, C_{8} ）－2t－foil decomposi－ tion．Let b be the number of（ C_{5}, C_{8} ）－2t－foils and r be the replication number．Then $b=n(n-1) / 26 t$ and $r=(11 t+1)(n-1) / 26 t$ ．Among $r\left(C_{5}, C_{8}\right)-2 t$－foils having a vertex v of K_{n} ，let r_{1} and r_{2} be the numbers of（ C_{5}, C_{8} ）－2t－foils in which v is the cen－ ter and v is not the center，respectively．Then $r_{1}+r_{2}=r$ ．Counting the number of vertices adjacent to $v, 4 t r_{1}+2 r_{2}=n-1$ ．From these relations，$r_{1}=(n-1) / 26 t$ and $r_{2}=11(n-1) / 26$ ．Therefore，$n \equiv 1(\bmod 26 t)$ is necessary．
（Sufficiency）Put $n=26 s t+1$ and $T=s t$ ．Then $n=26 T+1$ ．Construct a $\left(C_{5}, C_{8}\right)$－ $2 T$－foil as follows：
$\{(26 T+1, T, 12 T, 23 T+1,14 T),(26 T+1, T+1,5 T+2,24 T+2,3 T+2,23 T+2,20 T+$ $2,17 T+1)\} \cup$
$\{(26 T+1, T-1,12 T-2,23 T, 14 T-2),(26 T+1, T+2,5 T+4,24 T+3,3 T+4,23 T+$ $3,20 T+4,17 T+2)\} \cup$
$\{(26 T+1, T-2,12 T-4,23 T-1,14 T-4),(26 T+1, T+3,5 T+6,24 T+4,3 T+6,23 T+$ $4,20 T+6,17 T+3)\} \cup$
$\ldots \cup$
$\{(26 T+1,1,10 T+2,22 T+2,12 T+2),(26 T+1,2 T, 7 T, 25 T+1,5 T, 24 T+1,22 T, 18 T)\}$. Decompose the $\left(C_{5}, C_{8}\right)$－ $2 T$－foil into $s\left(C_{5}, C_{8}\right)$－ $2 t$－foils．Then these starters comprise a balanced $\left(C_{5}, C_{8}\right)$－2t－foil decomposition of K_{n} ．

Example 1．1．Balanced（ C_{5}, C_{8} ）－2－foil design of K_{27} ．

$\{(27,1,12,24,14),(27,2,7,26,5,25,22,18)\}$ ．
This starter comprises a balanced $\left(C_{5}, C_{8}\right)$－2－foil decomposition of K_{27} ．

情報処理学会研究報告
IPSJ SIG Technical Report

Example 1．2．Balanced（ C_{5}, C_{8} ）－4－foil design of K_{53} ．

$\{(53,2,24,47,28),(53,3,12,50,8,48,42,35)\} \cup$
$\{(53,1,22,46,26),(53,4,14,51,10,49,44,36)\}$ ．
This starter comprises a balanced $\left(C_{5}, C_{8}\right)$－4－foil decomposition of K_{53} ．

Example 1．3．Balanced（ C_{5}, C_{8} ）－6－foil design of K_{79} ．
$\{(79,3,36,70,42),(79,4,17,74,11,71,62,52)\} \cup$
$\{(79,2,34,69,40),(79,5,19,75,13,72,64,53)\} \cup$
$\{(79,1,32,68,38),(79,6,21,76,15,73,66,54)\}$ ．
This starter comprises a balanced $\left(C_{5}, C_{8}\right)$－6－foil decomposition of K_{79} ．

Example 1．4．Balanced $\left(C_{5}, C_{8}\right)$－8－foil design of K_{105} ．
$\{(105,4,48,93,56),(105,5,22,98,14,94,82,69)\} \cup$
$\{(105,3,46,92,54),(105,6,24,99,16,95,84,70)\} \cup$
$\{(105,2,44,91,52),(105,7,26,100,18,96,86,71)\} \cup$
$\{(105,1,42,90,50),(105,8,28,101,20,97,88,72)\}$ ．
This starter comprises a balanced（ C_{5}, C_{8} ）－8－foil decomposition of K_{105} ．

