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Abstract: This paper proposes a distributed algorithm to calculate a subnetwork of a given wireless sensor network
(WSN) connecting a set of sources and a set of sinks, in such a way that: 1) the length of one of the shortest paths
connecting from a source to a sink in the subgraph does not exceed the distance from the source to the farthest sink
in the original graph, and 2) the number of links contained in the subgraph is smallest. The proposed algorithm tries
to improve an initial solution generated by a heuristic scheme by repeatedly applying a local search. The result of
simulations indicates that: 1) using a heuristic to generate an initial solution, the size of the initial solution is reduced
by 10% compared with a simple shortest path tree; and 2) the local search reduces the size of the resultant subgraph
by 20% and the cost required for such an improvement by the local search can be recovered by utilizing the resultant
subgraph for a sufficiently long time such as a few days.
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1. Introduction

According to recent advancements of microelectronics and
communication technologies, wireless sensor networks (WSNs)
have attracted considerable attention in the fields of network com-
puting and distributed processing [2], [9], [16]. The primary task
of a WSN is to continuously monitor the surrounding environ-
ment (e.g., the temperature and the density of NOx in the atmo-
sphere) in order to notify the change of the status to an appropri-
ate data aggregation point such as a meteorological observator, in
either an event driven or a query-based fashion.

A typical WSN is composed of a large number of tiny devices
called sensor nodes (or nodes), each of which is capable of con-
ducting a simple arithmetic operation, communicating wirelessly
with nearby nodes, and sensing the status of the surrounding en-
vironment. In the multi-hop version of WSNs [13], [15], which
is the target of the current paper, each (sensor) node plays the
role of a message router in addition to the role of a sensing de-
vice. Note that in such systems, all nodes should collaborate with
each other, in order to report their status to an aggregation point
in an efficient and timely manner. A lot of pervasive applications
proposed in the literature are based on an automatic deployment
of sensor nodes providing a continuous and/or periodic snapshot
of an environment, such as habitat monitoring [3], target track-
ing [18], aquatic observations [6], and surveillance [19].

In this paper, we consider a situation in which specific nodes in
a WSN consecutively detect events, and notify the fact of event
detection to several data aggregation points via a notification mes-
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sage; i.e., several sources consecutively send messages to several
sinks. Since message transmission consumes significant electric
power in typical WSNs (e.g., 100 mW) compared with normal
sensing and/or arithmetic operations (e.g., 1 mW), in order to ex-
tend the lifetime of the overall WSN as long as possible, we need
to merge as large a number of message delivery routes as possible.
Note that this is completely different from the case with a simple
aggregation point [10], nor the case with a single source node [5].
In the literature, a number of routing schemes have been proposed
for WSNs to enhance the efficiency and the energy-awareness of
message delivery. For example, Intanagonwiwat et al. proposed
a scalable and robust communication paradigm for WSNs called
Directed Diffusion [9], and many researchers try to improve the
quality of the delivery paths by introducing a braided multipath
scheme [7], explicit consideration of life-time [17], and the ro-
bustness against unreliable nodes and fallible wireless links [20].
The notion of potential field used in the Directed Diffusion was
later extended to take into account the traffic over the network [1],
and Liu et al. proposed a multi-source multi-sink anycast routing
framework for WSNs based on the notions of distributed, scal-
able estimation of the potential field and a probabilistic message
forwarding [12].

In this paper, we propose a distributed algorithm to calculate
a subgraph of a given WSN such that: 1) the length of one of
the shortest paths connecting from a source to a sink in the sub-
graph does not exceed the distance from the source to the farthest
sink in the original graph, and 2) the number of links contained
in the subgraph is as small as possible (justification of the above
constraint will be described later). Note that we can not find an
optimal solution to this problem in polynomial time, since it is
equivalent to the metric Steiner tree problem [8] as a special case.
The proposed algorithm tries to improve an initial solution gen-
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erated by a heuristic message delivery scheme by repeatedly ap-
plying a local search. A technique to reduce the cost of the local
search is also given in the current paper. The performance of
the proposed scheme is experimentally evaluated by simulations.
The result of the simulations is summarized as follows: 1) using
a heuristic to generate an initial solution, the size of the initial
solution is reduced by 10% compared with a simple shortest path
tree [11]; and 2) a local search reduces the size of the resultant
subgraph by 20% and the cost required for such an improvement
can be recovered by utilizing the subgraph 600 times (e.g., if we
assume that event is detected for every minute, such a time dura-
tion corresponds to 10 hours).

