
Electronic Preprint for Journal of Information Processing Vol.20 No.2

Regular Paper

Performance Evaluation of A Testing Framework
Using QuickCheck and Hadoop

YusukeWada1,a) Shigeru Kusakabe2

Received: June 14, 2011, Accepted: November 7, 2011

Abstract: Formal methods are mathematically-based techniques for specifying, developing and verifying a compo-
nent or system for increasing the confidence regarding the reliability and robustness of the target. It can be used at
different levels with different techniques, and one approach is to use model-oriented formal languages such as VDM
languages in writing specifications. During model development, we can test executable specifications in VDM-SL
and VDM++. In a lightweight formal approach, we test formal specifications to increase our confidence as we do
in implementing software code with conventional programming languages. For this purpose, millions of tests may
be conducted in developing highly reliable mission-critical software in a lightweight formal approach. In this paper,
we introduce our approach to supporting a large volume of testing for executable formal specifications using Hadoop,
an implementation of the MapReduce programming model. We are able to automatically distribute an interpreta-
tion of specifications in VDM languages by using Hadoop. We also apply a property-based data-driven testing tool,
QuickCheck, over MapReduce so that specifications can be checked with thousands of tests that would be infeasible to
write by hand, often uncovering subtle corner cases that wouldn’t be found otherwise. We observed effect to coverage
and evaluated scalability in testing large amounts of data for executable specifications in our approaches.

Keywords: cloud computing, formal methods, property-based test, MapReduce

1. Introduction

Formal methods are mathematically-based techniques for the
specification, development and verification of the target systems.
Performing appropriate mathematical analysis of methods is ef-
fective in increasing the confidence regarding to the reliability
and robustness of a design of the target system. We can choose
a specific technique from various formal methods, such as model
checking techniques.

Instead of proving specifications, we test executable specifica-
tions to increase our confidence in the specifications as we do
in implementing software systems with conventional program-
ming languages. While the specific level of rigor depends on
the aim of the project, millions of tests may be conducted in de-
veloping highly reliable mission-critical software. For example,
in an industrial project using VDM++, a model-oriented formal
specification language [1], they developed formal specifications
of 100,000 steps including test cases (about 60,000 steps) and
comments written in natural language, and they carried out about
7,000 black-box tests and 100 million random tests [2].

Random testing is one of the techniques useful in testing the
executable specification in a lightweight way. Random testing is
useful to discover corner cases which may not be found by man-
ually generated test cases. In particular, increasing the number of
test cases is useful, while it is not realistic to increase the num-

1 Graduate School of Information Science and Electrical Engineering,
Kyushu University, Fukuoka 819–0395, Japan

2 Faculty of Information Science and Electrical Engineering, Kyushu Uni-
versity, Fukuoka 819–0395, Japan

a) y.wada@ale.csce.kyushu-u.ac.jp

ber of test cases exhaustively. We can execute practical random
testing by specifying a property, its input data type, and the range
and number of test data.

The coverage information, which represents the degree to
which the source code has been tested, can be collected in exe-
cuting specifications. We can get higher confidence in executable
specifications if we have higher test coverage for the specifica-
tions. We can expect a higher coverage rate when we can increase
the number of test cases in a lightweight formal approach.

In this paper, we discuss our approach to testing executable for-
mal specifications, whose straightforward execution is rather ex-
pensive, for a large volume of test data in an elastic way. We try to
automatically distribute thousands of test runs of executable spec-
ifications in VDM languages over elastic computing resources by
using Hadoop, an implementation of the MapReduce program-
ming model. From a practical point of view in large scale testing,
we need a testing tool to generate test data, which can provide
higher confidence by effectively finding subtle corner cases. We
choose QuickCheck [3], an open source testing framework for
Haskell. QuickCheck also has a language of testable specifica-
tions by which testers can define expected properties of the target
under test. QuickCheck employs a simple method to generate test
data, random testing, and has a language by which users can con-
trol test data generation and generate test data in languages other
than Haskell. This type of testing tool encourages a high-level
approach to testing in which we can check whether abstract prop-
erties are satisfied universally with an arbitrary number of test
data generated. We can distribute the generation of large amount
of test data, as well as test-runs of executable specification for

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

a large amount of test data, and collect coverage information as
well as test results from the distributed environment while ob-
serving scalable performance.

