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Abstract: Performance anomalies in web applications are becoming a huge problem and the increasing complexity
of modern web applications has made it much more difficult to identify their root causes. The first step toward hunting
for root causes is to narrow down suspicious components that cause performance anomalies. However, even this is
difficult when several performance anomalies simultaneously occur in a web application; we have to determine if their
root causes are the same or not. We propose a novel method that helps us narrow down suspicious components called
performance anomaly clustering, which clusters anomalies based on their root causes. If two anomalies are clustered
together, they are affected by the same root cause. Otherwise, they are affected by different root causes. The key
insight behind our method is that anomaly measurements that are negatively affected by the same root cause deviate
similarly from standard measurements. We compute the similarity in deviations from the non-anomalous distribution
of measurements, and cluster anomalies based on this similarity. The results from case studies, which were conducted
using RUBiS, which is an auction prototype modeled after eBay.com, are encouraging. Our clustering method output
clusters crucial in the search for root causes. Guided by the clustering results, we searched for components exclusively
used by each cluster and successfully determined suspicious components, such as the Apache web server, Enterprise
Beans, and methods in Enterprise Beans. The root causes we found were shortages in network connections, inadequate
indices in the database, and incorrect issues with SQLs, and so on.
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1. Introduction

Performance anomalies are a serious problem in commercial
web applications. They are unexpected, adverse degradations in
performance such as sudden increases in response times or un-
usual decreases in server throughput. They lead to violations of
service level agreements (SLAs) and loss of potential customers
due to lowered quality of services [3].

The increasing complexity of web applications makes it much
more difficult to identify the root causes of performance anoma-
lies and methods of analyzing root causes are required to help
web administrators diagnose the anomalies. If a performance
anomaly is detected during test operations, a method that is good
at analyzing the root cause shortens the time for diagnosis and
services can be started without delays. If a performance anomaly
is detected during real operations, the shortened diagnosis time
avoids or moderates the damage caused by the anomaly.

Although many methods of analyzing root causes have been
proposed, there is one problem with these. When more than one
anomaly is detected simultaneously, we have to determine if their
root causes are the same or not. Correct identification of this fa-
cilitates the analysis of root causes. As illustrated in Fig. 1, if
we detect an anomalous request, we can narrow down suspicious
components to those that are passed through by the request. If
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request R1 in this figure is detected as being anomalous, compo-
nents A and C are suspicious. However, when two requests R1 and
R2 simultaneously exhibit anomalous performance, we can take
two cases into consideration. The first is where component C is
anomalous; thus, both requests R1 and R2 are anomalous. The
second is where components A and B are simultaneously anoma-
lous; thus, both requests R1 and R2 become anomalous.

We propose applying a method to cluster performance anoma-
lies based on root causes that helps us determine which situation
is occurring inside the above problem; it clusters anomalous re-
quests based on root causes. We call this method performance

anomaly clustering. In the above example, if requests R1 and
R2 are clustered together, they are probably caused by the same
root cause and component C is thus considered to be suspicious.
If requests R1 and R2 are clustered differently, they are probably
caused by different root causes and components A and B are thus
considered to be suspicious.

Clustering results guarantee that the requests clustered together
are affected by the same set of problems and those clustered
differently are affected by different sets of problems. A formal
method that systematically narrow down root causes is out of the
scope of this paper since this paper focuses on the clustering. As
shown in the case studies, the clustering results can be utilized in
various ways. At least, searching for the components exclusively
used by each cluster would be helpful and shorten diagnosis time.

Some readers may notice that there are three more cases we
can take into consideration, when two requests R1 and R2 simul-
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Fig. 1 Root causes are often ambiguous. Request R1 passes through com-
ponents A and C. Request R2 passes through components B and
C. Components may be machines, server processes, or Enterprise
Beans.

Fig. 2 Performance anomaly clustering is helpful even with finer grained
monitoring. Method x is defined in Java class A, while methods y
and z are defined in class C. Methods x and y are invoked in class A,
while methods y and z are invoked in class B.

taneously exhibit anomalous performance. 1) Both A and C are
anomalous. 2) Both B and C are anomalous. 3) All of A, B, and C

are anomalous. We set aside the explanation of them and mention
later in Section 3.1 to simplify the explanation.

Monitoring each component A, B, and C appears to avoid the
obstacle with ambiguous root causes, as shown in Fig. 1. We can
identify anomalous components since alarms are raised accord-
ing to the granularity of components. Even if this is the case,
our method is useful for identifying suspicious components with
granularities finer than that of monitoring. When all three compo-
nents are detected as being anomalous, we can take several cases
into consideration. We can illustrate this situation using Fig. 2. In
one case, anomalous method y in C is shared by A and B; thus,
a performance anomaly is also detected in A and B. In another
case, x in A and z in C are anomalous and B is not anomalous by
itself but is considered to be anomalous due to anomalous method
z in C. Our clustering method is useful for distinguishing these
cases. In the former, all three components (A, B, and C) are clus-
tered together. In the latter, B and C are clustered together but
A is clustered differently. Monitoring regions need to be divided
with the finest granularity to circumvent our clustering method so
that the regions never share any root causes. However, the gran-
ularity of monitoring is limited due to the performance overhead
and cost of implementation.

We illustrated two ideal examples in which our clustering
method was very helpful, using Figs. 1 and 2, e.g., there would
be cases in which anomalous monitoring regions did not share
any components and thus, clustering output was less valuable.
However, even if this is the case, we believe clustering results
will remain helpful to some extent and will not hinder successive
diagnosis.

The key insight behind our method is that anomaly measure-
ments that are negatively affected by the same root cause ex-
hibit similar deviations from the standard measurements. If an
anomaly is occurring in component C in the example shown in

Fig. 1, the measurements of requests R1 and R2 are expected to
deviate similarly. If components A and B are anomalous, the mea-
surements are expected to deviate differently because two differ-
ent anomalies affect R1 and R2 differently. We use an existing
anomaly detector [4], [5], [6], [7], [8], [9], [10], [11] as a back-
end in our clustering method to collect the measurements and de-
tect anomalies. The monitoring is done at the granularity of the
back-end anomaly detector.