Example 1．5．Balanced（ C_{5}, C_{8} ）－10－foil design of K_{131} ．
$\{(131,5,60,116,70),(131,6,27,122,17,117,102,86)\} \cup$
$\{(131,4,58,115,68),(131,7,29,123,19,118,104,87)\} \cup$
$\{(131,3,56,114,66),(131,8,31,124,21,119,106,88)\} \cup$
$\{(131,2,54,113,64),(131,9,33,125,23,120,108,89)\} \cup$
$\{(131,1,52,112,62),(131,10,35,126,25,121,110,90)\}$ ．
This starter comprises a balanced $\left(C_{5}, C_{8}\right)$－10－foil decomposition of K_{131} ．

Example 1．6．Balanced（ C_{5}, C_{8} ）－12－foil design of K_{157} ．
$\{(157,6,72,139,84),(157,7,32,146,20,140,122,103)\} \cup$
$\{(157,5,70,138,82),(157,8,34,147,22,141,124,104)\} \cup$
$\{(157,4,68,137,80),(157,9,36,148,24,142,126,105)\} \cup$
$\{(157,3,66,136,78),(157,10,38,149,26,143,128,106)\} \cup$
$\{(157,2,64,135,76),(157,11,40,150,28,144,130,107)\} \cup$
$\{(157,1,62,134,74),(157,12,42,151,30,145,132,108)\}$ ．
This starter comprises a balanced $\left(C_{5}, C_{8}\right)$－12－foil decomposition of K_{157} ．

2．Balanced C_{13}－Foil Designs

Let C_{13} be the cycle on 13 vertices．The C_{13}－t－foil is a graph of t edge－disjoint C_{13}＇s with a common vertex and the common vertex is called the center of the $C_{13}-t$－foil． When K_{n} is decomposed into edge－disjoint sum of $C_{13}-t$－foils and every vertex of K_{n} appears in the same number of $C_{13}-t$－foils，it is called that K_{n} has a balanced $C_{13}-t$－foil decomposition and this number is called the replication number．This decomposition is known as a balanced C_{13}－foil design．

Theorem 2．K_{n} has a balanced C_{13}－t－foil design if and only if $n \equiv 1(\bmod 26 t)$ ．

Proof．（Necessity）Suppose that K_{n} has a balanced C_{13}－t－foil decomposition．Let b be the number of $C_{13}-t$－foils and r be the replication number．Then $b=n(n-1) / 26 t$ and $r=(12 t+1)(n-1) / 26 t$ ．Among $r C_{13}$－t－foils having a vertex v of K_{n} ，let r_{1} and r_{2} be the numbers of $C_{13}-t$－foils in which v is the center and v is not the center，respectively． Then $r_{1}+r_{2}=r$ ．Counting the number of vertices adjacent to $v, 2 t r_{1}+2 r_{2}=n-1$ ． From these relations，$r_{1}=(n-1) / 26 t$ and $r_{2}=12(n-1) / 26$ ．Therefore，$n \equiv 1(\bmod$ $26 t)$ is necessary．
（Sufficiency）Put $n=26 s t+1, T=s t$ ．Then $n=26 T+1$ ．Construct a $C_{13}-T$－foil as follows：
$\{(26 T+1, T, 12 T, 23 T+1,14 T, 15 T+1, T+1,5 T+2,24 T+2,3 T+2,23 T+2,20 T+$ $2,17 T+1$ ），
$(26 T+1, T-1,12 T-2,23 T, 14 T-2,15 T, T+2,5 T+4,24 T+3,3 T+4,23 T+3,20 T+$ $4,17 T+2)$ ，
$(26 T+1, T-2,12 T-4,23 T-1,14 T-4,15 T-1, T+3,5 T+6,24 T+4,3 T+6,23 T+$ $4,20 T+6,17 T+3)$ ，

情報処理学会研究報告
IPSJ SIG Technical Report
．．．，
$(26 T+1,1,10 T+2,22 T+2,12 T+2,14 T+2,2 T, 7 T, 25 T+1,5 T, 24 T+1,22 T, 18 T)\}$ ．
Decompose this $C_{13}-T$－foil into $s C_{13}-t$－foils．Then these starters comprise a balanced C_{13}－t－foil decomposition of K_{n} ．

Example 2．1．Balanced C_{13} design of K_{27} ．

$\{(27,1,12,24,14,16,2,7,26,5,25,22,18)\}$ ．
This stater comprises a balanced C_{13}－decomposition of K_{27} ．

Example 2．2．Balanced C_{13}－2－foil design of K_{53} ．

$\{(53,2,24,47,28,31,3,12,50,8,48,42,35)$ ，
$(53,1,22,46,26,30,4,14,51,10,49,44,36)\}$ ．
This stater comprises a balanced C_{13}－2－foil decomposition of K_{53} ．

