
A Novel Particle Swarm Optimization based Algorithm

for Path Optimization in Embedded Systems

Umair F. Siddiqi,†1 Yoichi Shiraishi†1

and Sadiq M. Sait †2

This work presents a fast and memory efficient Particle Swarm Optimiza-
tion (PSO) based algorithm for solving the multi-objective path optimization
problem. The proposed algorithm uses innovative technique for particles’ dis-
placement which is based on exploring new sub-paths in the network in-order
to improve the particles’ positions. The proposed algorithm is implemented us-
ing C++ and executed on an ARM based embedded system. Its performance
is compared with Non-dominated Sorting Algorithm-II (NSGA-II) and Simu-
lated Annealing (SA). The results show that the proposed algorithm has found
Pareto optimal solutions of quality equal to the NSGA-II and better than SA.
The maximum number of paths which should be stored in the memory during
optimization is about half of the NSGA-II. Therefore, it is suitable for imple-
mentation on embedded systems.

1. Introduction

Path Optimization (PO) is a critical operation in many appli-

cations. A large number of applications are executed on small

size embedded systems which have limited amount of memory

and computational speed. Navigation systems of intelligent ve-

hicles is an example application which uses less powerful embed-

ded systems to reduce power consumption. Intelligent vehicles

include electric vehicles, hybrid vehicles and internal combustion

engine based vehicles. The algorithms which require high memory

†1 Department of Production Science & Technology, Gunma University,
Gunma, Japan

†2 King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia

and/or are highly computational are not suitable for the embed-

ded systems. Therefore, the algorithms which can perform good

quality path optimization and require lesser amount of memory

and processor speed are desired.

The Path Optimization (PO) generally have two or more opti-

mization objectives and therefore, also called as multi-objective

shortest path (MOSP) problem1). The MOSP is an NP hard

problem1),2). The objectives in the multi-objective optimization

problem can be in contradiction to each other and no single so-

lution is said to be optimum. Therefore, the multi-objective op-

timization algorithms find a set of Pareto optimal solutions. The

Evolutionary Computation (EC) algorithms have been predom-

inately used to solve the multi-objective optimization problems.

The population based algorithms work on a population of solu-

tions and simultaneously find several solutions. This approach

is suitable for multi-objective optimization problems which have

several Pareto optimal solutions. The Genetic Algorithm (GA)

and Particle Swarm Optimization (PSO)6) are examples of pop-

ulation based algorithms.

This work presents a Particle Swarm Optimization (PSO) based

algorithm for the PO problem. The proposed algorithm reduces

the memory requirement to be equal to the size of its Swarm.

The proposed algorithm has innovative methods for the velocity

calculation and displacement of particles. The performance of

the proposed algorithm is compared with Simulated Annealing

(SA)4) and Non-Dominated Sorting Algorithm -II (NSGA-II)3).

SA works on only one solution and is therefore very memory

efficient. NSGA-II is a popular algorithm for solving the multi-

objective optimization problems and finding Pareto optimal so-

lutions. The results show that the proposed algorithm has found

Pareto optimal solutions of quality better than the SA and equal

IPSJ SIG Technical Report

1 ⓒ 2012 Information Processing Society of Japan

Vol.2012-MPS-87 No.1
2012/3/1



to NSGA-II. Its average computation time is at-most 1.42 times

of the NSGA-II and 1.47 times of the SA to execute equal number

of iterations. .

This paper is organized as follows: The second section describes

the problem of multi-objective path optimization. Third section

presents the proposed algorithm. Fourth section presents the

simulation results and discussion. The last section contains the

conclusion.