The clustering method proposed in this paper involves three
steps. First, we distill a performance anomaly signature from
the measurements of anomalous monitoring regions. A perfor-
mance anomaly signature characterizes how the “distribution” of
the measurements has changed after an anomaly has occurred. To
distill a signature, we calculate the difference between cumulative
distribution functions (CDFs) of the measurements before and af-
ter a performance anomaly has been detected. Since the distribu-
tion of measurements can be expressed in a CDF, the difference
between CDFs naturally captures the change in the distribution of
the measurements. A signature in our method is represented as a
bar graph. Second, we calculate the similarity in the signatures.
The similarity is a scalar that represents the degree to which two
signatures, i.e., two bar graphs, overlap each other. We prepare
two similarity functions to capture different features in similarity.
Finally, we cluster anomalies based on the similarities. If two or
more anomalies are clustered together, this implies that they are
affected by the same root cause. Otherwise, they are affected by
different root causes.

To investigate the usefulness of our method, we conducted
three case studies using RUBiS [1], which is an auction site pro-
totype modeled after eBay.com [2]. RUBiS has a typical three-
tier structure and is based on the Java EE platform. We used the
anomaly detector proposed by Iwata and Kono [4] to detect per-
formance anomalies in RUBiS. This detector measures the end-
to-end processing time of each request and raises an alarm when
measurements deviate statistically from the standard. We clus-
tered anomalous requests with our clustering method using the
measured processing times and the results we obtained were en-
couraging. We extensively used the clustering results in all three
case studies to narrow down suspicious components (servers,
Enterprise Beans, or methods) and successfully identified root
causes. We do not use any information which is unique to RUBiS,
so we believe our method can be applied to various web applica-
tions.

The rest of this paper is organized as follows. Section 2 briefly
explains the anomaly-detection method we used. Section 3 de-
scribes our clustering method and Section 4 reports case studies.
Section 5 describes related work. Finally, Section 6 concludes the
paper.

2. Detection of Performance Anomalies

We briefly explain the performance anomaly detector that we
used in our case studies before describing our method. Although
our clustering approach was developed for the method, we believe
that it can be applied to other methods.

This method monitors the end-to-end processing time available
from outside a web application. Thus, as it is easy to introduce
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into existing systems, we chose it as our back-end detector in
this research. Statistics are collected for each request type in this
method. Since the statistics are collected on the basis of request
types, performance anomalies are detected in the granularities of
request types.

A request type can be defined naturally based on its job.
Each request type for RUBiS is associated with an HTML
file or a servlet (e.g., index.html, ViewItem.java, or
PutBid.java). If a servlet is shared by some request types,
we can distinguish the types from their parameters. For ex-
ample, BrowseCategories and BrowseCategoriesInRegion
commonly use BrowseCategories.java. If a request type in-
cludes a region parameter, it belongs to the latter. Otherwise, it
belongs to the former. Request types in this method, are assumed
to be defined beforehand. Actually, RUBiS defines a list of re-
quest types. Even if no definitions are given, request types can be
easily defined from URLs and their parameters.

The method proposed by Iwata and Kono [4] applies control

charts [12] to detect performance anomalies. Control charts have
been developed to determine whether a manufacturing or busi-
ness process is in a state of statistical control or not. Since control
charts are intended to detect deviations from the standard quality
of products, they are suitable for detecting performance anoma-
lies, which are deviations from standard performance.

Figure 3 has an example of a control chart. We measure char-
acteristic values (e.g., processing times of one request type) and
calculate and plot the statistics (e.g., average, median, or defec-
tive fraction) on the control chart to detect anomalies. There are
three baselines in the chart: upper control limit (UCL), lower
control limit (LCL), and center line. The center line represents
the center of the measured statistics. UCL and LCL indicate 3σ
above/below the center of the statistics, where σ denotes the stan-
dard deviation. These baselines are calculated in advance from
the data measured in a controlled environment.

The theory of control charts defines statistical deviations,
which should be considered to be anomalous. For example, a
plot outside the limits (UCL and LCL) suggests an anomaly. Sys-
tematic patterns within the limits are also considered to be an
anomaly. Readers who are interested in control charts can refer
to Ref. [12] for more details.

In the method in Ref. [4], the end-to-end processing time for
each request type is measured, and statistics, such as the aver-
age, median, maximum, and minimum are calculated. In this
method, one control chart is prepared for each request type and
for each statistic. The method in Ref. [4] detected many perfor-
mance anomalies in RUBiS with these control charts.

Fig. 3 Example of control chart.

3. Our Method

The key insight behind our method is that the measurements of
request types that are negatively affected by the same root cause
exhibit similar deviations from the standard. If an anomaly is
occurring in component C in the example in Fig. 1, the measure-
ments of request types R1 and R2 are expected to deviate simi-
larly. If components A and B are anomalous, the measurements
are expected to deviate differently because two different anoma-
lies affect R1 and R2 differently.

Our method involves three steps. First, after a detector de-
tects anomalous request types, we distill a performance anomaly

signature from the measurements of each request type. A perfor-
mance anomaly signature characterizes deviation from the stan-
dard. A signature in our method is represented as a bar graph.
Second, we calculate the similarity of the signatures. The sim-
ilarity is a scalar that represents the degree to which two signa-
tures, i.e., two bar graphs, overlap each other. Finally, we cluster
request types based on their similarities. If two or more request
types are clustered together, this implies that they have been af-
fected by the same root cause. Otherwise, they have been affected
by different root causes.

Our design of performance signatures is derived from our ex-
perience [4]. We are not going to claim that our design is the best.
We will explain our method based on the processing times of each
request type in this paper. We believe our method is independent
of processing times and can be applied to other statistics such as
the number of accesses or request/response size to web pages. In
this paper, we employ the processing time as one example of the
indicator of performance anomalies.

3.1 Signature of Performance Anomalies
An anomaly signature should indicate how the “distribution” of

the processing times has changed after an anomaly has occurred
to characterize deviation from the standard processing times. This
is not appropriate for signatures using the difference in simple
statistics, such as averages and medians, because simple statistics
cannot capture enough of the difference to distinguish root causes.
For example, the average does not capture enough characteristics
of the deviation. Even if the average increases similarly in two
request types, there are many cases that should be distinguished.
In one case, all requests’ processing time may have uniformly
increased. In another case, some requests may have exhibited
spikes to increase the average. These two cases should be consid-
ered to have been caused by different root causes.

