均衡型
$$(C_5, C_8)$$
-Foil デザインと関連デザイン

潮 和 彦

グラフ理論において、グラフの分解問題は主要な研究テーマである。 $C_5 \ \varepsilon 5$ 点を通 るサイクル、 $C_8 \ \varepsilon 8$ 点を通るサイクルとする。1 点を共有する辺素な t 個の $C_5 \ \varepsilon$ t 個の C_8 からなるグラフを (C_5, C_8)-2t-foil という。本研究では、完全グラフ K_n を 均衡的に (C_5, C_8)-2t-foil 部分グラフに分解する均衡型 (C_5, C_8)-foil デザインに ついて述べる。さらに、均衡型 C_{13} -foil デザイン、均衡型 C_{26} -foil デザイン、均衡型 C_{78} -foil デザイン、均衡型 C_{52} -foil デザイン、均衡型 C_{65} -foil デザイン、均衡型 C_{78} -foil デザイン、均衡型 C_{91} -foil デザイン、均衡型 C_{104} -foil デザイン、均衡型 C_{117} -foil デザイン、均衡型 C_{130} -foil デザインについて述べる。

Balanced (C_5, C_8) -Foil Designs and Related Designs

KAZUHIKO USHIO

In graph theory, the decomposition problem of graphs is a very important topic. Various type of decompositions of many graphs can be seen in the literature of graph theory. This paper gives balanced (C_5, C_8) -foil designs, balanced C_{13} -foil designs, and balanced C_{26} -foil designs, and balanced C_{39} -foil designs, and balanced C_{52} -foil designs, and balanced C_{65} -foil designs, and balanced C_{78} -foil designs, and balanced C_{91} -foil designs, and balanced C_{104} -foil designs, and balanced C_{117} -foil designs, and balanced C_{130} -foil designs.

1. Balanced (C_5, C_8) -Foil Designs

Let K_n denote the complete graph of n vertices. Let C_5 and C_8 be the 5-cycle and the 8-cycle, respectively. The (C_5, C_8) -2t-foil is a graph of t edge-disjoint C_5 's and t

†1 近畿大学理工学部情報学科

edge-disjoint C_8 's with a common vertex and the common vertex is called the center of the (C_5, C_8) -2t-foil. When K_n is decomposed into edge-disjoint sum of (C_5, C_8) -2t-foils and every vertex of K_n appears in the same number of (C_5, C_8) -2t-foils, we say that K_n has a balanced (C_5, C_8) -2t-foil decomposition and this number is called the replication number. This decomposition is known as a balanced (C_5, C_8) -foil design.

Theorem 1. K_n has a balanced (C_5, C_8) -2t-foil design if and only if $n \equiv 1 \pmod{26t}$.

Proof. (Necessity) Suppose that K_n has a balanced (C_5, C_8) -2t-foil decomposition. Let b be the number of (C_5, C_8) -2t-foils and r be the replication number. Then b = n(n-1)/26t and r = (11t+1)(n-1)/26t. Among r (C_5, C_8) -2t-foils having a vertex v of K_n , let r_1 and r_2 be the numbers of (C_5, C_8) -2t-foils in which v is the center and v is not the center, respectively. Then $r_1 + r_2 = r$. Counting the number of vertices adjacent to v, $4tr_1 + 2r_2 = n - 1$. From these relations, $r_1 = (n-1)/26t$ and $r_2 = 11(n-1)/26$. Therefore, $n \equiv 1 \pmod{26t}$ is necessary.

(Sufficiency) Put n = 26st + 1 and T = st. Then n = 26T + 1. Construct a (C_5, C_8) -2*T*-foil as follows:

 $\{(26T+1, T, 12T, 23T+1, 14T), (26T+1, T+1, 5T+2, 24T+2, 3T+2, 23T+2, 20T+2, 17T+1)\} \cup$

 $\{ (26T+1, T-1, 12T-2, 23T, 14T-2), (26T+1, T+2, 5T+4, 24T+3, 3T+4, 23T+3, 20T+4, 17T+2) \} \cup$

 $\begin{array}{l} \{(26T+1,T-2,12T-4,23T-1,14T-4),(26T+1,T+3,5T+6,24T+4,3T+6,23T+4,20T+6,17T+3)\} \cup \end{array}$

... U

 $\{(26T+1, 1, 10T+2, 22T+2, 12T+2), (26T+1, 2T, 7T, 25T+1, 5T, 24T+1, 22T, 18T)\}.$ Decompose the (C_5, C_8) -2T-foil into s (C_5, C_8) -2t-foils. Then these starters comprise a balanced (C_5, C_8) -2t-foil decomposition of K_n .