Example 2．3．Balanced C_{13}－3－foil design of K_{79} ．
$\{(79,3,36,70,42,46,4,17,74,11,71,62,52)$ ，
（79，2，34，69，40，45，5，19，75，13，72，64，53），
（ $79,1,32,68,38,44,6,21,76,15,73,66,54)\}$ ．
This stater comprises a balanced C_{13}－3－foil decomposition of K_{79} ．

Example 2．4．Balanced C_{13}－4－foil design of K_{105} ．
$\{(105,4,48,93,56,61,5,22,98,14,94,82,69)$ ，
（105，3，46，92，54，60，6，24，99，16，95，84，70），
（105，2，44，91，52，59，7，26，100，18，96，86，71），
$(105,1,42,90,50,58,8,28,101,20,97,88,72)\}$ ．
This stater comprises a balanced $C_{13}-4$－foil decomposition of K_{105} ．

Example 2．5．Balanced C_{13}－5－foil design of K_{131} ．
$\{(131,5,60,116,70,76,6,27,122,17,117,102,86)$ ，
（131，4，58，115，68，75，7，29，123，19，118，104，87），
$(131,3,56,114,66,74,8,31,124,21,119,106,88)$ ，
（ $131,2,54,113,64,73,9,33,125,23,120,108,89)$ ，
$(131,1,52,112,62,72,10,35,126,25,121,110,90)\}$ ．
This stater comprises a balanced $C_{13}-5$－foil decomposition of K_{131} ．

$\{(157,6,72,139,84,91,7,32,146,20,140,122,103)$ ，
$(157,5,70,138,82,90,8,34,147,22,141,124,104)$ ，
（ $157,4,68,137,80,89,9,36,148,24,142,126,105)$ ，
$(157,3,66,136,78,88,10,38,149,26,143,128,106)$ ，
$(157,2,64,135,76,87,11,40,150,28,144,130,107)$ ，
$(157,1,62,134,74,86,12,42,151,30,145,132,108)\}$ ．
This stater comprises a balanced $C_{13}-6$－foil decomposition of K_{157} ．

3．Balanced $C_{13 m}$－Foil Designs

Let $C_{13 m}$ be the cycle on $13 m$ vertices．The $C_{13 m}$－t－foil is a graph of t edge－disjoint $C_{13 m}$＇s with a common vertex and the common vertex is called the center of the $C_{13 m}$－ t－foil．When K_{n} is decomposed into edge－disjoint sum of $C_{13 m}-t$－foils and every vertex of K_{n} appears in the same number of $C_{13 m}$－t－foils，it is called that K_{n} has a balanced $C_{13 m}$－t－foil decomposition and this number is called the replication number．This de－ composition is known as a balanced $C_{13 m}$－foil design．

Theorem 3．K_{n} has a balanced $C_{26}-t$－foil design if and only if $n \equiv 1(\bmod 52 t)$ ．

Example 3．1．Balanced C_{26} design of K_{53} ．
$\{(53,2,24,47,28,31,3,12,50,8,48,42,35,18,36,44,49,10,51,14,4,30,26,46,22,1)\}$ ．
This stater comprises a balanced C_{26}－decomposition of K_{53} ．

Example 3．2．Balanced C_{26}－2－foil design of K_{105} ．
$\{(105,4,48,93,56,61,5,22,98,14,94,82,69,34,70,84,95,16,99,24,6,60,54,92,46,3)$ ， $(105,2,44,91,52,59,7,26,100,18,96,86,71,38,72,88,97,20,101,28,8,58,50,90,42,1)\}$.

This stater comprises a balanced C_{26}－2－foil decomposition of K_{105} ．

Example 3．3．Balanced C_{26}－3－foil design of K_{157} ．

$\{(157,6,72,139,84,91,7,32,146,20,140,122,103,50,104,124,141,22,147,34,8,90,82,138$ ， $70,5)$ ，
$(157,4,68,137,80,89,9,36,148,24,142,126,105,54,106,128,143,26,149,38,10,88,78,136$ ， $66,3)$ ，
（157，2，64，135，76，87，11，40，150，28，144，130，107，58，108，132，145，30，151，42，12，86，74， 134 $62,1)\}$ ．
This stater comprises a balanced C_{26}－3－foil decomposition of K_{157} ．