2. Problem Description

Let us consider an undirected graph, G = (V, E). The set V

contains the vertices or nodes in the graph and set E contains

the edges or arcs which join the nodes. Let us consider that the

graph contains a total of Nv number of vertices and Ne number

of edges. Any edge ei ∈ E is represented as ei = (nx, ny), where

nx is the starting node and ny is the ending node of the edge ei.

ei is associated with up-to K weights, i.e., (w1, w2, w3, ..., wK). A

path between a source node i.e., nA and a destination node i.e.,

nB (nA, nB ∈ V ) is represented as: P = {e0, e1, ..., en−1}, such

that: P ⊂ E, e0 = (nA, nx), en−1 = (ny, nB), nx, ny ∈ V . Any

multi-objective optimization problem can have up-to K objective

functions which are represented as: fk(P ) =
∑
∀ex∈P ex.wk, for

k = 1 to K. The goal of the optimization is represented as:

Minimize(f1(P ), f2(P ), ..., fK(P )). The solution of any multi-

objective optimization problem is a set of Pareto optimal solu-

tions, i.e. SPO = {PS1, PS2, ..}, such that any PSi ∈ SPO is

a complete path from the source node (nA) to the destination

node (nB) and is not dominated by any other solution in the set

SPO. A solution dominates another solution if it is better than

the other solution in at-least one objective function value and the

remaining of its objective function values are equal to or better

than the other algorithm.

3. Proposed Algorithm

The PSO algorithm was first proposed by Kennedy and Eber-

hart in 19956). This section discusses the enhancements in the

proposed algorithm in-order to perform memory efficient multi-

objective path optimization.

3.1 Representation of Particles

In the proposed algorithm, any particle Pj ∈ S, for j= 0 to M−
1 is a complete solution and is represented in an m-dimensional

search space (Rm) as Pj = {p0, p1, ..., pm−1}. The value of any

element pi ∈ Pj can be obtained as follows:

pi =


nA if i=0

nx if (pi−1, nx) ∈ E,nx ∈ V
null if pi−1 = {nB or null}

(1)

The first element in any particle Pj contains the source node (nA),

whereas the destination node (nB) is the last not null element in

it. Any two consecutive elements (pi, pi+1) represent an edge

(ex ∈ E). The objective functions f1 to fK can be applied to

individual particles, i.e. Obj(Pj) = (f1(Pj), f2(Pj), ..., fK(Pj)).

The function fk(Pj) =
∑

ex∈Pj
(ex.wx), (where k= 1 to K).

3.2 Initialization

The first step in PSO is the initialization of the particles in

the Swarm. In this work, the Swarm is initialized to M particles

and each particle is a distinct randomly generated path from

the source (nA) to the destination (nB) node. Fig. 1 shows

an algorithm to generate a random path between the two nodes

(nA & nB).

3.3 Find gbest and pbest values

In every iteration the values of pbest and gbest solutions

IPSJ SIG Technical Report

2 ⓒ 2012 Information Processing Society of Japan

Vol.2012-MPS-87 No.1
2012/3/1



Input: nodes: nA, & nB , G=(V,E), Ne= Number of elements in E
Output: Q: A path from nA to nB nodes.
1: W= random(Ne)
2: Q= Apply Dijkstra’s Algorithm (nA, nB)
3: return Q

Fig. 1 Method to find a random path: form path(nA, nB).

should be updated. The pbest value for any particle Pj con-

sists of K components and is represented as: pbest(Pj(t)) =

{lPj1, lPj2, ..., lPjK}. The values of the components can be de-

termined as: lPjk(t) = arg min
t

(fk(Pj(t))), where t is the it-

eration count, k= 1 to K and j = 0 to M − 1. The global

best i.e., gbest has up-to K components and is represented as:

gbest = {g1, g2, ..., gK}. The value of any component gk ∈ gbest
can be computed as: gk = arg min

j
((lPjk)), where j= 0 to M − 1

and k= 1 to K.

3.4 Selection of the Pareto Optimal Solutions

In every iteration, up-to Rz × M (where Rz ∈ {x ∈ R|0 ≤
x ≤ 1} and M is the Swarm size) number of Pareto optimal

particles in the Swarm are marked and the remaining particles

are unmarked. The procedure is shown in Fig. 2.