We calculate the difference between cumulative distribution
functions (CDFs) of the processing times before and after a per-
formance anomaly has been detected to distill an anomaly signa-
ture. Since the distribution of processing times can be expressed
in a CDF, the difference between CDFs naturally captures the
change in the processing time distributions. Hence, it is appro-
priate for signatures. Instead of CDFs, we can use histograms
to represent the distribution of processing times because the his-
togram is equivalent to CDF in nature. As seen in Fig. 4, the
difference in CDFs is calculated in the three steps.
( 1 ) We plot two inverse CDFs (before and after an anomaly has
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(a) Inverse CDFs before and after an anomaly
is detected.

(b) Simplified inverse CDFs.

(c) Our signature: increases in each class.

Fig. 4 Distilling performance anomaly signature.

been detected) of the processing times for an anomalous re-
quest type as shown in Fig. 4 (a).

( 2 ) The inverse CDFs are simplified to simplify calculation. The
X-axis of the inverse CDF is divided into n classes, each
of which is represented by the average processing times in
the class. A simplified CDF plots the representative of each
class as plotted in Fig. 4 (b), where the X-axis is divided into
10 classes. The n in our case studies was set to 100.

( 3 ) A performance anomaly signature is derived from the sim-
plified CDFs. A signature is represented as a bar graph as
plotted in Fig. 4 (c). A signature plots the representative of
the “before” CDF subtracted from that of the “after” CDF
for each class.

Our design of performance anomaly signatures is not perfect
for three reasons. First, a single root cause may affect the pro-
cessing times of two (or more) request types in a totally different
way. When this occurs, a signature extracted for one request type
is totally different from the one extracted for the other. As a result,
these two request types are clustered differently to imply different
root causes. This is not a serious problem because the anomalies
in the two request types disappear if we fix the single root cause.
Second, two root causes independent of each other happen to sim-
ilarly affect the processing times of two (or more) request types.
When this occurs, the signatures extracted for anomalous request
types happen to be similar to each other. This can be compen-
sated for by setting the resolution of clustering higher, as will be
explained later in Section 3.3. If we set the resolution higher,
anomalous request types are clustered differently due to a slight
difference in signatures. Finally, two or more root causes may
negatively affect a single request type. In this case, our method
cannot determine the number of root causes; the root causes must
be discovered and resolved individually. For example, there can
be three more different pairs of root causes other than both A and
B when request types R1 and R2 are clustered into different clus-

Fig. 5 Two signatures calculated for PutBid and ViewItem request types
in RUBiS are superimposed. Black area indicates overlap between
two signatures.

ters in case of Fig. 1. In this case, we can concentrate on A and
B at first, since either A or B has to be anomalous. Then, after
fixing discovered problem, we are required to recursively clus-
ter two request types and fix problems until both request types
become healthy.

3.2 Similarities between Signatures
Our method calculates how much two signature bar graphs

overlap to identify the similarity between two signatures. Fig-
ure 5 depicts the area overlapped by two superimposing signa-
tures, which have been calculated for PutBid and ViewItem re-
quest types in RUBiS. The larger the overlapping area, the more
similar the two anomalies are. As described in the next para-
graph, we prepare two variants of the similarity calculation to
capture different features of performance anomalies. If we use
an existing, more general method such as covariance matrix, it
would be difficult to tune the similarity calculation for different
types of anomalies. Again, we do not claim that our method is
the best.

The similarity is normalized between 0 and 100. Below, we in-
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Fig. 6 Example signatures and overlapping areas. Three signatures A, B,
and C are shown on left. Overlapping area of A and B and that of B
and C are shown on right.

troduce two normalization algorithms for calculating similarities,
i.e., global and local normalization. A similarity with global nor-
malization captures the similarity of spikes in signatures, while
a similarity with local normalization captures the similarity of
slight but prevailing changes in signatures. The combination of
these two algorithms enables us to distinguish root causes more
precisely. If we can capture the similarity of spikes and that of
slight but prevailing changes, we can employ another method of
similarity calculation.
3.2.1 Similarities with Global Normalization

A similarity with global normalization captures the similarities
of spikes in signatures. Figure 6 outlines three signatures A, B,
and C. Signatures A and B have similar spikes at the 10th class.
A global normalization is designed to capture this similarity. A
similarity with global normalization G(X,Y) of two signatures X

and Y is computed as

G(X,Y) =
∑

1≤i≤n Xi ∩ Yi∑
1≤i≤n Xi ∪ Yi

× 100,

where n denotes the number of classes in a signature (n is 10 in
Fig. 6). Here, Xi ∩ Yi means the intersection, i.e., the overlapping
area, of the i-th bars in signatures X and Y . The Xi ∪ Yi means
the area of the union of the i-th bars in signatures X and Y , which
is covered by the i-th bar in X or Y . In the example in Fig. 6,
G(A, B) = 20/29 × 100 = 69 and G(B,C) = 10/29 × 100 = 34.
Since signatures A and B have similar spikes, the resulting simi-
larity is higher than that of signatures B and C. The area of spikes
accounts for a large amount of both the denominator and numera-
tor by globally normalizing similarity. As a result, spikes largely
contribute to the results.
3.2.2 Similarities with Local Normalization

A similarity with local normalization captures the similarities
of signatures whose anomalies are slight but prevailing across
many classes. Signatures B and C in Fig. 6, have a similarity
where the heights of the 1st-to-9th bars are constant and equal to
one. This similarity cannot be captured with global normaliza-
tion because it focuses on the similarity in spikes. A local nor-
malization is designed to capture similarities that may be missed

with global normalization. A similarity with local normalization
L(X,Y) can be calculated as

L(X,Y) =
∑

1≤i≤n,¬(Xi=Yi=0)

Xi ∩ Yi

Xi ∪ Yi
× 100

n − #z
,

where #z is the number of zero-height bars in both signatures,
i.e., the number of i’s such that Xi = Yi = 0. In the exam-
ple in Fig. 6, L(A, B) = (0/1 × 9 + 20/20 × 1) × 10 = 10 and
L(B,C) = (1/1 × 9 + 1/20 × 1) × 10 = 91. Since a local nor-
malization is designed to capture similarities across many classes
in signatures, L(B,C) becomes higher than L(A, B). All n classes
equally contribute to the resulting similarity by normalizing sim-
ilarity locally. As a result, L(X,Y) captures the similarities in
signatures in which an anomaly prevails across many classes.