The remainder of this paper is organized as follows. Section 2
describes a model of WSN and the problem to be studied. Sec-
tions 3 and 4 describe our proposed scheme. The result of sim-
ulations is given in Section 5. Finally, Section 6 concludes the
paper with future work.

2. Preliminaries

2.1 Model
Figure 1 illustrates an overhead view of a WSN, and its corre-

sponding graph representation. As shown in Fig. 1 (a), we assume
that each node is located at a point in a two-dimensional coordi-
nate space, and by considering circles centered at the location of
the nodes with a radius which is a half of the transmission radius
of each sensor node, we can naturally define a graph structure
such that: 1) each node corresponds to a circle, and 2) two nodes
are connected by a link if and only if the corresponding circles
have a non-empty intersection. See Fig. 1 (b) for illustration. In
the following, we use symbol V to denote a set of sensor nodes,
and N[u] (⊆ V) to represent a set of neighbors of u. Node u is
capable of broadcasting a message to all nodes in N[u] in a single
step, where we assume that a collision of messages transmitted
by nearby nodes is resolved by an appropriate link layer protocol.
The graph defined by V and {(u, v) ∈ V×V : v ∈ N[u]} is assumed
to be connected. Note that by definition, the binary relation de-
fined by N[·] is symmetric and reflexive, i.e., 1) u ∈ N[v] implies
v ∈ N[u] for any u, v ∈ V and 2) u ∈ N[u] for any u.

Given nodes u and v, a message delivery from u to v is real-
ized by repeating message transmissions along a path connect-
ing those two nodes *1. Two end nodes of such a path are called

(a) (b)

Fig. 1 Model of a WSN and the corresponding graph representation.

*1 Although each node has the capability to broadcast a message to its
neighbors, it can simulate unicast by designating the name of the re-
ceiver in each message.

the originator and the destination of the message, respectively *2,
and the number of transmissions conducted before v receiving a
message originated from u is called the hop count of the mes-
sage delivery. The minimum hop count from u to v is denoted as
hop(u, v). In this paper, we assume that a message transmission
consumes a unit of electric power. Thus, the power consumption
due to message delivery is proportional to the hop count of the
delivery path.

2.2 Problem
Suppose that we are given a set of sources S (⊆ V) and a set

of sinks D (⊆ V). Each source models a sensor node who detects
an event happened in the environment, and each sink models a
data aggregation point which is used to extract the detected in-
formation from the outside of the network. In the following, for
simplicity, we assume that each source in S must notify the de-
tection of an event to “all” nodes in D, while we will make no
assumptions on the timing of event detections observed by the
source nodes.

In this paper, we consider the problem of minimizing power
consumptions of message delivery from S to D. In general, the
power consumption level is affected by the timing of event detec-
tions in addition to the locations of sets S and D. If |S | = |D| = 1,
we can minimize the amount of power consumptions by simply
forwarding a message along one of the shortest paths connecting
to the (unique) sink, which is calculated in polynomial time even
in a distributed environment [4]. If the number of destinations
becomes greater than one, we can reduce the number of message
transmissions by appropriately merging delivery paths connect-
ing to different sinks; i.e., by minimizing the number of edges
contained in the delivery tree. Such a minimization problem is
NP-hard for general D since it is equivalent to the Steiner tree
problem [8] which is well known to be NP-hard (as for an ap-
proximate calculation, we claim that the minimization problem
is 2-approximable since the Steiner tree problem is known to be
2-approximable [14]). For constant number of sinks, however,
we can find the optimal solution in polynomial time through an
exhaustive search.