Example 1.1. Balanced (C_5, C_8) -2-foil design of K_{27} .

 $\{(27, 1, 12, 24, 14), (27, 2, 7, 26, 5, 25, 22, 18)\}.$

This starter comprises a balanced (C_5, C_8) -2-foil decomposition of K_{27} .

Department of Informatics, Faculty of Science and Technology, Kinki University

Vol.2012-MPS-87 No.12 2012/3/1

情報処理学会研究報告 IPSJ SIG Technical Report

Example 1.2. Balanced (C_5, C_8) -4-foil design of K_{53} .

$$\begin{split} &\{(53,2,24,47,28),(53,3,12,50,8,48,42,35)\} \cup \\ &\{(53,1,22,46,26),(53,4,14,51,10,49,44,36)\}. \end{split}$$
 This starter comprises a balanced $(C_5,C_8)\text{-}4\text{-}\text{foil decomposition of } K_{53}. \end{split}$

Example 1.3. Balanced (C_5, C_8) -6-foil design of K_{79} . $\{(79, 3, 36, 70, 42), (79, 4, 17, 74, 11, 71, 62, 52)\} \cup$ $\{(79, 2, 34, 69, 40), (79, 5, 19, 75, 13, 72, 64, 53)\} \cup$ $\{(79, 1, 32, 68, 38), (79, 6, 21, 76, 15, 73, 66, 54)\}.$ This starter comprises a balanced (C_5, C_8) -6-foil decomposition of K_{79} .

Example 1.4. Balanced (C_5, C_8) -8-foil design of K_{105} .

$$\begin{split} &\{(105,4,48,93,56),(105,5,22,98,14,94,82,69)\} \cup \\ &\{(105,3,46,92,54),(105,6,24,99,16,95,84,70)\} \cup \\ &\{(105,2,44,91,52),(105,7,26,100,18,96,86,71)\} \cup \\ &\{(105,1,42,90,50),(105,8,28,101,20,97,88,72)\}. \end{split}$$
 This starter comprises a balanced (C_5, C_8)-8-foil decomposition of K_{105} .

Example 1.5. Balanced (C_5, C_8) -10-foil design of K_{131} .

$$\begin{split} &\{(131,5,60,116,70),(131,6,27,122,17,117,102,86)\} \cup \\ &\{(131,4,58,115,68),(131,7,29,123,19,118,104,87)\} \cup \\ &\{(131,3,56,114,66),(131,8,31,124,21,119,106,88)\} \cup \\ &\{(131,2,54,113,64),(131,9,33,125,23,120,108,89)\} \cup \\ &\{(131,1,52,112,62),(131,10,35,126,25,121,110,90)\}. \end{split}$$
 This starter comprises a balanced (C_5,C_8) -10-foil decomposition of K_{131} .

Example 1.6. Balanced (C_5, C_8) -12-foil design of K_{157} . {(157, 6, 72, 139, 84), (157, 7, 32, 146, 20, 140, 122, 103)} \cup {(157, 5, 70, 138, 82), (157, 8, 34, 147, 22, 141, 124, 104)} \cup {(157, 4, 68, 137, 80), (157, 9, 36, 148, 24, 142, 126, 105)} \cup
$$\begin{split} &\{(157,3,66,136,78),(157,10,38,149,26,143,128,106)\} \cup \\ &\{(157,2,64,135,76),(157,11,40,150,28,144,130,107)\} \cup \\ &\{(157,1,62,134,74),(157,12,42,151,30,145,132,108)\}. \end{split}$$
 This starter comprises a balanced (C_5,C_8) -12-foil decomposition of K_{157} .