3.5 Method for the Calculation of Velocities

The velocity of the particles should lie in the range {x ∈ Z|0 ≤
x < Vmax}, where Vmax ∈ Z+ is the maximum velocity. The

proposed algorithm stores the objective function values of the lo-

cal best and global best particles. The difference between any

two positions is computed as: Let us consider two positions

A and B, the objective function values of A and B are repre-

sented as: Obj(A) = {a1, a2, .., aK} and Obj(B) = {b1, b2, .., bK}.
First the differences ai − bi, for i= 1 to K are computed. Then

the square root of the sum of the squares of the differences i.e.

Input: S = {P0, P1, ..., PM−1}, Rz ∈ {x ∈ R|0 ≤ x ≤ 1}
Output: S in which the Pareto optimal solutions are marked
1: CntPareto = 0
2: for i=0 to M − 1 do
3: S.marked = false

4: end for
5: for i = 0 to M − 1 do
6: cnt=0;
7: for j = 0 to M − 1 do
8: if Pj � Pi then
9: cnt + +:
10: end if
11: end for
12: if cnt == 0 then
13: Pi.marked = true
14: CntPareto + +
15: end if

16: end for
17: while CntPareto > Rz ×M do

18: Umax =∞, IU = 0
19: for j = 0 to M − 1 do

20: t =
√∑k

i=1 fi(Pj)2

21: if Umax > t & Pj .marked == true then
22: Umax = t, IU = j
23: end if
24: end for
25: PIU .marked = false, CntPareto−−

26: end while
27: return S

Fig. 2 Procedure to distinguish the Pareto optimal solutions in the
Swarm.

IPSJ SIG Technical Report

3 ⓒ 2012 Information Processing Society of Japan

Vol.2012-MPS-87 No.1
2012/3/1



Input: Vmax, c1, c2, r1, r2, w, vPj (t), Pj , pbest(Pj) =
{lPj1, lPj2, ..., lPjK}, gbest = {g1, g2, .., gK}

Output: vPj (t + 1)
1: for k= 1 to K do
2: tk = fk(Pj)− lPjk

3: end for

4: L1 =
√∑K

i=1 t
2
i

5: for k= 1 to K do
6: tk = fk(Pj)− gk

7: end for

8: L2 =
√∑K

i=1 t
2
i

9: vPj (t + 1) = wvPj (t) + c1r1L1 + c2r2L2

10: vPj (t + 1) = vPj (t + 1)%Vmax

11: return vPj (t + 1)

Fig. 3 Method to find the velocity of particles.

√∑K
i=1(ai − bi)2 is computed, which is the difference between

the particles A and B. The method proposed for the velocity

determination is shown in Fig. 3. The symbol % indicates the

modulus operation which is used to keep the velocity value within

a range of [0, vmax − 1].

3.6 Method for the Displacement of Particles

The velocities are added into the particles’ current position to

move them to their new positions. The procedure proposed to

displace the particles is shown in Fig. 4.

3.7 Calculation of the Memory Requirement

The memory required by the proposed algorithm is primar-

ily consists of the memory which is required to store the paths.

Therefore, the memory requirements are determined in terms of

the maximum number of solutions which should be stored in the

memory at any time. Let us consider that a path requires ∆

units of memory. The proposed algorithm stores paths equal to

Input: Pj(t) = {p0, p1, ..., pm−1}, vPj (t + 1),
Output: Pj(t + 1)
1: count =0
2: for i = 0 to m− 1 do
3: if pi is not null then
4: count++;
5: end if

6: end for
7: for i= 0 to vPj (t + 1)− 1 do
8: rn: random number s.t. rn ∈ {x ∈ Z|0 ≤ x ≤ count− 1}
9: t = form path(prn , pcount−1)
10: if Pj .marked == true then
11: if t � Pj then
12: Pj(t + 1) = t
13: Exit from the for loop
14: end if
15: else if Pj .marked == false then
16: cmp = 0
17: for k=1 to K do
18: if fk(t) < fk(Pj) then
19: cmp++
20: end if
21: end for
22: if cmp > 0 then
23: Pj(t + 1) = t
24: Exit from the for loop
25: end if
26: end if

27: end for
28: return Pj(t + 1)

,

Fig. 4 Proposed method to displace the particles.