If |S | > 2, on the other hand, a merge of delivery paths
originating from different sources does not guarantee a reduc-
tion in power consumption in general. In fact, even if the total
number of links is minimized by merging two delivery paths, if
such a minimization doubles the length of a delivery path from
s1 ∈ S to a sink (i.e., if it increases the “stretch” of the deliv-
ery path to two), the power consumption of the overall network
will become almost twice when 99% of the events are detected
by source s1. This indicates that, from a practical point of view,
we should merge delivery paths originating from different sources
only when it satisfies a constraint concerned with the “stretch” of
each delivery path (or we should give up with reducing the total
number of message transmissions).

In order to clarify this point, in this paper, we will focus on
the following constraint on the maximum stretch of the resultant

*2 In the following, we distinguish the sender and receiver of a message as
the originator and destination of the message.
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(a) (b)

Fig. 2 Solutions with (a) eight links, and (b) nine links.

message delivery paths: For each si ∈ S , let hi be the (minimum)

hop count to the furthest sink in D. A merge of delivery paths is

allowed only when the length of the resultant path does not exceed

hi for any sink d j ∈ D. By this constraint, the power consumption
(i.e., the total number of message transmissions) may increase
compared with cases without such a constraint. However, it en-
ables us to bound the maximum number of links by hi × |D| even
if only a single source si detects an event. In addition, it is mean-
ingful to bound the latency of event notifications to each sink in
D; i.e., it guarantees that every sink receives a notification from
si within hi hops after an event detection.

To see this in more detail, let us consider an example shown
in Fig. 2. Two solutions are illustrated in the figure. The first so-
lution shown in Fig. 2 (a) consists of eight links, and the second
solution shown in Fig. 2 (b) consists of nine links. Although the
first solution uses less number of links than the second one, it
does not satisfy the above constraint since the hop count from s1

to d1 is seven, which is larger than the length of the shortest path
connecting s1 and d2.

Finally, in this paper, we do not consider the merge of sev-
eral messages transmitted by different nodes at some rendezvous
point, although the overall power consumption will further be re-
duced by such a technique.

3. Basic Procedure for Single Source

Before describing the details of the proposed scheme, we first
provide a procedure to calculate a message delivery tree for the
case of |S | = 1. This procedure is used as a basic module in the
proposed scheme for the case of several sources, which will be
described in Section 4.

3.1 Overview
Let D = {d1, d2, . . . , d|D|} be a given set of sinks. The procedure

tries to merge shortest paths which are independently established
from the (unique) source to each sink by “delaying” the point of
splitting (note that independent shortest paths split at the source).
Such a merge process proceeds in the following two steps:

Step 1 (Preprocessing): Each sink d j broadcasts a message
to all nodes in the network the hop count to the sink. Let d(u, v)
be a variable representing the (minimum) distance from u to v in
terms of hop count. Variable d(u, v) is locally kept by node u, i.e.,
u keeps a list of variables 〈d(u, d1), d(u, d2), . . . , d(u, d|D|)〉 in its
local memory, which serves as a routing table. Figure 3 illus-
trates the calculated value of d(u, di) for each i. The concrete way
of calculating those values is described in Section 3.2.

(a) (b)

Fig. 3 Distance field for sinks d1 and d2.

Step 2 (Event notification): Upon detecting an event, the
source transmits a message to notify the detection of an event
to all sinks in D. This message is copied at each intermediate
node on the delivery path, and is forwarded to the next node on
the path towards the direction of the sinks. Each copy is attached
a set of sinks relevant with it. Initially, the source has a copy of
the message associated with set D. Suppose that node u receives
a message with sink set D′ ⊆ D from its neighbor. u calculates
the next node for each sink in D′ by referring to the d(∗, ∗) values
held by its neighboring nodes (concrete procedure for the calcu-
lation is described in Section 3.3). Let N′ (⊆ N[u]) be the set
of adjacent nodes calculated by the procedure, where each node
w ∈ N′ is associated with a set of sinks Dw (⊆ D′). Finally, for
each w ∈ N′, u forwards a copy of the received message to w by
attaching Dw as the set of corresponding sinks.