2. Balanced C_{13} -Foil Designs

Let C_{13} be the cycle on 13 vertices. The C_{13} -t-foil is a graph of t edge-disjoint C_{13} 's with a common vertex and the common vertex is called the center of the C_{13} -t-foil. When K_n is decomposed into edge-disjoint sum of C_{13} -t-foils and every vertex of K_n appears in the same number of C_{13} -t-foils, it is called that K_n has a balanced C_{13} -t-foil decomposition and this number is called the replication number. This decomposition is known as a balanced C_{13} -foil design.

Theorem 2. K_n has a balanced C_{13} -t-foil design if and only if $n \equiv 1 \pmod{26t}$.

Proof. (Necessity) Suppose that K_n has a balanced C_{13} -t-foil decomposition. Let b be the number of C_{13} -t-foils and r be the replication number. Then b = n(n-1)/26t and r = (12t+1)(n-1)/26t. Among $r C_{13}$ -t-foils having a vertex v of K_n , let r_1 and r_2 be the numbers of C_{13} -t-foils in which v is the center and v is not the center, respectively. Then $r_1 + r_2 = r$. Counting the number of vertices adjacent to v, $2tr_1 + 2r_2 = n - 1$. From these relations, $r_1 = (n-1)/26t$ and $r_2 = 12(n-1)/26$. Therefore, $n \equiv 1 \pmod{26t}$ is necessary.

(Sufficiency) Put n = 26st + 1, T = st. Then n = 26T + 1. Construct a C_{13} -T-foil as follows:

{ (26T + 1, T, 12T, 23T + 1, 14T, 15T + 1, T + 1, 5T + 2, 24T + 2, 3T + 2, 23T + 2, 20T + 2, 17T + 1),

(26T + 1, T - 1, 12T - 2, 23T, 14T - 2, 15T, T + 2, 5T + 4, 24T + 3, 3T + 4, 23T + 3, 20T + 4, 17T + 2).

(26T+1, T-2, 12T-4, 23T-1, 14T-4, 15T-1, T+3, 5T+6, 24T+4, 3T+6, 23T+4, 20T+6, 17T+3),

情報処理学会研究報告 IPSJ SIG Technical Report

...,

(26T + 1, 1, 10T + 2, 22T + 2, 12T + 2, 14T + 2, 2T, 7T, 25T + 1, 5T, 24T + 1, 22T, 18T)}. Decompose this C_{13} -T-foil into $s \ C_{13}$ -t-foils. Then these starters comprise a balanced C_{13} -t-foil decomposition of K_n .

Example 2.1. Balanced C_{13} design of K_{27} . {(27, 1, 12, 24, 14, 16, 2, 7, 26, 5, 25, 22, 18)}. This stater comprises a balanced C_{13} -decomposition of K_{27} .

Example 2.2. Balanced C_{13} -2-foil design of K_{53} . {(53, 2, 24, 47, 28, 31, 3, 12, 50, 8, 48, 42, 35), (53, 1, 22, 46, 26, 30, 4, 14, 51, 10, 49, 44, 36)}. This stater comprises a balanced C_{13} -2-foil decomposition of K_{53} .

Example 2.3. Balanced C_{13} -3-foil design of K_{79} . {(79, 3, 36, 70, 42, 46, 4, 17, 74, 11, 71, 62, 52), (79, 2, 34, 69, 40, 45, 5, 19, 75, 13, 72, 64, 53), (79, 1, 32, 68, 38, 44, 6, 21, 76, 15, 73, 66, 54)}. This stater comprises a balanced C_{13} -3-foil decomposition of K_{79} .