Example 3．4．Balanced C_{26}－4－foil design of K_{209} ．
$\{(209,8,96,185,112,121,9,42,194,26,186,162,137,66,138,164,187,28,195,44,10,120,110$ ， 184，94，7），
（209，6，92，183，108，119，11，46，196，30，188，166，139，70，140，168，189，32，197，48，12，118，106， 182，90，5），
（ $209,4,88,181,104,117,13,50,198,34,190,170,141,74,142,172,191,36,199,52,14,116,102$ ，This stater comprises a balanced $C_{39}-2$－foil decomposition of K_{157} ．
$180,86,3)$ ，
（209，2，84，179，100，115，15，54，200，38，192，174，143，78，144，176，193，40，201，56，16，114，98， $178,82,1)\}$ ．
This stater comprises a balanced $C_{26}-4$－foil decomposition of K_{209} ．

Example 3．5．Balanced C_{26}－5－foil design of K_{261} ．

$\{(261,10,120,231,140,151,11,52,242,32,232,202,171,82,172,204,233,34,243,54,12,150$ ， $138,230,118,9)$ ，
（ $261,8,116,229,136,149,13,56,244,36,234,206,173,86,174,208,235,38,245,58,14,148$ ， $134,228,114,7)$ ，
（261，6，112，227，132，147，15，60，246，40，236，210，175，90，176，212，237，42，247，62，16，146， $130,226,110,5)$ ，
（261，4，108，225，128，145，17，64，248，44，238，214，177，94，178，216，239，46，249，66，18，144， $126,224,106,3)$ ，
$(261,2,104,223,124,143,19,68,250,48,240,218,179,98,180,220,241,50,251,70,20,142$ ， $122,222,102,1)\}$ ．
This stater comprises a balanced $C_{26}-5$－foil decomposition of K_{261} ．

Theorem 4．K_{n} has a balanced $C_{39}-t$－foil design if and only if $n \equiv 1(\bmod 78 t)$ ．

Example 4．1．Balanced C_{39} design of K_{79} ．

$\{(79,3,36,70,42,46,4,17,74,11,71,62,52,26,53,64,72,13,75,19,5,45,40,69,34,2,33$ ， $31,32,68,38,44,6,21,76,15,73,66,54)\}$ ．
This stater comprises a balanced C_{39}－decomposition of K_{79} ．

Example 4．2．Balanced C_{39}－2－foil design of K_{157} ．
$\{(157,6,72,139,84,91,7,32,146,20,140,122,103,50,104,124,141,22,147,34,8,90,82$ ， $138,70,65,69,4,68,137,80,89,9,36,148,24,142,126,105)$ ，
$(157,3,66,136,78,88,10,38,149,26,143,128,106,56,107,130,144,28,150,40,11,87,76$ ， $135,64,2,63,61,62,134,74,86,12,42,151,30,145,132,108)\}$

Example 4．3．Balanced C_{39}－3－foil design of K_{235} ．
$\{(235,9,108,208,126,136,10,47,218,29,209,154,74,155,210,31,219,49,11,135,124$ ， $207,106,8,105,97,104,206,122,134,12,51,220,33,211,156)$ ， $(235,6,102,205,120,133,13,53,221,35,212,157,80,158,213,37,222,55,14,132,118$ ， $204,100,95,99,4,98,203,116,131,15,57,223,39,214,159)$ ，
（235，3，96，202，114，130，16，59，224，41，215，160，86，161，216，43，225，61，17，129，112， $201,94,2,93,91,92,200,110,128,18,63,226,45,217,162)\}$ ．
This stater comprises a balanced $C_{39}-3$－foil decomposition of K_{235} ．

Theorem 5．K_{n} has a balanced $C_{52}-t$－foil design if and only if $n \equiv 1(\bmod 104 t)$ ．

Example 5．1．Balanced C_{52} design of K_{105} ．

$\{(105,4,48,93,56,61,5,22,98,14,94,82,69,34,70,84,95,16,99,24,6,60,54,92,46,43,45$ ，

情報処理学会研究報告
IPSJ SIG Technical Report
$2,44,91,52,59,7,26,100,18,96,86,71,38,72,88,97,20,101,28,8,58,50,90,42,1)\}$ ．
This stater comprises a balanced C_{52}－decomposition of K_{105} ．

Example 5．2．Balanced C_{52}－2－foil design of K_{209} ．
$\{(209,8,96,185,112,121,9,42,194,26,186,162,137,66,138,164,187,28,195,44,10,120$ ， $110,184,94,87,93,6,92,183,108,119,11,46,196,30,188,166,139,70,140,168,189,32,197$ ， $48,12,118,106,182,90,5)$ ，
（209，4，88，181，104，117，13，50，198，34，190，170，141，74，142，172，191，36，199，52，14，116，
$102,180,86,83,85,2,84,179,100,115,15,54,200,38,192,174,143,78,144,176,193,40,201$ ， $56,16,114,98,178,82,1)\}$ ．
This stater comprises a balanced C_{52}－2－foil decomposition of K_{209} ．