3.2 First Step
This subsection describes the details of the first step. In the

first step, each sink broadcasts a message to all nodes in V to no-
tify the hop count from those nodes to the sink. Each message
broadcast by sink d j ∈ D has a field mhc(d j) representing the hop
count to d j, which is initialized to zero when it is transmitted by
the sink. The behavior of intermediate node u is as follows: 1) It
initializes variable d(u, d j) to∞ for all d j ∈ D; 2) After receiving
a message with mhc(d j) = i from a neighbor, it compares value i

with d(u, d j), and executes the following only when i < d(u, d j):
2a) d(u, d j) := i+1, and 2b) transmits a copy of the message after
incrementing mhc(d j) by one.

Note that the above scheme is a naive (distributed) implemen-
tation of Dijkstra’s algorithm. The final result is the calculation
of the shortest path from d j to all nodes in V .

3.3 Second Step
As a concrete procedure for the second step, we propose two

different strategies called SIMPLE and SLACK. SIMPLE con-
structs a minimum shortest path tree (MSPT) from a given source
to all sinks in D, and SLACK applies a heuristic optimization a
simple MSPT to reduce the number of links contained in the de-
livery tree.
3.3.1 Strategy SIMPLE

Figure 4 illustrates an MSPT rooted at source s2. In SIMPLE,
each node u conducts the following procedure to construct an
MSPT in a distributed manner:
( 1 ) Suppose that u receives a message with a set of sinks D′ from

its neighbor. For each d j ∈ D′, let Nj(⊂ N[u]) be the set of
neighbors w of u such that
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d(w, d j) = d(u, d j) − 1.

Note that d(w, d j) < d(u, d j) implies d(w, d j) = d(u, d j) − 1
since d(w, d j) ≥ d(w, d j) − 1 by construction. Let N′ =⋃

d j∈D′ Nj be the set of neighbors relevant with D′.

( 2 ) For each w ∈ N′, let c(w)
def
=
∣∣∣{d j ∈ D′ : w ∈ Nj}

∣∣∣.
( 3 ) After initializing X to ∅, repeat the following until N′ = ∅:

1) let w be an element in N′ with the largest c(w); 2) add
w to X with relevant sinks Dw = {d j ∈ D′ : w ∈ Nj}; 3)
N′ := N′ − {w} and D′ := D′ − Dw; and 4) recalculate func-
tion c for the updated N′ and D′.

( 4 ) Node u transmits copies of the received message to each
neighbor w in X with set Dw of relevant sinks.

Note that under this strategy, each intermediate node that receives
a message from its neighbor will partition the set of correspond-
ing destinations into subsets in a greedy manner. Thus, it is guar-
anteed that every sink is connected with the source through a
shortest path in the resultant delivery tree.
3.3.2 Strategy SLACK

In contrast to SIMPLE, the second strategy SLACK tries to re-
duce the number of links by merging as large a number of deliv-
ery paths as possible, while keeping the hop count to each sink
from the source to being no larger than the hop count to the fur-
thest sink from the source (thus, each sink may not be connected
with the source through a shortest path). In order to realize such
a behavior in a distributed manner, for each sink d j, we assign
a slack to d j at the source s in such a way that the summation
of d(s, d j) and the slack is equal to the hop count to the furthest
sink. The slack is propagated to nodes in the network with the
message delivered to sinks, where the slack of a sink decreases
when it passes a link which does not reduce the hop count to the
sink. More concretely,
( 1 ) it decrements by one if it passes a link connecting to a neigh-

bor with the same hop count to the sink, and
( 2 ) it decrements by two if the selection of the link increases the

hop count to the sink by one.
Recall that the definition of hop count ensures that a single mes-
sage transmission increases the hop count by two or more.