Example 2.4. Balanced C_{13} -4-foil design of K_{105} .

$$\begin{split} &\{(105,4,48,93,56,61,5,22,98,14,94,82,69),\\ &(105,3,46,92,54,60,6,24,99,16,95,84,70),\\ &(105,2,44,91,52,59,7,26,100,18,96,86,71),\\ &(105,1,42,90,50,58,8,28,101,20,97,88,72)\}. \end{split}$$
 This stater comprises a balanced $C_{13}\text{-}4\text{-}\text{foil decomposition of }K_{105}. \end{split}$

Example 2.5. Balanced C_{13} -5-foil design of K_{131} . {(131, 5, 60, 116, 70, 76, 6, 27, 122, 17, 117, 102, 86), (131, 4, 58, 115, 68, 75, 7, 29, 123, 19, 118, 104, 87), (131, 3, 56, 114, 66, 74, 8, 31, 124, 21, 119, 106, 88),
$$\begin{split} &(131,2,54,113,64,73,9,33,125,23,120,108,89),\\ &(131,1,52,112,62,72,10,35,126,25,121,110,90)\}.\\ &\text{This stater comprises a balanced C_{13}-5-foil decomposition of K_{131}.} \end{split}$$

Example 2.6. Balanced C_{13} -6-foil design of K_{157} . {(157, 6, 72, 139, 84, 91, 7, 32, 146, 20, 140, 122, 103), (157, 5, 70, 138, 82, 90, 8, 34, 147, 22, 141, 124, 104), (157, 4, 68, 137, 80, 89, 9, 36, 148, 24, 142, 126, 105), (157, 3, 66, 136, 78, 88, 10, 38, 149, 26, 143, 128, 106), (157, 2, 64, 135, 76, 87, 11, 40, 150, 28, 144, 130, 107), (157, 1, 62, 134, 74, 86, 12, 42, 151, 30, 145, 132, 108)}. This stater comprises a balanced C_{13} -6-foil decomposition of K_{157} .

3. Balanced C_{13m} -Foil Designs

Let C_{13m} be the cycle on 13m vertices. The C_{13m} -t-foil is a graph of t edge-disjoint C_{13m} 's with a common vertex and the common vertex is called the center of the C_{13m} -t-foil. When K_n is decomposed into edge-disjoint sum of C_{13m} -t-foils and every vertex of K_n appears in the same number of C_{13m} -t-foils, it is called that K_n has a balanced C_{13m} -t-foil decomposition and this number is called the replication number. This decomposition is known as a balanced C_{13m} -foil design.

Theorem 3. K_n has a balanced C_{26} -t-foil design if and only if $n \equiv 1 \pmod{52t}$.

Example 3.1. Balanced C_{26} design of K_{53} . {(53, 2, 24, 47, 28, 31, 3, 12, 50, 8, 48, 42, 35, 18, 36, 44, 49, 10, 51, 14, 4, 30, 26, 46, 22, 1)}. This stater comprises a balanced C_{26} -decomposition of K_{53} .

Example 3.2. Balanced C_{26} -2-foil design of K_{105} . {(105, 4, 48, 93, 56, 61, 5, 22, 98, 14, 94, 82, 69, 34, 70, 84, 95, 16, 99, 24, 6, 60, 54, 92, 46, 3), (105, 2, 44, 91, 52, 59, 7, 26, 100, 18, 96, 86, 71, 38, 72, 88, 97, 20, 101, 28, 8, 58, 50, 90, 42, 1)}. 情報処理学会研究報告 IPSJ SIG Technical Report

This stater comprises a balanced C_{26} -2-foil decomposition of K_{105} .

Example 3.3. Balanced C_{26} -3-foil design of K_{157} .

 $\{(157, 6, 72, 139, 84, 91, 7, 32, 146, 20, 140, 122, 103, 50, 104, 124, 141, 22, 147, 34, 8, 90, 82, 138, 70, 5),$

(157, 4, 68, 137, 80, 89, 9, 36, 148, 24, 142, 126, 105, 54, 106, 128, 143, 26, 149, 38, 10, 88, 78, 136, 66, 3),

(157, 2, 64, 135, 76, 87, 11, 40, 150, 28, 144, 130, 107, 58, 108, 132, 145, 30, 151, 42, 12, 86, 74, 134, 62, 1).

This stater comprises a balanced C_{26} -3-foil decomposition of K_{157} .

Example 3.4. Balanced C_{26} -4-foil design of K_{209} .

 $178, 82, 1)\}.$

This stater comprises a balanced C_{26} -4-foil decomposition of K_{209} .