The rest of this paper is organized as follows. We briefly ex-
plain the VDM languages in Section 2. In Section 3, we discuss
several issues to reduce the cost of large amounts of testing of
VDM formal specification using emerging cloud technology. We
outline our framework in Section 4 and evaluate our framework
in Section 5. Finally we conclude this paper in Section 6.

2. VDM: Vienna Development Method

VDM (The Vienna Development Method) is one of the model-
based formal methods, a collection of techniques for developing
computer systems from formally expressed models. While VDM
was originally developed in the middle of the 1970s at IBM in Vi-
enna, its support tools, VDMTools, are currently maintained by
CSK Corporation in Japan. In order to allow machine-supported
analysis, models have to be formulated in a well-defined nota-
tion. The formal specification language, VDM-SL, has been used
in VDM, which became the ISO standard language (ISO/IEC
13817-1) in 1996, and VDM++ is its object-oriented extension
version. VDMTools provide functionality for dynamic check-
ing of formal specifications in the formal specification languages
VDM-SL and VDM++ [1], such as the interpretation of exe-
cutable specifications, in addition to static checks such as syntax
checking and type checking of formal specifications. By using
the interpreter of VDMTools, we can test executable specifica-
tions in VDM-SL and VDM++ to increase our confidence in the
specifications as we do in implementing software systems with
conventional programming languages.

In this paper, we especially focus on the step in which we val-
idate the specification using systematic testing and rapid proto-
typing. In light-weight formal methods, we do not rely on highly
rigorous means such as theorem proofs, and we use testing of exe-
cutable specifications in order to increase confidence in our spec-
ifications. While the specific level of rigor depends on the aim
of the project, thousands of tests may be conducted in developing
highly reliable mission-critical software. When we consider per-
formance, it is time-consuming to execute the specification for a
large amount of test data, and the performance degradation seems
accelerated as the number of tests increases in this case.

3. Large Amount of Testing for Executable
Specification

Software testing plays an important role in gaining confidence
for quality, robustness, and correctness of software. In this sec-
tion, first we discuss software testing. Testing executable speci-
fications shares the same issues as software testing, such as high
cost and long running time.

3.1 Reducing the Cost of Testing
As the size and complexity of software increase, its test suite

becomes larger and its execution time becomes a problem in soft-
ware development. Several approaches have been used to reduce
the cost of time consuming test phases. Selecting a representative
subset of the existing test suite reduces the cost of testing [4], [5].

Some other papers describes priority-based approaches [5], [6].
Large software projects may have large test suites. There are

industry reports showing that a complete regression test session
of thousands of lines of software could take weeks of continuous
execution [7]. While each test is independent with each other, the
very high level of parallelism provided by a computational grid
can be used to speed up test execution [8]. Distributed tests over
a set of machines aims at speeding up the test stage by simulta-
neously executing a test suite [9], [10]. A tool aims at executing
software tests on a Grid by distributing the execution of JUnit [11]
test suites over the Grid, without requiring modification in the ap-
plication and hiding the grid complexity from the user [8].

VDMUnit is a framework for unit testing for VDM++ speci-
fications, and it could be possible to distribute the execution of
VDMUnit over a Grid like JUnit over GridUnit. Our approach
in this paper uses MapReduce [12] rather than the Grid platform
to perform a large amount of testing on an elastic cloud comput-
ing platform. In our approach, we will be able to automatically
distribute the execution of testing specifications by using Hadoop
over an elastic cloud computing platform. Using a cloud comput-
ing platform may also lower the cost of acquisition and mainte-
nance cost of the test environment.