In the second strategy, a delivery path towards sink d j will be
merged with other paths as long as the slack of d j does not be-
come negative after the merge, even if the resulting path to d j is
not the shortest. Such a (conditional) merge is realized by sim-
ply following the decision made by a critical path connecting to a
sink with zero slack at the time of partitioning D′ using SIMPLE;
i.e., by simply being a member of the same subset with a critical
sink even if the selected neighbor is not contained in subset Nj (if

Fig. 4 An MSPT starting from source s2.

there are several critical sinks, it may select a critical sink such
that the reduction of the slack becomes smallest).

Note that in both strategies, the number of transmitted mes-
sages is at most

∑
s∈S
∑

d∈D d(s, d), and the amount of reduction
from this upper bound is dependent on the instance.

4. Local Search

4.1 Proxy-Controlled Merge Scheme
Now let us consider the case of several sources. Recall that

the goal of our scheme is to find a subgraph of G which con-
nects S and D with as small a number of communication links as
possible, without violating the constraint on the stretch of each
delivery path. In order to attain such a goal in a distributed man-
ner, we associate a token ti to each sink di ∈ D designating the
merge point to the sink, and try to move it in the direction of the
sources, so as to control the merge of delivery paths coming from
different sources.

More concretely, in our scheme, a subgraph connecting S and
D is a combination of the following two parts:
( 1 ) In the first part, each source independently establishes a de-

livery tree with nodes containing tokens as the leaves by us-
ing SIMPLE or SLACK.

( 2 ) In the second part, leaves of the trees are connected with the
corresponding sinks by a collection of shortest paths con-
necting to those sinks; i.e., subpaths connecting a leaf to a
sink are merged into a single path.

An outline of the procedure is described as follows (Figure 5
illustrates using snapshots of the merge steps). Let xi be a vari-
able representing a node having token ti, and X be the set of nodes
represented by variables x1, x2, . . . , x|D|. Nodes in X are called
“proxies.” Merge processes for different sinks are conducted se-
quentially, where the synchronization among proxies is realized
by circulating X. Note that X is a multiset initialized to D, and the
content of the multiset is changed according to the progress of the
merge process. In Fig. 5, token t1 is initially placed at node d1,
and is handed over to nodes i and n in a sequential manner. Given

(a) (b)

(c) (d)

Fig. 5 Snapshots of the merge process; (a) initial configuration; (b) after the
first move; (c) after the second move; and (d) after the third move.
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X, each source independently establishes a tree towards nodes in
X, using a procedure described in the last subsection; i.e., when
a node becomes a new proxy, it conducts the first step of the pro-
cedure to notify the distance from each node to the proxy. Let
Ψ(X) be the summation of the number of links in such trees and
the length of the shortest paths connecting proxies and their cor-
responding sinks (in what follows, we call Ψ(X) the “cost” of X).

After establishing such trees, proxies conduct a local search to
find a better X′ such that Ψ(X′) < Ψ(X), and update X to X′ if
such X′ exists. Such a local search is repeated until no further
improvement can be obtained. More concretely, improvement of
X is sequentially attempted by proxies in a cyclic order which is
given to sinks in D beforehand. The search process stops if no
proxy in X can find an appropriate candidate in its neighborhood.
In Fig. 5, the cost of initial configuration X = {d1, d2} is 13, and is
improved to 11 by moving token t1 from d1 to node i (Fig. 5 (b));
improved to 10 by moving token t2 from d2 to node o (Fig. 5 (c));
and improved to 9 by moving token t1 from node i to node n

(Fig. 5 (d)).
In the subsequent subsections, we describe a detailed way to

realize such a local search; i.e., how to find a successor of a given
proxy which reduces the cost of the resultant solution, and how
to hand over the role of proxy to the selected candidate.