Example 3.5. Balanced C_{26} -5-foil design of K_{261} .

$\{(261, 10, 120, 231, 140, 151, 11, 52, 242, 32, 232, 202, 171, 82, 172, 204, 233, 34, 243, 54, 12, 150, 120, 231, 120, 231, 140, 151, 11, 52, 242, 32, 232, 202, 171, 82, 172, 204, 233, 34, 243, 54, 12, 150, 120, 120, 120, 120, 120, 120, 120, 12$
138, 230, 118, 9),
(261, 8, 116, 229, 136, 149, 13, 56, 244, 36, 234, 206, 173, 86, 174, 208, 235, 38, 245, 58, 14, 148, 208, 208, 208, 208, 208, 208, 208, 20
134, 228, 114, 7),
(261, 6, 112, 227, 132, 147, 15, 60, 246, 40, 236, 210, 175, 90, 176, 212, 237, 42, 247, 62, 16, 146, 16, 16, 16, 16, 16, 16, 16, 16, 16, 1
130, 226, 110, 5),
(261, 4, 108, 225, 128, 145, 17, 64, 248, 44, 238, 214, 177, 94, 178, 216, 239, 46, 249, 66, 18, 144, 249, 100, 100, 100, 100, 100, 100, 100, 10

126, 224, 106, 3),

	(261, 2, 104, 223, 124, 143, 19, 68, 250, 48, 240, 218, 179, 98, 180, 220, 241, 50, 251, 70, 20, 142, 122, 222, 102, 1)
	This states comprises a holomod C_{12} 5 foil decomposition of K_{12} .
28	This stater comprises a balanced C ₂₆ -5-10h decomposition of A ₂₆₁ .
J 0,	Theorem 4 K has a halanced Cas t foil design if and only if $n = 1 \pmod{78t}$
26	Theorem 4. N_n has a balanced C_{39} -torn design if and only if $n \equiv 1 \pmod{100}$.
<i>b</i> 0,	Example 4.1 Balanced C_{22} design of K_{72}
34	$\{(79, 3, 36, 70, 42, 46, 4, 17, 74, 11, 71, 62, 52, 26, 53, 64, 72, 13, 75, 19, 5, 45, 40, 69, 34, 2, 33, 34, 34, 34, 34, 34, 34, 34, 34, 34$
.01,	31. 32. 68. 38. 44. 6. 21. 76. 15. 73. 66. 54)}.
	This stater comprises a balanced C_{39} -decomposition of K_{79} .
	Example 4.2 Polynoid $C = 2$ foil design of K
110	Example 4.2. Databased C_{39} -2-101 design of K_{157} .
110,	$\{(157, 0, 72, 159, 04, 91, 7, 52, 140, 20, 140, 122, 103, 50, 104, 124, 141, 22, 147, 54, 6, 90, 62, 128, 70, 65, 60, 4, 68, 127, 20, 20, 0, 26, 148, 24, 142, 126, 105\}$
106	(157, 2, 66, 126, 79, 98, 10, 29, 140, 26, 142, 128, 106, 56, 107, 120, 144, 28, 150, 40, 11, 87, 76
100,	(137, 3, 00, 130, 70, 00, 10, 30, 143, 20, 143, 120, 100, 30, 107, 130, 144, 20, 130, 40, 11, 07, 70, 125, 64, 2, 62, 61, 69, 124, 74, 86, 19, 49, 151, 20, 145, 129, 108)]
109	This states comprises a holomood $C = 2$ fail decomposition of K
102,	This stater comprises a balanced C39-2-100 decomposition of K157.
98,	Example 4.3. Balanced C_{39} -3-foil design of K_{235} .
	$\{(235, 9, 108, 208, 126, 136, 10, 47, 218, 29, 209, 154, 74, 155, 210, 31, 219, 49, 11, 135, 124,$
	207, 106, 8, 105, 97, 104, 206, 122, 134, 12, 51, 220, 33, 211, 156),
	(235, 6, 102, 205, 120, 133, 13, 53, 221, 35, 212, 157, 80, 158, 213, 37, 222, 55, 14, 132, 118,
	204, 100, 95, 99, 4, 98, 203, 116, 131, 15, 57, 223, 39, 214, 159),
50,	(235, 3, 96, 202, 114, 130, 16, 59, 224, 41, 215, 160, 86, 161, 216, 43, 225, 61, 17, 129, 112,
	$201, 94, 2, 93, 91, 92, 200, 110, 128, 18, 63, 226, 45, 217, 162)\}.$
,	This stater comprises a balanced C_{39} -3-foil decomposition of K_{235} .
,	Theorem 5. K_n has a balanced C_{52} -t-foil design if and only if $n \equiv 1 \pmod{104t}$.
,	Example 5.1. Balanced C_{52} design of K_{105} .