IPSJ SIG Technical Report

4 ⓒ 2012 Information Processing Society of Japan

Vol.2012-MPS-87 No.1
2012/3/1



the Swarm size. The method of particles’ displacement also cre-

ates a path t. Therefore, it requires (M+1)∆ units of memory to

store the paths. NSGA-II stores paths equal to the twice of the

population size3) and therefore, requires 2N∆ units of memory.

If we consider N is equal to M then the ratio between the memory

required by the proposed algorithm to the memory required by

the NSGA-II becomes M+1
2M . The memory required by the pro-

posed algorithm to store the paths is nearly half of the memory

required by the NSGA-II to store its paths. The SA maximally

stores the current solution and a neighbouring solution and there-

fore requires 2∆ units of memory.

4. Simulation Results

In simulations, the value of K is considered as 3, and the multi-

objective path optimization problem has three objective func-

tions. The algorithms are developed on the PC and then compiled

for the ARM9 embedded system by using the C++ cross-compiler

for the ARM10). The undirected graphs are generated by using a

random graph generation tool7). The graphs are labelled as SG0,

SG1, SG2, and SG3 and their number of nodes and edges vary

between [190, 270] and [670, 1250].The edges have up-to three

weights and their values are assigned to random real numbers

between [0, 200]. An instance of a problem consists of finding a

set of Pareto optimal solutions between a source and destination

nodes. The source and destination nodes are randomly selected in

the road network. In the experiments, twenty problem instances

are executed on each graph. The Hypervolumes of the Pareto op-

timal sets are calculated by using the tool8) which is proposed by

Carlos Fonseca et al. The Wilcoxon Rank Sum test9) is used to

test the null hypothesis, which shows that the hypervolume dis-

tributions of any two algorithms are equal. The rank sum tests

Table 1 Results of the Wilcoxon rank-sum tests

Graph H0 : Proposed = NSGA− II H0 : Proposed = SA
p h p h

SG0 0.67 0 0.19 1
SG1 0.97 0 0.37 1
SG2 0.95 0 0.48 1
SG3 0.90 0 0.50 1
SG4 1 0 0.33 1
SG5 1 0 0.44 1

are applied at significance level of 60% and it returns p and h

values. If h = 0, which means that the two distribution are same

and the two algorithms are equal in terms of the quality of their

Pareto optimal solutions. p indicates the probability that an ele-

ment from the first distribution is equal to the element from the

second distribution. The algorithms were executed for 30 itera-

tions. The proposed algorithm is implemented with parameter

values as follows: The Swarm size (M) is set to 10. Vmax, which

is the maximum velocity of any particle is set to 3. Rz, which

is the ratio between the number of Pareto optimal solutions to

the Swarm size to set to 0.50. The SA implementation has the

following parameters: T= 100, α= 0.8, β = 0.85 and M= 50.

The stopping criteria in the SA is also 30 iterations. The NSGA-

II implementation has a population size of 10. The results of

the Wilicoxon rank-sum tests are shown in Table 1. The results

show that the hypervolume distributions of the proposed algo-

rithm are always equal to the NSGA-II distributions and always

better than SA distributions. The average execution times of

the algorithms to execute up-to 30 iterations are shown in Table

2. The results show that the average execution time of the pro-

posed algorithm is 1.2 to 1.42 times of the average execution time

of NSGA-II and 0.9 to 1.47 times of the average execution time

of SA. Therefore, the execution time of the proposed algorithm

also remains comparable to the other algorithms.