Special attention must be paid when both Xi and Yi are zero.
If Xi = Yi = 0, Xi ∪ Yi becomes zero; thus, we cannot define
Xi ∩ Yi/Xi ∪ Yi. Intuitively, if Xi = Yi = 0, the i-th bars in sig-
natures X and Y are exactly the same in the sense that there are
no bars in either signature. Therefore, it seems natural to regard
Xi ∩ Yi/Xi ∪ Yi as one when Xi = Yi = 0. Unfortunately, this does
not work well. Suppose that there are two signatures S and T ,
where all bars in S are zero and one half of the bars in T are zero
and the other half are one. Here, the similarity between S and T

increases because the zero bars in S and T contribute to increase
their similarity. However, these two signatures should be dissim-
ilar. Signature S indicates a non-anomalous request type because
the processing times have not changed. Signature T , on the other
hand, is anomalous because the processing times have changed.
To deal with this problem, our definition of a similarity with lo-
cal normalization excludes zero-height bars from the summation.
Then, 100/(n− #z) is multiplied with the summation, to maintain
L(X,Y) ranging between 0 and 100.

A local normalization is also useful to ignore natural fluctu-

ations in processing times. Processing times in web applica-
tions fluctuate extensively due to CPU or I/O scheduling, resource
contention, and so on. Since these fluctuations are occasionally
larger than anomalous changes in processing times, similarities
with global normalization have possibility to erroneously con-
clude that two signatures affected by the same root cause are dis-
similar, and vice versa; they have possibility to conclude that two
signatures affected by different root causes are similar. In con-
trast, local normalization ignores such fluctuations. If a spike in
the 10th class in Fig. 6 is caused by fluctuations, local normaliza-
tion ignores the spike and concludes signatures B and C are more
similar than A and B.

There are many alternatives in signature design. For exam-
ple, to ignore natural fluctuations, it is attractive to drop the long
tail of processing times. Unfortunately, this approach does not
work well in the cases where the performance anomalies appear
in the maximum processing times. As shown in the case study in
Section 4.2, the maximum processing time is sometimes a good
indicator of performance anomalies.
3.2.3 Aligning

If we apply two similarity-calculating equations as they are,
similar but slightly shifted signatures are regarded as being dis-
similar. The classes around 20 and 50 in Fig. 5 look similar, but
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our basic method overlooks these. We compute the overlapping
area by moving around the classes in a signature to regard these
slightly shifted classes as similar. Basically, our method searches
for a class of signature Y that provides the largest overlapping
area to each class of signature X. Thus, overlapping area Xi ∩ Yi

in the two similarity-calculating equations G(X,Y) and L(X,Y)
formulated in Section 3.2 becomes Xi ∩ Yj, where j denotes the
number of classes that provide the largest overlapping area to Xi.

To prevent shifted signatures from gaining superfluous similar-
ity (overlapping area), we introduce two penalties. The first is
for classes that are far from their own matched classes. We de-
crease similarity by penalizing the overlapped area depending on
how far one class is from the matched class. The second is for
classes that are competing against each other for one class, e.g.,
X1 and X2 have the possibility of competing for Y1. We decrease
similarity by penalizing the overlapping area depending on how
many classes are competing for one class. Even though these two
penalties can be seen as being heuristic and not ideal, they worked
well in our case studies and we thus believe they are reasonable.

3.3 Clustering
Similarities with global and local normalization were calcu-

lated for all pairs of signatures before clustering. We apply a
method of clustering a set of similarities with global normaliza-
tion and a set of similarities with local normalization and obtain
two clustering results. The clustering method we used was the
group average method in hierarchical clustering. This is a well
known and widely used method of clustering.

The input for this method is a table that describes the similar-
ities of all request types. The table to the left of Fig. 7 informs
us that the similarity value between request types A and B is 70,
the similarity value between B and D is 20, and so on. The out-
put from the method is a binary tree that is to the right of Fig. 7.
Leaves of this binary tree corresponds to request types. Each node
represents a cluster whose members are the descendant leaves of
the node.

The algorithm works as follows. Each leaf at the beginning is
considered to be one cluster and the method groups two clusters
that are most similar to each other into one cluster, and recursively
repeats the grouping until there is only one cluster. We calculate
the similarity between two clusters to group them, which is calcu-
lated as the average similarity between all pairs of request types
in the two different clusters. Request types D and E in our exam-
ple in Fig. 7 are grouped since they have the greatest similarity.
Then, request types A and B are clustered together. Now, we have
three clusters: [A, B], [C], and [D, E]. Next, since [C] and [D, E]
have the greatest similarity, [C] and [D, E] are grouped together;

Fig. 7 Example of clustering input and output. Output tree at right can be
obtained from input table at left.

the similarity in this new cluster is the average similarity between
all pairs of request types in [C] and [D, E] (C and D, C and E).
This process is repeated until there is only one cluster.

The grouping can be stopped when the similarity between two
clusters becomes lower than a clustering threshold. If we set the
threshold to 50, the resulting clusters are [A, B], [C], and [D, E]
in our example. If the threshold is set to 30, the resulting clus-
ters are [A, B] and [C, D, E]. This threshold was set to 60 in our
case studies described in Section 4. As mentioned earlier in Sec-
tion 3.1, we can control the resolution of clustering by changing
this threshold. If the threshold is set higher, each cluster contains
signatures very similar to one another; a slight difference in sig-
natures is considered to be caused by different root causes. If the
threshold is set lower, a slight difference in signatures is ignored
and we can obtain rough distinction of root causes. An operator
can start analyzing root causes with a lower clustering thresh-
old as an option and repeatedly increase the threshold until root
causes can be determined. A lower threshold yields fewer pos-
sible causes to an operator, since a cluster contains more request
types and shared components are thus fewer.