Vol.2012-MPS-87 No.12 2012/3/1

情報処理学会研究報告 IPSJ SIG Technical Report

2, 44, 91, 52, 59, 7, 26, 100, 18, 96, 86, 71, 38, 72, 88, 97, 20, 101, 28, 8, 58, 50, 90, 42, 1)}. This stater comprises a balanced C_{52} -decomposition of K_{105} .

Example 5.2. Balanced C_{52} -2-foil design of K_{209} .

 $\{(209, 8, 96, 185, 112, 121, 9, 42, 194, 26, 186, 162, 137, 66, 138, 164, 187, 28, 195, 44, 10, 120, 110, 184, 94, 87, 93, 6, 92, 183, 108, 119, 11, 46, 196, 30, 188, 166, 139, 70, 140, 168, 189, 32, 197, 48, 12, 118, 106, 182, 90, 5),$

 $(209, 4, 88, 181, 104, 117, 13, 50, 198, 34, 190, 170, 141, 74, 142, 172, 191, 36, 199, 52, 14, 116, 102, 180, 86, 83, 85, 2, 84, 179, 100, 115, 15, 54, 200, 38, 192, 174, 143, 78, 144, 176, 193, 40, 201, 56, 16, 114, 98, 178, 82, 1)\}.$

This stater comprises a balanced C_{52} -2-foil decomposition of K_{209} .

Theorem 6. K_n has a balanced C_{65} -t-foil design if and only if $n \equiv 1 \pmod{130t}$.

Example 6.1. Balanced C_{65} design of K_{131} .

 $\{(131, 5, 60, 116, 70, 76, 6, 27, 122, 17, 117, 102, 86, 42, 87, 104, 118, 19, 123, 29, 7, 75, 68, 115, 58, 4, 57, 53, 56, 114, 66, 74, 8, 31, 124, 21, 119, 106, 88, 46, 89, 108, 120, 23, 125, 33, 9, 73, 64, 113, 54, 2, 3, 1, 52, 112, 62, 72, 10, 35, 126, 25, 121, 110, 90)\}.$

This stater comprises a balanced C_{65} -decomposition of K_{131} .

Example 6.2. Balanced C_{65} -2-foil design of K_{261} .

 $\{(261, 10, 120, 231, 140, 151, 11, 52, 242, 32, 232, 202, 171, 82, 172, 204, 233, 34, 243, 54, 12, 150, 138, 230, 118, 109, 117, 8, 116, 229, 136, 149, 13, 56, 244, 36, 234, 206, 173, 86, 174, 208, 235, 38, 245, 58, 14, 148, 134, 228, 114, 107, 113, 6, 112, 227, 132, 147, 15, 60, 246, 40, 236, 210, 175), (261, 5, 110, 226, 130, 146, 16, 62, 247, 42, 237, 212, 176, 92, 177, 214, 238, 44, 248, 64, 17, 145, 128, 225, 108, 4, 7, 3, 106, 224, 126, 144, 18, 66, 249, 46, 239, 216, 178, 96, 179, 218, 240, 48, 250, 68, 19, 143, 124, 223, 104, 2, 103, 101, 102, 222, 122, 142, 20, 70, 251, 50, 241, 220, 180) \}.$ This stater comprises a balanced C_{65} -2-foil decomposition of K_{261} .

Theorem 7. K_n has a balanced C_{78} -t-foil design if and only if $n \equiv 1 \pmod{156t}$.