Theorem 6．K_{n} has a balanced $C_{65}-t$－foil design if and only if $n \equiv 1(\bmod 130 t)$ ．

Example 6．1．Balanced C_{65} design of K_{131} ．

$\{(131,5,60,116,70,76,6,27,122,17,117,102,86,42,87,104,118,19,123,29,7,75,68,115$ ， $58,4,57,53,56,114,66,74,8,31,124,21,119,106,88,46,89,108,120,23,125,33,9,73,64$ ， $113,54,2,3,1,52,112,62,72,10,35,126,25,121,110,90)\}$ ．
This stater comprises a balanced C_{65}－decomposition of K_{131} ．

Example 6．2．Balanced C_{65}－2－foil design of K_{261} ．

$\{(261,10,120,231,140,151,11,52,242,32,232,202,171,82,172,204,233,34,243,54,12,150$ ， $138,230,118,109,117,8,116,229,136,149,13,56,244,36,234,206,173,86,174,208,235,38$ ， $245,58,14,148,134,228,114,107,113,6,112,227,132,147,15,60,246,40,236,210,175)$ ， $(261,5,110,226,130,146,16,62,247,42,237,212,176,92,177,214,238,44,248,64,17,145$ ， $128,225,108,4,7,3,106,224,126,144,18,66,249,46,239,216,178,96,179,218,240,48,250$ ， $68,19,143,124,223,104,2,103,101,102,222,122,142,20,70,251,50,241,220,180)\}$ ． This stater comprises a balanced $C_{65}-2$－foil decomposition of K_{261} ．

Theorem 7．K_{n} has a balanced $C_{78}-t$－foil design if and only if $n \equiv 1(\bmod 156 t)$ ．

Example 7．1．Balanced C_{78} design of K_{157} ．

$\{(157,6,72,139,84,91,7,32,146,20,140,122,103,50,104,124,141,22,147,34,8,90,82$ ， $138,70,65,69,4,68,137,80,89,9,36,148,24,142,126,105,54,106,128,143,26,149,38$ ， $10,88,78,136,66,3,5,2,64,135,76,87,11,40,150,28,144,130,107,58,108,132,145,30$ ， $151,42,12,86,74,134,62,1)\}$ ．
This stater comprises a balanced C_{78}－decomposition of K_{157} ．

Example 7．2．Balanced C_{78}－2－foil design of K_{313} ．

$\{(313,12,144,277,168,181,13,62,290,38,278,242,205,98,206,244,279,40,291,64,14$ ， $180,166,276,142,131,141,10,140,275,164,179,15,66,292,42,280,246,207,102,208,248$ ， $281,44,293,68,16,178,162,274,138,129,137,8,136,273,160,177,17,70,294,46,282,250$ ， $209,106,210,252,283,48,295,72,18,176,158,272,134,7)$ ，
（313，6，132，271，156，175，19，74，296，50，284，254，211，110，212，256，285，52，297，76，20， $174,154,270,130,5,9,4,128,269,152,173,21,78,298,54,286,258,213,114,214,260,287$ ， $56,299,80,22,172,150,268,126,123,125,2,124,267,148,171,23,82,300,58,288,262,215$ ， $118,216,264,289,60,301,84,24,170,146,266,122,1)\}$ ．
This stater comprises a balanced C_{78}－2－foil decomposition of K_{313} ．

Theorem 8．K_{n} has a balanced $C_{91}-t$－foil design if and only if $n \equiv 1(\bmod 182 t)$ ．

Example 8．1．Balanced C_{91} design of K_{183} ．

$\{(183,7,84,162,98,106,8,37,170,23,163,142,120,58,121,144,164,25,171,39,9,105,96$ ， $161,82,6,81,75,80,160,94,104,10,41,172,27,165,146,122,62,123,148,166,29,173,43$ ， $11,103,92,159,78,4,77,73,76,158,90,102,12,45,174,31,167,150,124,66,125,152,168$ ， $33,175,47,13,101,88,157,74,2,3,1,72,156,86,100,14,49,176,35,169,154,126)\}$ ． This stater comprises a balanced C_{91}－decomposition of K_{183} ．