4.2 Delivery Tree with Two Sinks
This subsection further clarifies our discussion by assuming

that the number of destinations is restricted to two (i.e., |D| = 2)
and each delivery tree is established using the SIMPLE strategy.
A generalization for the other cases is described in Section 4.3.
4.2.1 Overview

Let X = {x1, x2} be a set of proxies, and let us consider a situ-
ation in which proxy x1 tries to find its successor x′1 from N[x1].
Recall that S denotes the set of sources. Suppose that the paths
from source si to proxies x1 and x2 are split at node ri. Then, the
value of function Ψ(X) can be represented as follows:

Ψ(X) =
∑

si∈S
hop(si, x2) +

∑

si∈S
hop(ri, x1) + α, (1)

where α = hop(x1, d1) + hop(x2, d2). Since we are assuming that
S and x2 are fixed, the amount of change ofΨ(X) according to the
change of x1 to its neighbor v, is equivalent to the change of the
second term in the above equation, where we have to notice that
the branch node may differ for x1 and v. In other words, proxy
x1 can check the goodness of its neighbor v as a new proxy, by
evaluating the hop count from v to a branch node on the shortest

path connecting s j and x2 for every source s j, and by taking the
summation of them (we should, of course, take into account the
distance to the corresponding sink from x1 and v, respectively,
which is easily checked by referring to variables d(x1, d1) and
d(v, d1)).

Let r(v) denote the branch node corresponding to node v ∈
N[x1]. In order to evaluate the distance to the shortest path, in
the proposed scheme, we use two types of messages called REQ

and Signal, in the following manner *3:

*3 We assume that each message is attached to the name of the origina-
tor, the name of the sender, and the hop count from the originator to the
receiver of the message.

• Message REQ is disseminated by node v to notify the hop
count to the node. Note that such messages have already
been used in the procedure given in Section 3.2. In the fol-
lowing, we assume that the result of the notifications is lo-
cally stored by each node u in the form of array hcv, such
that hcv[v] = hop(u, v).

• Message Signal(next,Dest,count) is transmitted by a source
which detects an event, where Dest (⊆ X) is a (sub)set of
proxies corresponding to the message, next is the designated
receiver of the message, and count is a field to enumerate the
hop count from the last branch node.

4.2.2 A Counting Scheme
With the above notations, a procedure to calculate

hop(r(x1), x1) is now described as follows. In the follow-
ing, we assume that each node in V has already calculated hcv[x]
for each x ∈ S ∪ X, and stores it in its local memory (an efficient
way to disseminate REQ is described in the next subsection).
Upon detecting an event, a source transmits Signal(next,Dest,0)

to its neighbors by appropriately setting the next and Dest

fields. After receiving the message Signal(u, X′, count) from
its neighbor, node u, which is the designated receiver of this
message, conducts the following operation (if it is not the
designated receiver, it simply discards the received message):
Step 1: Let P := N[u] and Q := X′; i.e., P is initialized to the

set of neighbors of u, and Q is initialized to the set of prox-
ies associated with the received message. The following two
steps are repeated until Q = ∅.

Step 2: Let Qx
def
= {y ∈ Q: hop(x, y) < hop(u, y)} for x ∈ P, and

let w ∈ P be a node with the largest Qw. Note that Qx is a
subset of proxies such that x is on a shortest path connecting
from u to the proxy. Node u transmits Signal(w, Qw, c) to
node w, where c = 0 if |Qw| > 1 and c = count+1 otherwise.

Step 3: Update local variables as P := P−{v} and Q := Q−Qw.
Note that in the above procedure, count enumerates the number

of hops from the last branch r(x1) to the proxy x1; i.e., it starts to
increment the counter when the number of proxies corresponding
to the message becomes one. Thus, by taking the summation of
such counter values over all sources, proxy x1 can obtain a value
corresponding to the second term in Eq. (1). A similar observa-
tion holds for any node in N[x1]. Thus, by sequentially conduct-
ing the above operation for all nodes in N[x1], and by comparing
the resultant values to the value for x1, we can select the best
candidate as the successor to proxy x1.

The reader should note that the above local search scheme is
scalable since it merely tries to find a neighboring node which
reduces the total cost of the resultant trees and the selection of a
neighbor is not affected by the nodes which do not exist around
the current delivery trees.
4.2.3 Efficient Propagation of REQ

This subsection describes several heuristics to reduce the
number of message transmissions in the proposed local search
scheme. Recall that the objective of flooding REQ from node v is
to notify the hop count from each node to node v. However, such
information is necessary only for the nodes around a delivery tree
connecting S and X, since the other nodes have no chance to use
such information. In other words, we can significantly reduce the
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propagation cost for REQ by not forwarding to such non-relevant
nodes.