3.2 Elastic Platform
We consider an approach to leveraging the power of testing by

using elastic cloud platforms to perform large scale testing. In-
creasing the number of tests can be effective in obtaining higher
confidence, and increasing the number of machines can be effec-
tive in reducing the testing time. We believe the cloud computing
paradigm has impact on the field of software engineering and con-
sider an approach to leveraging light-weight formal methods by
using cloud computing which has the following aspects [13]:
(1) The illusion of infinite computing resources available on de-

mand, thereby eliminating the need for cloud computing
users to plan far ahead for provisioning;

(2) The elimination of an up-front commitment by cloud users,
thereby allowing organizations to start small and increase
hardware resources only when there is an increase in their
needs; and

(3) The ability to pay for use of computing resources on a short-
term basis as needed and release them as needed, thereby
rewarding conservation by letting machines and storage go
when they are no longer useful.

We can prepare a platform of arbitrary number of machines and
desired configuration depending on the needs of the project.

3.3 Property-based Data-driven Testing
Since increasing the number of tests is effective in obtaining

higher confidence, huge number of tests may be performed espe-
cially in developing mission-critical software. Conceptually, we
can increase the number of test cases on elastic cloud comput-
ing platforms. However, generating test cases by hands can be a
bottleneck in software development.

In this paper, we use a property-based testing tool
QuickCheck [3], which supports a high-level approach to
testing Haskell programs by automatically generating random

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

Fig. 1 Concept of map/reduce programming model.

input data. Property-based data-driven testing encourages a
high level approach to testing in the form of abstract invariants
functions should satisfy universally, with the actual test data.
Code can be checked with thousands of tests that would be
infeasible to write by hand, often uncovering subtle corner cases
that would not be found otherwise. We try to automatically
distribute the generation of test data for formal specification in
addition to the execution of formal specification.

3.4 MapReduce
While we can prepare a platform of an arbitrary number of

computing nodes and generate an arbitrary number of test cases,
we need to reduce the cost of managing and administrating of the
platform and runtime environment.

MapReduce programming model is proposed in order for
processing and generating large data sets on a cluster of ma-
chines [12]. Input data-set is split into independent elements, and
each mapper task processes the corresponding element in a par-
allel manner as shown in Fig. 1. Data elements are typically data
chunks when processing huge volume of data. The outputs of the
mappers are sorted and sent to the reducer tasks as their inputs.
The combination of map/reduce phase has flexibility, thus, for
example, we can align multiple map phases in front of a reduce
phase.

MapReduce programs are automatically parallelized and exe-
cuted on a large cluster of machines. The runtime system takes
care of the details of partitioning the input data, scheduling the
program’s execution across a set of machines, handling machine
failures, and managing the required inter-machine communica-
tion. Its implementation allows programmers to easily utilize the
resources of a large distributed system without expert skills for
parallel and distributed systems.

When using this map/reduce framework, input elements can
be test cases, f can be an executable specification in VDM lan-
guages or actual code fragment under test, and output elements
test results, contains test coverage of an executable specification.

4. Our Approach

Increasing the number of tests can be effective in obtaining
higher confidence, and increasing the number of machines can
be effective in reducing the testing time. Regarding the num-
ber of test cases, preparing an arbitrary large number of test
cases by hand is possible but impractical. Among many tools

for testing, a property-based testing tool, QuickCheck, supports
a high-level approach toward testing Haskell programs by auto-
matically generating random input data as described later. Users
of QuickCheck can customize their test case generation includ-
ing the number of test cases. We modify QuickCheck to fit to
our approach for testing formal specification with Hadoop. As
formal specification languages, such as VDM-SL for example,
share features with functional programming languages, we can
obtain formal description necessary to use QuickCheck to gener-
ate test data in VDM-SL. There have been work focusing on their
relations [14], [15].

We consider an approach to use QuickCheck on elastic cloud
platforms. We can perform testing of arbitrary scale by exploiting
such a combination. We can automatically distribute the gener-
ation of test data and the execution of tests in a scalable manner
with Hadoop. We employ Hadoop framework to easily execute
tests in a data-parallel way.

4.1 QuickCheck
QuickCheck is an automatic testing tool for Haskell programs.

It defines a formal specification language to state properties.
Properties are universally quantified over their arguments implic-
itly. The function quickCheck checks whether the properties hold
for randomly generated test cases when they are passed as its ar-
guments. QuickCheck has been widely used and inspired related
studies [16], [17], [18].