Theorem 9．K_{n} has a balanced $C_{104}-t$－foil design if and only if $n \equiv 1(\bmod 208 t)$ ．

Example 9．1．Balanced C_{104} design of K_{209} ．
$\{(209,8,96,185,112,121,9,42,194,26,186,162,137,66,138,164,187,28,195,44,10,120$ ，

情報処理学会研究報告
IPSJ SIG Technical Report
$110,184,94,87,93,6,92,183,108,119,11,46,196,30,188,166,139,70,140,168,189,32,197$ ， $48,12,118,106,182,90,85,89,4,88,181,104,117,13,50,198,34,190,170,141,74,142,172$ ， $191,36,199,52,14,116,102,180,86,3,5,2,84,179,100,115,15,54,200,38,192,174,143,78$ ， $144,176,193,40,201,56,16,114,98,178,82,1)\}$ ．
This stater comprises a balanced C_{104}－decomposition of K_{209} ．

Theorem 10．K_{n} has a balanced $C_{117}-t$－foil design if and only if $n \equiv 1(\bmod 234 t)$ ．

Example 10．1．Balanced C_{117} design of K_{235} ．

$\{(235,9,108,208,126,136,10,47,218,29,209,154,74,155,210,31,219,49,11,135,124$ ， $207,106,8,105,97,104,206,122,134,12,51,220,33,211,156,78,157,212,35,221,53,13$ ， $133,120,205,102,6,101,95,100,204,118,132,14,55,222,37,213,158,82,159,214,39,223$ ， $57,15,131,116,203,98,4,7,3,96,202,114,130,16,59,224,41,215,160,86,161,216,43,225$ ， $61,17,129,112,201,94,2,93,91,92,200,110,128,18,63,226,45,217,162)\}$ ．
This stater comprises a balanced C_{117}－decomposition of K_{235} ．

Theorem 11．K_{n} has a balanced $C_{130}-t$－foil design if and only if $n \equiv 1(\bmod 260 t)$ ．

Example 11．1．Balanced C_{130} design of K_{261} ．

$\{(261,10,120,231,140,151,11,52,242,32,232,202,171,82,172,204,233,34,243,54,12$ ， $150,138,230,118,109,117,8,116,229,136,149,13,56,244,36,234,206,173,86,174,208$ ， $235,38,245,58,14,148,134,228,114,107,113,6,112,227,132,147,15,60,246,40,236,210$ ， $175,90,176,212,237,42,247,62,16,146,130,226,110,5,9,4,108,225,128,145,17,64,248$ ， $44,238,214,177,94,178,216,239,46,249,66,18,144,126,224,106,103,105,2,104,223,124$ ， $143,19,68,250,48,240,218,179,98,180,220,241,50,251,70,20,142,122,222,102,1)\}$.
This stater comprises a balanced C_{130}－decomposition of K_{261} ．

参 考 文 献

1）Ushio，K．and Fujimoto，H．：Balanced bowtie and trefoil decomposition of com－ plete tripartite multigraphs，IEICE Trans．Fundamentals，Vol．E84－A，No．3，pp．

839－844（2001）．
2）Ushio，K．and Fujimoto，H．：Balanced foil decomposition of complete graphs，IE－ ICE Trans．Fundamentals，Vol．E84－A，No．12，pp．3132－3137（2001）．
3）Ushio，K．and Fujimoto，H．：Balanced bowtie decomposition of complete multi－ graphs，IEICE Trans．Fundamentals，Vol．E86－A，No．9，pp．2360－2365（2003）．
4）Ushio，K．and Fujimoto，H．：Balanced bowtie decomposition of symmetric com－ plete multi－digraphs，IEICE Trans．Fundamentals，Vol．E87－A，No．10，pp．2769－2773 （2004）．
5）Ushio，K．and Fujimoto，H．：Balanced quatrefoil decomposition of complete multi－ graphs，IEICE Trans．Information and Systems，Vol．E88－D，No．1，pp．19－22（2005）．
6）Ushio，K．and Fujimoto，H．：Balanced C_{4}－bowtie decomposition of complete multi－ graphs，IEICE Trans．Fundamentals，Vol．E88－A，No．5，pp．1148－1154（2005）．
7）Ushio，K．and Fujimoto，H．：Balanced C_{4}－trefoil decomposition of complete multi－ graphs，IEICE Trans．Fundamentals，Vol．E89－A，No．5，pp．1173－1180（2006）．

[^0]: $\dagger 1$ 近畿大学理工学部情報学科
 Department of Informatics，Faculty of Science and Technology，Kinki University