In this paper, we propose the following three heuristics to attain
such reductions:
( 1 ) The first idea is to control the range of message delivery by

introducing TTL (Time-To-Live). Message REQ issued by
node v is useful only to nodes at distance maxx∈S hop(x, v) or
less from v, since the other nodes never become a member
of the resulting delivery trees. Such a behavior can easily be
realized by providing a TTL to messages transmitted by v.

( 2 ) Suppose that node u receives REQ issued by a neighbor v of
the current proxy xi. Our second idea is to allow u to stop
the propagation of the message if it observes hop(u, xi) =
hop(u, v). In fact, since the above equality implies that the
same property holds at any node u′ closer to a source than
u (i.e., to deliver Signal to v), node u′ may simply use
hop(u′, x1) instead of hop(u′, v).

( 3 ) The last heuristic is applicable only to the first strategy SIM-

PLE. Suppose that u receives REQ from neighbor u′. If a
part of vector hcv concerned with nodes in S held by u, is
greater than or equal to a part of the vector held by u′ (in
terms of element-wise comparison), u can stop the forward-
ing of the message, since it implies that u does not exist on
any shortest path originating from the source node.

4.3 Generalization
If the underlying strategy is SIMPLE, we can directly apply the

above idea to the case of |D| ≥ 3, since in any delivery tree under
SIMPLE, each pair of source and proxy is connected by a shortest
path between them, and the change of the position of a proxy (to
its neighbor) does not affect to the configuration of the remaining
subtree. Thus, for any D, we may simply evaluate the length of
the path to the proxy from the last branch, in order to calculate
the value corresponding to the second term of Eq. (1).

On the other hand, if the underlying strategy is SLACK, we
cannot evaluate the reduction of the second term without recalcu-
lating the cost for the whole network, since in general, the move
of a proxy affects to the delivery paths to the other proxies. Thus,
if we wish to estimate the amount of reduction very accurately,
one step of the local search under SLACK becomes much more
expensive than SIMPLE, although it would significantly reduce
the size of the resulting subgraph. In the simulation described
in the next section, we use a variant of such local search, such
that the hop count from the last branch is used as an approxi-

mated cost. As will be shown later, such a heuristic approach is
still effective to improve the quality of the solution generated by
SLACK (in fact, SLACK with a modified local search provides
the best solution among schemes examined in the experiments).

5. Simulation

In this section, we evaluate the performance of the proposed
schemes by simulation. In the simulation, we compare the per-
formance of four schemes (i.e., either SIMPLE or SLACK, and
either with or without local search) against the performance of
a naive scheme in which each source independently establishes
the shortest path to each sink (in what follows, we call such a

naive scheme NAIVE). In the following, “+” indicates that the
scheme refines the initial solution by applying local search (e.g.,
SIMPLE+ means a scheme which generates an initial solution
by SIMPLE, and then improves it by repeatedly applying a lo-
cal search).

5.1 Instances
Instances used in the simulation are generated as follows.

Given a two-dimensional space of size n × m, we select 3000
points at random with a uniform probability, and associate them
to the set of nodes V . We then connect each pair of nodes by a
link if and only if the Euclidean distance between them is smaller
than or equal to 1.5 (i.e., we assume that the transmission radius
of each node is 1.5). As for determining the location of S and D,
as well as the size of the given two-dimensional space, we con-
sider the five patterns listed in Table 1, and generate 100 random
instances for each pattern (i.e., results described below are aver-
aged over those 100 instances). Note that the above five patterns
can be classified into two groups; i.e., in the first group (i.e., P1,
P2, and P3), the distance among sources and the distance among
sinks are both fixed to 20, and in the second group (i.e., P1, P4,
and P5), the distance between S and D is fixed to 40. In all pat-
terns, the average degree of each node is 13.2, and the number
of hops between a source and a sink is almost proportional to the
Euclidean distance between them. For example, if the Euclidean
distance is 40, then 60 hops is needed in typical examples.