4. Case Studies

To demonstrate the usefulness of our method, we conducted
three case studies, where we used RUBiS [1], which is an auc-
tion site prototype modeled after eBay.com [2]. Our anomaly de-
tector detected anomalous request types during the experiments.
We clustered all the request types with our method to narrow
down possible causes and deduced which components (machines,
servers, Enterprise Beans, or methods) were anomalous with the
help of the clustering results. Then, we manually extracted root
causes from the narrowed down possible causes. After the root
causes had been determined, we repaired them to confirm that the
anomalies had disappeared.

We insist that our goal is to cluster anomalies based on root
causes. Although manual effort is required to successively diag-
nose root causes, this is beyond the scope of this work. First,
narrowing down possible causes is not trivial work; we need to
search for components exclusively shared by a cluster. The ex-
ample cases we presented in Section 1 using Figs. 1 and 2, in
which narrowing down can easily be done, were simplified cases.
As inside of real applications is much more complex, searching
for shared components is not easy. However, readers who want
to automate this task can refer to existing work, such as that by
Ref. [8]. Second, even though manually extracting root causes
from narrowed down possible causes is not trivial, we believe that
the list of narrowed down possible causes would depend on mon-
itoring granularity. Clustering results will become more useful if
we apply finer-grained methods of monitoring.

We demonstrate in the first case study that our method was
helpful in finding anomalous servers that caused performance
anomalies, where our method clustered request types into two
clusters. Two root causes (the first was in Apache and the sec-
ond was in JBoss) were discovered and repaired using this in-
formation. Our method was demonstrated to be helpful in the
second case study in discovering anomalous methods in RUBiS.
We encountered a situation in the third case study to which our
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(a) Superimposed signatures typical for Ca. (b) Superimposed signatures typical for Cb.

Fig. 8 Two typical superimposed signatures for Ca and Cb.

method was not easy to apply. We demonstrated that our method
was still helpful in determining root causes. Since performance
anomalies appear and disappear depending on server settings and
workloads, we prepared many scenarios that differed in server
settings and workloads, and chose three case studies in which
performance anomalies occurred.

4.1 Experimental Setup
Our target was RUBiS [1] on the Java EE platform. RUBiS

had a typical three-tier architecture that consisted of a
front-end web server, an application server, and a back-end
database server. RUBiS had 27 types of requests (e.g., Home,
SearchItemsInCategory, and PutBid). We used a four-
machine cluster in the experiments. Each machine consisted of
four 3.00-GHz CPUs and 2 GB of main memory, and ran the
Linux 2.6.27 kernel distribution by Red Hat. The four machines
ran a RUBiS client emulator, Apache 2.2.11, JBoss 5.0.1, or
MySQL 5.1.34, respectively. The RUBiS client emulator was
slightly changed to fit our purposes. The default emulator caused
a load peak for RUBiS because it activated all the client threads
at startup. To avoid this load peak, we added 5-second intervals
between the activation of each client. In addition, we introduced
8-second timeouts to avoid the clients waiting for server replies
even when the server was not responding.

Similarity with global normalization was used in clustering
when an anomaly was detected in maximum processing times,
while similarity with local normalization was used when an
anomaly occurred in the other statistics. As explained in Sec-
tion 2, our anomaly detector observed the average, median, max-
imum, and minimum of the end-to-end processing time, i.e., the
time between the receipt and the reply of each request on the
server side. Since similarity with local normalization is insen-
sitive to fluctuations in processing times, the similarity with local
normalization was usually appropriate to ignore the noise caused
by natural fluctuations. In contrast, when the maximum process-
ing time increased without the other statistics changing, there
were a few erroneous requests that took a long time to finish pro-
cessing and thus, a spike appeared in the processing times. When
this occurred, the similarity with global normalization was ap-
propriate because it was designed to detect spikes in processing
times. Note that if the overall processing time increases, other
statistics (average or median) than the maximum will also in-
crease and thus, we can use the similarity with local normaliza-
tion in clustering. Throughout our case studies, we set the thresh-
old for clustering to 60 as explained in Section 3.3.

Fig. 9 Our hypothesis about root causes in case 1.

We note that we are not going to list the full input tables and
output trees as in the form illustrated in Fig. 7. The full input and
output of each case study were too large to be put in an academic
paper (recall that RUBiS had 27 types of request). In addition,
most of the input and output was useless in diagnosis.

4.2 Case 1: Finding Anomalous Servers
We ran servers with their default settings in this case study

and calculated the baselines of control charts with the number
of clients set to 200. After the baselines were calculated, we in-
creased the number of clients from 200 to 300.

(Anomalous request types) When the number of clients was
increased, our anomaly detector detected anomalies in the max-
imum processing times of 26 out of 27 request types; the maxi-
mums increased by several seconds.

(Clusters including one or more anomalous request type)
The request types based on our method were clustered into two
clusters Ca and Cb. Cluster Ca included five request types
([Home, Browse, Register, Sell, AboutMe (auth form)])
and cluster Cb included the rest ([RegisterUser, AboutMe,
SelectCategoryToSellItem,. . .]). Figure 8 depicts two pairs
of superimposed signatures obtained in this case study. Pairs of
signatures from clusters Ca and Cb are superimposed on the left
and right of Fig. 8. Since the anomalies were detected in maxi-
mum processing times, the similarity with global normalization
was used to cluster the request types.

(Narrowing down possible causes with the help of clustering
result) To narrow down the possible causes, we investigated
all the request types to identify which layers in RUBiS handled
which request types, and noticed that all the request types in clus-
ter Ca were handled by Apache and never passed through to either
JBoss or MySQL. All the request types in cluster Cb, on the other
hand, passed through to either JBoss or MySQL. This situation
is shown in Fig. 9. Since the request types in cluster Ca were
affected by the anomaly, there should be at least one root cause
in the Apache layer. Although all the request types in cluster Cb

were also affected by the anomaly, there should be another root

c© 2012 Information Processing Society of Japan 7



IPSJ Transactions on Advanced Computing Systems Vol.5 No.1 1–12 (Jan. 2012)

cause in either the JBoss or MySQL layer because Cb was a differ-
ent cluster than Ca. Since all the request types in Cb were handled
by JBoss but some were not handled by MySQL, we assumed that
there was another root cause in the JBoss layer.