For the explanation, we use a simple qsort example from a
book [19].

qsort :: Ord a => [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort lhs ++ [x] ++ qsort rhs

where lhs = filter (< x) xs
rhs = filter (>= x) xs

We use idempotency as an example invariant to check that
the function obeys the basic rules a sort program should follow.
Applying the function twice has the same result as applying it
only once. This invariant can be encoded as a simple property.
The QuickCheck convention in writing test properties is prefix-
ing with prop to distinguish them from normal code. This idem-
potency property is written as a following Haskell function. The
function states equality that must hold for any input data that is
sorted.

prop_idempotent xs = qsort (qsort xs) == qsort xs

QuickCheck generates input data for this prop idempotent and
passes it to the property via the quickCheck function. Following
example shows the property holds for the 100 lists generated.

> quickCheck (prop_idempotent :: [Integer] -> Bool)
OK, passed 100 tests.

While the sort itself is polymorphic, we must specify a fixed
type at which the property is to be tested. The type of the property
itself determines which data generator is used. The quickCheck
function checks whether the property is satisfied or not for all
the test input data generated. QuickCheck has convenient fea-
tures such as quantifiers, conditionals, and test data monitors. It
provides an embedded language for specifying custom test data
generators.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

Fig. 2 Outline of our approach to propeerty-based data-driven testing.

In QuickCheck, the function generate generates test data,
The first argument specifies the range of test data, the second the
random seed, and the third the property expression to be checked.
An Int value is selected randomly from 0 to the first argument,
and the Int value is used to generate a random value of the input
type of the property.

We modified this function to generate test data in a distributed
way. We divide the range from which test data is selected. If
we use m tasks to generate N data, data range of the i-th task is
specified, from i[N

m] to (i + 1)[N
m] − 1(0 ≤ i ≤ m).

Conceptually, we can evaluate property expressions in
property-based random testing in a data-parallel style by using
MapReduce framework. Each mapper evaluates the property for
one of the test data and reducer combines the results from map-
pers. By applying an automatic testing tool such as QuickCheck
on MapReduce framework, we expect we can greatly reduce the
cost of a large scale testing.

4.2 Implementation
We developed our testing environment by customizing

QuickCheck and developing glues to connect components for
testing executable specifications on Hadoop framework. In this
section, we discuss implementation issues.

Figure 2 outlines our approach. Our approach to implement-
ing property-based testing on Hadoop is to separate the testing
process into two phases. We generate test data by using mappers,
and store the data into a file in the first phase. Then we can read
and split the file, and distribute the data to mappers, where the
property function written in Haskell is evaluated.

Hadoop streaming: Hadoop, open source software written in
Java, is a software framework implementing MapReduce pro-
gramming model [20]. We write mapper and reducer functions
in Java by default in this Hadoop framework. However, The
Apache Hadoop distribution contains a utility, Hadoop stream-
ing, which allows us to create and run jobs with any executable
or script as the mapper and/or the reducer. The utility will create a
mapper/reducer job, submit the job to an appropriate cluster, and
monitor the progress of the job until it completes. When an exe-
cutable is specified for mappers, each mapper task will launch the
executable as a separate process when the mapper is initialized.
When an executable is specified for reducers, each reducer task
will launch the executable as a separate process when the reducer
is initialized. We used this Hadoop streaming for implementing
our testing framework.

Figure 3 shows an overview of our property-based data-driven
testing. The overview of property-based data-driven testing is as
follows: First, we generate test data according to the specified

Fig. 3 Progress of property-based data-driven testing.

property. Next, we store the generated data in a file on HDFS.
Finally, in the evaluation phase, we pass the test data to mappers
through the standard input, and the mappers output the results to
the standard output.

Distribution of test data generation: We generate the specified
number of random test data with mappers in Hadoop framework
in a distributed way. However, naively splitting the number and
assigning the sub-numbers to mappers lead to useless computing
due to overlap of test data generated among different mappers.
We need to avoid increasing the number of redundant test data
from the view point of efficiency and coverage. We modified the
generator in QuickCheck to avoid this problem. We add one extra
parameter to check function in QuickCheck module. The param-
eter represents the start index of test data and is passed to test
function. After the total number of tests is determined, each map-
per is given different start index according to the number of tests
assigned to mappers.