IPSJ SIG Technical Report

5 ⓒ 2012 Information Processing Society of Japan

Vol.2012-MPS-87 No.1
2012/3/1



Table 2 Average execution times of the algorithms on different graphs.

Graph Algorithm Average execution Time (sec) Proposed
NSGA−II or SA

SG0

Proposed 32.48 -
NSGA-II 22.83 1.42

SA 33.11 0.98

SG1

Proposed 42.6570 -
NSGA-II 31.0435 1.2

SA 46.7870 1.17

SG2

Proposed 19.0510 -
NSGA-II 13.5290 1.4

SA 19.9740 0.17

SG3

Proposed 27.4630 -
NSGA-II 20.0700 1.42

SA 31.7045 0.97

SG4

Proposed 20.4545 -
NSGA-II 13.0190 1.38

SA 20.1685 0.9

SG5

Proposed 47.4808 -
NSGA-II 30.3410 1.22

SA 38.4595 1.47

5. Conclusion

We have proposed a memory efficient Particle Swarm Optimiza-

tion (PSO) based algorithm for solving the multi-objective path

optimization problem. The proposed algorithm reduces mem-

ory requirements by storing the objective function values of the

global best and local best positions instead of the particles. Each

position is represented by a complete path. The particles change

their new positions by modifying the sub-paths in their current

positions. The proposed algorithm is executed on an ARM based

embedded system. The proposed algorithm is compared with

NSGA-II and SA. The comparison results show that the proposed

algorithm has found Pareto optimal solutions of quality very close

to the NSGA-II and better than SA. The average execution time

of the proposed algorithm is also remains within 1.42 times of

NSGA-II and 1.47 times of SA. Based on the experimental re-

sults, we can conclude that the proposed algorithm is suitable to

perform multi-objective path optimization in embedded systems

which generally have less powerful processor and limited memory.

In the future, the proposed algorithm will be applied to perform

path optimization in the navigation systems of electric vehicles.

References

1) Zbigniew TARAPATA, Selected Multicriteria Shortest Path
Problems: AN Analysis of Complexity, Models and Adoption of
Standard Algorithms, Int. J. Appl. Math. Comput. Sci., Vol. 17,
No. 2, (2007) 269-287.

2) M.R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W. H. Freeman and
Co., 1997

3) Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyari-
van, A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-
II, IEEE Trans. Evolutionary Computation, vol. 6, No. 2, (2002)
182- 197.

4) S.M. Sait & H. Youssef, Iterative Computer Algorithms with Ap-
plications in Engineering, IEEE Computer Society Press, 1999.

5) Johannes M. Bader, Hypervolume-Based Search for Multiobjec-
tive Optimization: Theory and Methods, Ph.D. dissertation, Swiss
Federal Inst. Technology (ETH) Zurich, Switzerland, 2009.

6) J. Kennedy, R. Eberhart, Particle Swarm Optimization, Proceed-
ings of 1995 IEEE International Conference on Neural Network,
pp. 1942-1948 (1995).

7) Fabien Viger, Matthieu Latapy, Efficient and simple generation
of random simple connected graphs with prescribed degree se-
quence, 11th Conference of Computing and Combinatoric (CO-
COON 2005), (2005) 440-449.

8) Carlos M. Fonseca, Lus Paquete, and Manuel Lpez-Ibez, An im-
proved dimension - sweep algorithm for the hypervolume indica-
tor, 2006 IEEE Congress on Evolutionary Computation (CEC’06),
(2006) 1157-1163.

9) Hollander, M., and D. A. Wolfe, Nonparametric Statistical Meth-
ods, John Wiley & Sons, Inc., 1999.

10) http://www.embeddedarm.com

IPSJ SIG Technical Report

6 ⓒ 2012 Information Processing Society of Japan

Vol.2012-MPS-87 No.1
2012/3/1