After we narrowed down possible causes guided by our cluster-
ing results, we started manually hunting for root causes in the Ap-
athe and the JBoss layer. To begin with, we investigated the logs
generated by JBoss, which informed us that the number of threads
used to communicate with Apache reached the maximum number
specified by the maxThreads parameter. To confirm whether im-
properly setting maxThreads was a root cause, we changed the
parameter from 200 (the default) to 250 and ran the same work-
load that caused the anomaly.

(Anomalous request types No. 2) The number of anomalous
request types decreased to 11; this number was not zero since
there would have been another root cause in the Apache layer.

(Clusters including one or more anomalous request type
No. 2) We clustered the request types again to find the root
cause in the Apache layer. We only obtained one cluster, which
indicated that all the request types were negatively affected by the
same root cause.

(Narrowing down possible causes with the help of clustering
result No. 2) This clustering result was the same as the one we
had expected. We had assumed there had been two root causes;
the first was in the JBoss layer and the second was in the Apache
layer. Therefore, as we had repaired the root cause in the JBoss
layer, there would only be one root cause in the Apache layer
that affected all the request types because Apache handled all the
request types.

We then probed the root cause in the Apache layer apart from
the clustering results. First, we investigated the Apache logs to
find the root cause. Unfortunately, as there was no useful infor-
mation, we used the following heuristics. When the maximum
processing time increases, there is shortage in resource in most
cases. If a request arrives when the resource is available, it is pro-
cessed immediately without increasing the maximum processing
time. If it arrives when the resource is not available, it is de-
layed until the resource becomes available again and the maxi-
mum processing time increases enormously; a spike appears in
the processing times because only unlucky requests are affected
by the anomaly.

Based on this heuristics, we changed the performance param-
eters in Apache that were related to resource allocation. We dis-
covered by trial and error that KeepAliveTimeout should be set
smaller than the default in this case study. If KeepAliveTimeout
is set longer, Apache keeps unnecessary connections and runs
short of network connections. To test and confirm this, we
changed KeepAliveTimeout from five (the default) to two and
repeated the same experiment. The anomaly disappeared and all
the request types (except one) raised no alarms.

4.3 Case 2: Finding Anomalous Methods
We demonstrated that our method was helpful in this case study

for finding anomalous methods, where we used a scenario in

which KeepAliveTimeout was set to one and maxThreads was
set to 400. These settings were considered reasonable since the
first case study indicated KeepAliveTimeout should be less than
five (the default) and maxThreads should be larger than 200 (the
default). In addition, two indexes were added to the items and
users tables in the database since the case study discussed in
the next section indicated the overall performance improved with
these indexes.

(Anomalous request types) When we increased the num-
ber of clients from 200 to 300 in this scenario, anomalies
were detected in median processing times in five request
types (SearchItemsInCategory, SearchItemsInRegion,
ViewItem, ViewUserInfo, and ViewBidHistory).

(Clusters including one or more anomalous request
type) Each request type with our clustering method was
clustered into one cluster ([SearchItemsInCategory],
[SearchItemsInRegion], [ViewItem, PutBid],
[ViewUserInfo], and [ViewBidHistory]).

There was one interesting cluster, [ViewItem, PutBid]. Its
superimposed signatures have already been described in Fig. 5.
This cluster contained request type PutBid, which was not con-
sidered anomalous according to our anomaly detector. We will
concentrate our explanation on this cluster in this case study for
two reasons. First, the investigation into root causes was sim-
plified to some extent because PutBid had been included. Sec-
ond, this cluster indicated an anomaly in the method shared by
these request types. We used similarity with local normalization
to cluster the request types since the anomalies were detected in
median processing times.

(Narrowing down possible causes with the help of cluster-
ing result) We investigated the source code of RUBiS to nar-
row down possible causes and our strategy for the investigation
was as follows. Since the cluster only contained ViewItem and
PutBid, our focus was on the components that were used exclu-
sively by these two request types. The granularity in this quest for
root causes should be fine-grained because anomalies in coarser-
grained components such as Apache and JBoss would affect many
request types as in the first case study. Consequently, we focused
on EJB components. We searched for components exclusively
used by ViewItem and PutBid. They are possible causes of
anomalies.

Then, we sought out root cases. We chose a method
that did relatively complex operations from the list of pos-
sible causes and that was prone to be erroneous. This
method (SB ViewItemBean.getItemDescription) displayed
information about a requested item (recall that RUBiS is an auc-
tion site). Investigating this method carefully, we noticed that
method getItemDescription displayed the minimum bid for a
requested item. If the quantity (n) of the item was greater than
one, i.e., n > 1, the minimum bid was the n-th maximum bid
plus one dollar. If the quantity was one, i.e., n = 1, the mini-
mum bid was always the last bid plus one dollar. Since the for-
mer case needed much more complex calculations, the ratio of
the total to multiple items affected the median processing time of
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getItemDescription.
The RUBiS workload was designed so that the percentage of

multiple items was around 20%. If workload was generated ex-
pectedly, the median processing time for getItemDescription
had to be almost constant. Unfortunately, the current implemen-
tation of the RUBiS workload had two bugs that set the initial ra-
tio around 10% and made the ratio gradually approach the correct
value (around 20%). This gradual change was considered anoma-
lous by our anomaly detector, which was based on control charts.
As explained in Section 2, the control charts do not regard random
changes within a fixed range as being anomalous (the measured
statistics fall within LCL and UCL). However, gradual change is
considered as being anomalous because gradually increasing (or
decreasing) statistics eventually exceed UCL (or LCL).

We fixed the bugs in the RUBiS workload generator to test and
confirm that these bugs were root causes. We repeated the same
experiment after the bugs had been fixed. The ratio throughout
the experiment kept fluctuating randomly around 20%; thus, the
median processing time for the two request types remained con-
stant. Hence, our anomaly detector raised no alarms.

There are two things to be noted from this case study. The first
is that all request types, whether anomalous or non-anomalous,
should be clustered in our method. PutBid was not anomalous
in this case study according to the detector but it was clustered
together with ViewItem. If PutBid was not clustered, we had
to investigate all the source code related to ViewItem. By clus-
tering PutBid together with ViewItem, we could narrow down
possible causes into the components (servers, Enterprise Beans,
or methods) shared by them and found getItemDescription,
which was the key to analyzing root causes.