5. Performance Evaluation

In order to examine the effectiveness of our approach, we mea-
sured performance in testing specification of the Enigma cipher
machine (Enigma) written in VDM++ in the book [1]. Enigma is
basically a typewriter composed of three parts: the keyboard to
enter the plain text, the encryption device and a display to show
the cipher text. Both the keyboard and the display consist of 26
elements, one for each letter in the alphabet.

5.1 Distribution of Test Data Generation
To investigate the effectiveness of our distribution of test gen-

eration, we compare the number of unique (non-redundant) test
data in generating 80,000 data for Int and Float type. Table 1 is
the result. “Original” means using the QuickCheck original data
generator on non-Hadoop environment. “Naive” means each data
generator has common start index in generating random test data
on mappers in Hadoop environment. “Ours” means each data
generator knows its own starting index, each of which is different
from each other. According to the result, we can see effective-
ness of our modification as we see no outstanding difference be-
tween “Original” and “Ours” while we have some degradation in

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

Table 1 The ratio of unique data and standard deviation in generating ran-
dom data of Int and Float.

Original Naive Ours
Unique(%) 34.5 8.3 34.4

Int Std.Dev. 7,754.1 966.3 7,656.2
Unique(%) 99.6 95.7 99.6

Float Std.Dev. 7,684.5 962.0 7,729.8

Fig. 4 Test generation time.

“Naive.”
We can expect the similar effect for other data types, including

compound data types. For example, in generating 80,000 tuple
data of two Ints, we can generate 79,730 (99.66%) unique test
data in “Ours,” 79,742 (99.68%) unique test data in “Original”,
and 75,950 (94.93%) unique test data in “Naive”. “Ours” gen-
erates almost equal amount of unique test data with QuickCheck
original one.

We examined the effectiveness of our distributed test data gen-
eration in increasing the number of Mapper tasks to generate
100,000 test data on our eight-slave Hadoop system. Test data is
an list of Ints. We show the relation between the number of tasks
on the slaves and the generation time shown in Fig. 4. As we can
see from the figure, the time to generate test data was shotened by
increasing the number of tasks until we reach the saturation point.
We conclude our framework can generate almost the same unique
test data as the original of QuickCheck, and also our framework
is effective in gaining speedup on Hadoop systems.

5.2 Coverage
Generally speaking, higher test coverage rate leads to higher

confidence in developing software. This also applies to our ap-
proach. We rely on testing, not formal proof, in gaining confi-
dence in a formal specification. We expect higher coverage rate
when we increase the number of test cases in our property-based
approach.

We examine the effectiveness of our approach from the view
point of coverage in this section. VDMTools can report coverage
of executable specifications, and we can get coverage data in our
approach as described later. We can observe coverage rate while
we change the number of test cases specified as the parameter
value of QuickCheck.

We measured coverage rate in our approach through the fol-
lowing steps:
(1) We used VDM++ executable specification files for Enigma

in the book [1].

Fig. 5 Coverages of four configuration of patterns in ten trial.

Table 2 Configuration of the platform in performance evaluation.

NameNode JobTracker Slave
CPU Xeon E5420 *1 Xeon E5420 *1 Xeon X3320 *2

Memory 3.2 GB 8.0 GB 3.2 GB
Disk 2 TB 1 TB 140 GB

Table 3 Elapsed time in tests of Enigma specification.

Nodes/Tests 100 200 300 400 500 600 800 1,000
Single 21.1 67.4 158.1 334.5 492.1 672.4 1,392.3 2,285.5

1 232.9 230.1 272.4 267.0 246.2 262.0 369.9 434.4
2 163.8 160.4 179.3 183.2 168.1 160.1 233.5 285.7
3 126.4 120.2 123.1 127.3 123.9 126.2 157.2 211.1
4 102.9 104.1 104.4 106.1 110.0 114.0 135.1 170.7
5 91.2 90.2 93.9 95.6 99.0 100.0 119.7 145.5
6 86.4 84.7 88.5 88.6 93.5 94.4 110.9 136.0
7 90.3 84.8 85.2 84.4 86.9 91.5 104.4 127.4
8 83.8 78.4 79.4 79.9 83.0 83.9 99.2 117.6

(2) We conducted property-based data-driven test. We gener-
ated test cases by using customized QuickCheck and exe-
cuted specifications with VDMTools through command line
interface.