Example 7.1. Balanced C_{78} design of K_{157} .

 $\{(157, 6, 72, 139, 84, 91, 7, 32, 146, 20, 140, 122, 103, 50, 104, 124, 141, 22, 147, 34, 8, 90, 82, 138, 70, 65, 69, 4, 68, 137, 80, 89, 9, 36, 148, 24, 142, 126, 105, 54, 106, 128, 143, 26, 149, 38, 10, 88, 78, 136, 66, 3, 5, 2, 64, 135, 76, 87, 11, 40, 150, 28, 144, 130, 107, 58, 108, 132, 145, 30, 151, 42, 12, 86, 74, 134, 62, 1)\}.$

This stater comprises a balanced C_{78} -decomposition of K_{157} .

Example 7.2. Balanced C_{78} -2-foil design of K_{313} .

 $\{(313, 12, 144, 277, 168, 181, 13, 62, 290, 38, 278, 242, 205, 98, 206, 244, 279, 40, 291, 64, 14, 180, 166, 276, 142, 131, 141, 10, 140, 275, 164, 179, 15, 66, 292, 42, 280, 246, 207, 102, 208, 248, 281, 44, 293, 68, 16, 178, 162, 274, 138, 129, 137, 8, 136, 273, 160, 177, 17, 70, 294, 46, 282, 250, 209, 106, 210, 252, 283, 48, 295, 72, 18, 176, 158, 272, 134, 7),$

 $(313, 6, 132, 271, 156, 175, 19, 74, 296, 50, 284, 254, 211, 110, 212, 256, 285, 52, 297, 76, 20, \\ 174, 154, 270, 130, 5, 9, 4, 128, 269, 152, 173, 21, 78, 298, 54, 286, 258, 213, 114, 214, 260, 287, \\ 56, 299, 80, 22, 172, 150, 268, 126, 123, 125, 2, 124, 267, 148, 171, 23, 82, 300, 58, 288, 262, 215, \\ 118, 216, 264, 289, 60, 301, 84, 24, 170, 146, 266, 122, 1) \}.$

This stater comprises a balanced C_{78} -2-foil decomposition of K_{313} .

Theorem 8. K_n has a balanced C_{91} -t-foil design if and only if $n \equiv 1 \pmod{182t}$.

Example 8.1. Balanced C_{91} design of K_{183} .

 $\{ (183, 7, 84, 162, 98, 106, 8, 37, 170, 23, 163, 142, 120, 58, 121, 144, 164, 25, 171, 39, 9, 105, 96, 161, 82, 6, 81, 75, 80, 160, 94, 104, 10, 41, 172, 27, 165, 146, 122, 62, 123, 148, 166, 29, 173, 43, 11, 103, 92, 159, 78, 4, 77, 73, 76, 158, 90, 102, 12, 45, 174, 31, 167, 150, 124, 66, 125, 152, 168, 33, 175, 47, 13, 101, 88, 157, 74, 2, 3, 1, 72, 156, 86, 100, 14, 49, 176, 35, 169, 154, 126) \}.$ This stater comprises a balanced C_{91} -decomposition of K_{183} .

Theorem 9. K_n has a balanced C_{104} -t-foil design if and only if $n \equiv 1 \pmod{208t}$.

Example 9.1. Balanced C_{104} **design of** K_{209} . {(209, 8, 96, 185, 112, 121, 9, 42, 194, 26, 186, 162, 137, 66, 138, 164, 187, 28, 195, 44, 10, 120,

情報処理学会研究報告 IPSJ SIG Technical Report

 $\begin{aligned} &110, 184, 94, 87, 93, 6, 92, 183, 108, 119, 11, 46, 196, 30, 188, 166, 139, 70, 140, 168, 189, 32, 197, \\ &48, 12, 118, 106, 182, 90, 85, 89, 4, 88, 181, 104, 117, 13, 50, 198, 34, 190, 170, 141, 74, 142, 172, \\ &191, 36, 199, 52, 14, 116, 102, 180, 86, 3, 5, 2, 84, 179, 100, 115, 15, 54, 200, 38, 192, 174, 143, 78, \\ &144, 176, 193, 40, 201, 56, 16, 114, 98, 178, 82, 1) \}. \end{aligned}$

This stater comprises a balanced C_{104} -decomposition of K_{209} .