The other thing to be noted is that this case study did not deal
with real anomalies; it only dealt with bugs in workload genera-
tors. The most important thing here is whether our method was
helpful in identifying root causes. It is not important where the
root cause was. Finding a bug in workload generators is useful
in many scenarios. Imagine you are doing a performance test us-
ing a workload generator and a performance anomaly is detected
during the test. This anomaly may be caused by the workload
generator but you have to hunt for the root cause to ensure your
product is not causing the anomaly. We believe our method would
be helpful in this situation.

4.4 Case 3: 9 Anomalies Happening Simultaneously
We encountered a situation to which our method was not easy

to apply in this case study but still helpful in identifying root
causes. We used a scenario in which KeepAlive was turned off
in this experiment, which conformed to our experience in the first
case study that KeepAliveTimeout should be short. We found
and fixed a bug in the RUBiS client emulator during the case stud-
ies and used this modified client emulator in this experiment.

(Anomalous request types) Performance anomalies were
detected in this scenario in average processing times in nine
request types (RegisterUser, SearchItemsInCategory,
BrowseRegions, SearchItemsInRegion, ViewUserInfo,
ViewBidHistory, BuyNow, PutComment, and AboutMe), while

we were calculating the baselines for the control charts when
there were 200 clients.

Recall that the baselines must be calculated in our anomaly
detector before the performance test. Since the anomalies were
detected in the baseline-calculating phase, we did not know when
they had appeared; we could not calculate anomaly signatures
because the signatures needed to be calculated by comparing the
distribution of processing times before and after an anomaly had
occurred. We divided the baseline-calculating phase into two
halves to apply our method and calculated the signatures by com-
paring the earlier and the later halves. In other words, the earlier
half was regarded as healthy and the later was regarded as anoma-
lous. This was not strictly correct but our method worked well in
this case study.

(Clusters including one or more anomalous request type)
After clustering, we obtained nine clusters each of which con-
tained only one request type from the nine anomalous request
types. Similarity with local normalization was used in clustering
since the anomalies appeared in the average processing times.

(Narrowing down possible causes with the help of clustering
result) This implied that nine anomalies had been incurred by
different root causes. Figure 10 has an example of the superim-
posed signatures, from which we can see that they were different.

Let us summarize the results obtained from analysis before de-
scribing the root causes for each cluster. We could identify root
causes for five out of nine clusters. Each cluster corresponded to
different root causes; thus, our method was helpful in narrowing
down possible causes. Unfortunately, we could not find the root
causes for the other four clusters. This was because these anoma-
lies appeared and disappeared randomly when we repeated the
experiment. Therefore, we believe these anomalies were caused
by natural fluctuations. Figure 11 plots the control charts used
to detect these anomalies. The control chart for RegisterUser
at the left shows an anomaly that we could not solve, while the
control chart for ViewUserInfo at the right shows an anomaly
that we could solve. As you can see from these charts, the chart
for RegisterUser has spikes and thus, RegisterUser is sup-
posed to be affected by natural fluctuations. This was a problem
with our anomaly detector, rather than our clustering method.
Introducing a simple filter that drops spikes into our anomaly
detector can be used to suppress these alarms. The chart for

Fig. 10 Superimposed signatures: AboutMe and
SearchItemsInCategory.
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(a) A control chart of RegisterUser. (b) A control chart of ViewUserInfo.

Fig. 11 Typical control charts in case study 3.

(a) A signature of ViewUserInfo. (b) A signature of ViewBidHistory.

Fig. 12 Two signatures whose request types shared coarse-grained updates of end date. Note that
scales on Y-axis are different.

ViewUserInfo shows a gradual increase in the processing times
and thus, ViewUserInfo was considered to be anomalous.

(Narrowing down possible causes with the help of clustering
result continued) We will briefly describe the root causes
for five anomalous request types (or clusters) in the following.
We could narrow down possible causes for the five request
types (SearchItemsInCategory, SearchItemsInRegion,
AboutMe, ViewUserInfo, and ViewBidHistory) in this case
study. We used the following strategy to narrow down possible
root causes for each cluster. Nine anomalous request types were
clustered differently into nine clusters in this case study, each of
which contained one anomalous request type. Therefore, each
request type was supposed to be affected by different root causes.
This was the same in the second case study, where we tried
to find fine-grained components, such as Enterprise Beans and
methods that were used exclusively by each request type. This
strategy worked well and we were able to find the root causes
from the list of possible causes.

SearchItemsInCategory and SearchItemsInRegionwere
affected by the slowdown caused by the growth in the items
table in the database. The lack of a proper index in
SearchItemsInCategory for a table slowed down the process-
ing time. As a result, we created an index from category
and end date columns, and the anomaly disappeared. The
problem was more complicated in SearchItemsInRegion.
SearchItemsInRegion accessed the users table in addition to
the items table. We had to duplicate some columns from the
users table to the items table to resolve the slowdown. This so-
lution was not ideal since a single datum needed to be duplicated
over two tables. We gave up on trying to fix this problem.

An anomaly in AboutMe was caused by a bug in RUBiS. This
request type displayed a list of items won in a bid by a specified
user apart from other pieces of information. Our investigations
into the RUBiS source code revealed that RUBiS issued an SQL
that gathered all the items bid for by the specified user, with-

out checking whether they had been in the winning bid made by
him/her. We were able to successfully remedy this anomaly by
correcting this SQL.
ViewUserInfo and ViewBidHistory were caused by im-

proper updates to the end date column on the items table in
the database. This column indicated when the auction would
be closed for each item. Improperly setting this column caused
a large number of comments to be handled in ViewUserInfo
and a large number of bids to be handled in ViewBidHistory,
and this resulted in performance anomalies. ViewUserInfo dis-
played the comments stored for the user specified in the re-
quest. ViewUserInfo and StoreComment (for storing com-
ments) were sent to users in the RUBiS workload who had sold
items, which were displayed and sorted by end date in ascend-
ing order. end date was always set to seven days by default and
thus the same items were always displayed on the front page and
their sellers received an enormous number of StoreComment re-
quests. As a result, ViewUserInfo took a long time to display
a large number of comments. The situation in ViewBidHistory
was similar to what occurred in ViewUserInfo; the history of
bids suddenly increased for the same items. We changed the up-
date script to set end date randomly from zero to seven days
with a resolution of one second to mitigate this performance
anomaly.