(3) We gathered coverage data of VDM++ classes while chang-
ing the number of input test data.

We ran our property-based test ten times for each configuration.
We changed the number of test cases as one, ten, one hundred and
one thousand. Figure 5 shows the results for a VDM++ file Ro-
tor.vpp, one of the Enigma components, in this experiment. As
we can see from the figure, the larger number of test cases we
use, the higher coverage we have, and the specification file was
covered completely when we use one thousand of test cases.

However, it took long time to execute the specification files for
one thousand of test cases. Next, we examine the effectiveness of
parallel and distributed execution of formal specifications using
Hadoop.

5.3 Speedup in Property-based Testing
The configuration of the platform is shown in Table 2. We

show the result of elapsed time in Table 3 and in Fig. 6. As we
can see from the results, the elapsed time of Hadoop version be-
came shorter when the number of tests was four hundreds and
over. Since Hadoop framework is designed for large scale data
processing, we have no advantage in elapsed time for small set of
test data. The computation node has four processor cores, and we

*1 Intel(R) Xeon(R) CPU EL5410 @ 2.50 GHz Quad Core
*2 Intel(R) Xeon(R) CPU X3320 @ 2.50 GHz Quad Core

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

Fig. 6 Elapsed time in increasing the number of tests of VDM++ Enigma
specification on the various number of nodes.

Fig. 7 Speedup ratio in increasing the number of tests of VDM++ Enigma
specification on the various number of nodes. Please note each node
has a quad-core processor.

can achieve speedup even on a single node as Hadoop can exploit
thread-level parallelism on multi-core platforms. Figure 7 shows
the scalability with the changing number of nodes. The speedup
ratio is calculated against the result of the sequential execution
for the tests on a single node. We can acquire many advantages
on our platform, so that the ratio is high. As we see in Fig. 7, the
increase of the number of slave machines is effective in reducing
testing time.

6. Concluding Remarks

In this paper, we explained our approach to testing executable
formal specifications in lightweight formal method framework
using VDM languages. In order to increase confidence in
the specification, we increase the number of test cases with a
property-based data-driven approach on a cloud computing ori-
ented programming framework. We apply a property-based data-
driven testing tool, QuickCheck, so that specification can be
checked with hundreds of tests that would be hard to write by
hand. We investigated coverage of executable VDM++ model.
However, large amount of test data gains long executing time.
Our framework can deal with this problem. We observed scalable
performance in conducting large amount of testing for executable
specifications. Therefore, we can both of acquiring high coverage
because of large amount of test data and tuning our platform so
that execute the test in time.

One of our future work is to investigate more detailed perfor-
mance breakdown to achieve more efficient environment. We will

also try to improve usability of our framework. VDMTools in-
clude test coverage printout tool. We will extend our framework
to exploit this tool in a parallel and distributed way to inform de-
tail coverage information, such as a VDM++ statement covered
but another is not, for more usability.

Reference

[1] Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M. and Fitzgerald,
J.: Validated Designs For Object-oriented Systems, Springer Verlag
(1998).

[2] Kurita, T., Chiba, M. and Nakatsugawa, Y.: Application of a for-
mal specificaton language in the development of the mobile felica IC
chip firmware for embedding in mobile phone, FM 2008: FORMAL
METHODS, pp.425–429 (2008).

[3] Claessen, K. and Hughes, J.: Quickcheck: A lightweight tool for
random testing of haskell programs, ACM SIGPLAN Notices, Vol.35,
No.9, pp.268–279 (2000).

[4] Graves, T.L., Harrold, M.J., Kim, J.-M., Porter, A. and Rothermel,
G.: An empirical study of regression test selection techniques, ACM
Trans. Softw. Eng. Methodology, Vol.10, No.2, pp.184–208 (2001).