Theorem 10. K_n has a balanced C_{117} -t-foil design if and only if $n \equiv 1 \pmod{234t}$.

Example 10.1. Balanced C_{117} design of K_{235} .

 $\{(235, 9, 108, 208, 126, 136, 10, 47, 218, 29, 209, 154, 74, 155, 210, 31, 219, 49, 11, 135, 124, 207, 106, 8, 105, 97, 104, 206, 122, 134, 12, 51, 220, 33, 211, 156, 78, 157, 212, 35, 221, 53, 13, 133, 120, 205, 102, 6, 101, 95, 100, 204, 118, 132, 14, 55, 222, 37, 213, 158, 82, 159, 214, 39, 223, 57, 15, 131, 116, 203, 98, 4, 7, 3, 96, 202, 114, 130, 16, 59, 224, 41, 215, 160, 86, 161, 216, 43, 225, 61, 17, 129, 112, 201, 94, 2, 93, 91, 92, 200, 110, 128, 18, 63, 226, 45, 217, 162) \}.$ This stater comprises a balanced C_{117} -decomposition of K_{235} .

Theorem 11. K_n has a balanced C_{130} -t-foil design if and only if $n \equiv 1 \pmod{260t}$.

Example 11.1. Balanced C_{130} design of K_{261} .

 $\{(261, 10, 120, 231, 140, 151, 11, 52, 242, 32, 232, 202, 171, 82, 172, 204, 233, 34, 243, 54, 12, 150, 138, 230, 118, 109, 117, 8, 116, 229, 136, 149, 13, 56, 244, 36, 234, 206, 173, 86, 174, 208, 235, 38, 245, 58, 14, 148, 134, 228, 114, 107, 113, 6, 112, 227, 132, 147, 15, 60, 246, 40, 236, 210, 175, 90, 176, 212, 237, 42, 247, 62, 16, 146, 130, 226, 110, 5, 9, 4, 108, 225, 128, 145, 17, 64, 248, 44, 238, 214, 177, 94, 178, 216, 239, 46, 249, 66, 18, 144, 126, 224, 106, 103, 105, 2, 104, 223, 124, 143, 19, 68, 250, 48, 240, 218, 179, 98, 180, 220, 241, 50, 251, 70, 20, 142, 122, 222, 102, 1) \}. This stater comprises a balanced <math display="inline">C_{130}$ -decomposition of K_{261} .

参考文献

1) Ushio, K. and Fujimoto, H.: Balanced bowtie and trefoil decomposition of complete tripartite multigraphs, *IEICE Trans. Fundamentals*, Vol. E84-A, No.3, pp. 839-844 (2001).

- Ushio, K. and Fujimoto, H.: Balanced foil decomposition of complete graphs, *IE-ICE Trans. Fundamentals*, Vol.E84-A, No.12, pp.3132–3137 (2001).
- 3) Ushio, K. and Fujimoto, H.: Balanced bowtie decomposition of complete multigraphs, *IEICE Trans. Fundamentals*, Vol.E86-A, No.9, pp.2360–2365 (2003).
- Ushio, K. and Fujimoto, H.: Balanced bowtie decomposition of symmetric complete multi-digraphs, *IEICE Trans. Fundamentals*, Vol.E87-A, No.10, pp.2769–2773 (2004).
- Ushio, K. and Fujimoto, H.: Balanced quatrefoil decomposition of complete multigraphs, *IEICE Trans. Information and Systems*, Vol.E88-D, No.1, pp.19–22 (2005).
- 6) Ushio, K. and Fujimoto, H.: Balanced C₄-bowtie decomposition of complete multigraphs, *IEICE Trans. Fundamentals*, Vol.E88-A, No.5, pp.1148–1154 (2005).
- Ushio, K. and Fujimoto, H.: Balanced C₄-trefoil decomposition of complete multigraphs, *IEICE Trans. Fundamentals*, Vol.E89-A, No.5, pp.1173–1180 (2006).