Some readers may have expected that
SearchItemsInCategory and SearchItemsInRegion were
clustered together because both were affected by the growth in
the items table. ViewUserInfo and ViewBidHistory should
be clustered together in the same way. If we introduce another
method of calculating signature similarities, these request types
can be clustered together. Figure 12 shows the signatures of
ViewUserInfo and ViewBidHistory, which look similar in
shape but dissimilar in height (up to 10 in ViewUserInfo and
up to 120 in ViewBidHistory). A similarity function that
normalizes the height of each bar and ignores the height, or one
that normalizes the area of each signature and ignores the area,
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may cluster them together. However, this similarity function may
also introduce many false positives; request types affected by
different root causes may be clustered together. Keeping in mind
this trade-off, we concluded that our current similarity functions
were reasonable.

5. Related Work

To the best of our knowledge, there has been no work that has
focused on the clustering of performance anomalies. The meth-
ods most related to ours are those by Bodı́k et al. [13], Cohen
et al. [14], and Yuan et al. [15] who determined whether current
anomalies were previously observed ones. If a current anomaly
is similar to a previous one, we can reuse our experience in diag-
nosing the previous anomaly. These methods are related to ours
because they attempted to determine if two anomalies were simi-
lar. However, we cannot rely on these methods to cluster perfor-
mance anomalies because we must cluster anomalies that occur
simultaneously.

The methods proposed by Bodı́k et al. [13] and Cohen
et al. [14] to determine the similarities between anomalies used
performance metrics, such as CPU loads or disk I/O rates. The
collected metrics were used to construct anomaly signatures. Un-
fortunately, these metrics did not fit in with our purposes since
they monitored the overall behavior of the entire system; thus,
the negative effects of different root causes were combined.

The method proposed by Yuan et al. [15] used system call
traces to distill anomaly signatures. A signature consists of a
system call name, parameters, a return value, and so on. The
goal with their method was totally different from ours, which
was not to diagnose performance anomalies but to diagnose er-

rors that caused incorrect behaviors, such as “The page cannot be
displayed in web browsers.” Since performance anomalies do not
appear in the traces, the signatures used in their method cannot
be applied to fulfill our objectives.

Our clustering method was inspired by other research efforts.
Many researchers have pointed out that the processing times in-
clude valuable information on diagnosing performance anoma-
lies. Joukov et al. [16] applied the similarity between distribu-
tions of processing times to operating system profiling. This
method collects the histograms of processing times in each ker-
nel function and searches for valuable pairs whose histograms
are slightly different. This information is useful in finding perfor-
mance bugs. For example, if the histogram of the read system
call issued by a single process differs slightly from that issued by
multiple processes, this slight difference can imply race condi-
tions. Our use of CDFs was inspired by a method proposed by
Chen et al. [8], in which CDFs were used to discern differences
in processing times and to detect performance anomalies. Our
clustering method can be seen as being an extension to their ap-
proach because it involves performance anomaly signatures that
distill the difference in two CDFs.

Many methods of detecting anomalies have already been pro-
posed. We believe most of these techniques can be used as a
back-end detector if we tailor our clustering algorithm to the mea-
surements obtained with these methods. A method proposed by
Bodı́k et al. [5] observes and analyzes the number of accesses to

each web page with two statistical methods. Combined with the
results of statistical analysis, a visualizer that displays the num-
ber of accesses to each web page helps the operators identify the
root causes of performance anomalies. Aguilera et al. [6] and
Tak et al. [7] use inter-machine requests to discover how requests
flow through a cluster. This information enables the adminis-
trators to find time-consuming or overloaded machines. System
metrics such as CPU loads or I/O rates are monitored to con-
struct a classifier model which determines if the current state is
healthy [10]. Logs generated by applications are automatically
analyzed to model the internal states of the applications [11].

To enable us to monitor system behaviors at fine-grained gran-
ularity, the methods by Chen et al. [8] and Chanda et al. [9] aug-
ment servlets, EJB containers, or servers’ libraries. Since fine-
grained components are monitored in detail, these methods can
find anomalous Enterprise Beans or library functions. As previ-
ously discussed in Section 1, it is almost impossible to augment
all components so that no root causes share any components due
to the increased overhead and cost of implementation. We be-
lieve our method is also useful for these fine-grained monitoring
systems.

After the root cause of a performance anomaly is determined,
we can use the anomaly avoidance methods proposed by Xi
et al. [17] and Sugiki et al. [18] to avoid this problem.

6. Conclusion

Performance anomalies in web applications are becoming a
huge problem and the increasing complexity of modern web
applications demands techniques for narrowing down possible
causes of these anomalies. We proposed a method which helps
us narrow down suspicious components that cause performance
anomalies. In this method, performance anomalies, i.e., anoma-
lous monitoring regions, that are negatively affected by the same
root cause are clustered together.

We could narrow down suspicious components that were used
exclusively by the monitoring regions in the same cluster from
these clustering results. We demonstrated that our clustering
method was helpful in narrowing down possible causes through
three case studies where RUBiS was used, which is an auction
site prototype. We searched for components commonly used by
request types in other clusters to reach suspicious components
throughout the case studies. By manually investigating the suspi-
cious components, we could determine root causes, i.e., improper
settings for Apache and JBoss servers, bugs in RUBiS workload
generators, and bugs in SQL handling, and so on.

The back-end anomaly detector in our current implementation
was limited in its detection capabilities because it only monitored
the end-to-end processing time of each request. By extending our
method to use other measurements such as CPU loads and I/O
rates, it can provide information that is much more useful for the
diagnosis of root causes.

The evaluation using real workloads is left for future work.
We believe that our approach works well in real workloads if the
CDF represents the distribution of processing times correctly. If
the number of anomalous requests is too small to create reliable
CDFs, our method does not work well due to the incorrectness in
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the signatures.
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