[5] Wong, W., Horgan, J.R., London, S. and Agrawal, H.: A study of
effective regression testing in practice, Proc. 8th International Sympo-
sium on Software Reliability Engineering (1997).

[6] Kim, J.-M. and Porter, A.: A history-based test prioritization tech-
nique for regression testing in resource constrained environments,
Proc. 24th International Conference on Software Engineering (2002).

[7] Elbaum, S., Malishevsky, A.G. and Rothermel, G.: Prioritizing test
cases for regression testing, Proc. International Symposium on Soft-
ware Testing and Analysis, pp.102–112, ACM Press (2000).

[8] Duade, A., Cirne, W., Brasileiro, F. and Macado, P.: Gridunit: Soft-
ware testing on the grid, Proc. 28th ACM/IEEE International Confer-
ence on Software Engineering, Vol.28, p.779, ACM (2006).

[9] Kapfhammer, G.M.: Automatically and transparently distributing the
execution of regression test suites, Proc. 18th International Confer-
ence on Testing Computer Software (2001).

[10] Hughes, D., Greenwood, P. and Coulson, G.: A framework for test-
ing distributed systems, Proc. 4th IEEE International Conference on
Peer-to-Peer computing (P2P’04) (2004).

[11] Gamma, E. and Beck, K.: Junit: A cook’s tour, Java Report, Vol.4,
No.5, pp.27–38 (May 1999).

[12] Dean, J. and Ghemawat, S.: MapReduce: Simplified data processing
on large clusters, Comm. ACM, Vol.51, No.1, pp.107–113 (Jan. 2008).

[13] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H.,
Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I. and
Zaharia, M.: Above the clouds: A berkeley view of cloud comput-
ing, Technical Report, UCB/EECS-2009-28, Reliable Adaptive Dis-
tributed Systems Laboratory (Feb. 2009).

[14] Borba, P. and Meira, S.: From vdm specifications to functional proto-
types, J. Syst. Softw., Vol.21, No.3, pp.267–278 (June 1993).

[15] Visser, J., Oliveira, J.N., Barbosa, L.S., Ferreira, J.F. and Mendes,
A.S.: Camila revival: VDM meets haskell, 1st Overture Workshop
(2005).

[16] Arts, T., Hughes, J., Johansson, J. and Wiger, U.: Testing telecoms
software with quviq quickcheck, ERLANG’06: Proc. 2006 ACM SIG-
PLAN Workshop on Erlang, pp.2–10, New York, NY, USA (2006).

[17] Boberg, J.: Early fault detection with model-based testing, Erlang
Workshop, pp.9–20 (2008).

[18] Claessen, K., Palka, M., Smallbone, N., Hughes, J., Svensson, H.,
Arts, T. and Wiger, U.: Finding race conditions in erlang with
quickcheck and pulse, ICFP, Vol.35, No.9, pp.268–279 (2009).

[19] O’Sullivan, B., Goerzen, J. and Stewart, D.: Real World Haskell, Or-
eilly & Associates Inc (2008).

[20] Apache: Hadoop, available from 〈http://hadoop.apache.org/〉 (ac-
cessed 2012-01-12).

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

Yusuke Wada is Graduate student at
Kyushu University since Aplil 2010. Re-
search: Efficient software development.
Efficiency of software development us-
ing disciplined software and formal meth-
ods. Speed-up and energy saving in multi-
threading and cloud computing. Educa-
tion: Studies at Graduate School of Infor-

mation Science and Electrical Engineering, including Social In-
formation Systems Engineering Course.

Shigeru Kusakabe is Associate Profes-
sor at Kyushu University since October
1998. Research: Efficiency of software
development using disciplined software
process, formal methods and applied be-
havioral analysis. Speed-up and energy
saving in multi-threading and cloud com-
puting. Education: Lectures at the De-

partment of Advanced Information Technology in the Graduate
School of Information Science and Electrical Engineering, in-
cluding Social Information Systems Engineering Course. Social:
SEA, IPSJ, IEICE, ACM, IEEE-CS, J-ABA.

c© 2012 Information Processing Society of Japan