5.2 Size of Delivery Trees
A comparison of the schemes with respect to the size of the re-

sultant subgraph is shown in Table 2. For each pattern, SLACK+

generates the smallest subgraph. In particular, it improves the
solution of NAIVE by 44% for pattern P3, which is apparently
due to the effect of merge process starting from nodes in S ∪ D.
In addition, we can observe that SLACK beats SIMPLE for ev-
ery pattern, which is because SLACK tries to reduce the number
of branches generated at the intermediate nodes compared with
SIMPLE.

The impact of the location of S and D to the size of the re-
sultant subgraph is summarized as follows: In the first group, as
the distance between S and D increases, the number of reduc-
tions in size (compared with NAIVE) increases, since a long path
connecting S and D has a bigger chance of being merged with

Table 1 Five patterns of examined instances.

pattern size D S
P1 40 × 40 (10, 0), (30, 0) (10, 40), (30, 40)
P2 25 × 64 (2, 0), (22, 0) (2, 64), (22, 64)
P3 20 × 80 (0, 0), (20, 0) (0, 80), (20, 80)
P4 40 × 40 (5, 0), (35, 0) (5, 40), (35, 40)
P5 40 × 40 (0, 0), (40, 0) (0, 40), (40, 40)

Table 2 Size of the resultant delivery trees.

P1 P2 P3 P4 P5
NAIVE 141 217 273 150 161

SIMPLE 125 183 204 138 151
SIMPLE+ 114 164 183 131 141
SLACK 110 169 194 125 139

SLACK+ 101 144 154 121 131
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other paths than short paths. On the other hand, the result on
the second group indicates that a similar phenomenon can be ob-
served when the distance among nodes in S and D decrease. In
fact, by decreasing the distance among sources, the location of
the split point becomes closer to the sources, which implies that a
large portion of the delivery path is merged with other paths. The
amount of such reduction increases by adopting SLACK instead
of SIMPLE (compare the second and the fourth rows of the table),
and of course, by applying local search.

5.3 Total Cost including Local Search
In the proposed scheme, a reduction in the size of the solution

is attained at the cost of a local search. Thus, we next evaluate the
“total cost” of the schemes which is defined as the summation of
the size of the resultant subgraph and the cost of the local search.

In the following, without loss of generality, we assume that
each source detects an event several times (otherwise, it is not
necessary to reduce the size of the initial network by applying
local search). The total cost of a scheme is defined as the summa-
tion of the cost for propagating Signal messages and the cost for
propagating REQ messages. In general, a transmission of Sig-

nal is more expensive than a transmission of REQ since Signal

should contain additional information such as the set of desti-
nations. In the following, we assume that the cost for a Signal

message is α (> 1) times larger than the cost for a REQ message.
During the calculation of an initial solution, each node v in

S ∪ D broadcasts a REQ message to all nodes in V exactly once
to calculate hcv[v]. Let c f denote the cost for broadcasting REQ.
On the other hand, during a local search, each candidate of a suc-
cessor of the proxy must send REQ to a limited region of the
network (see Section 4.2 for the details). Let ce be the cost for
a covering such a limited region with REQ messages. Thus, the
total cost for transmitting REQ is ce + c f . Suppose that a repeti-
tive application of local search monotonically decreases the size
of the resultant subgraph from l1 to l2, and it transmits w1 Signal

messages before obtaining the final solution, and w2 Signal mes-
sages after obtaining the final solution. Then, the total cost for
transmitting Signal is at most (l1 × w1 + l2 × w2) × α.

By combining the above values, an upper bound on the total
cost of a scheme is described as follows:

c f + ce + (l1 × w1 + l2 × w2) × α. (2)

This value linearly increases as w2 increases. Thus, if a scheme
generates a smaller subgraph than another one, two lines repre-
senting the total cost of those schemes should cross at a specific
value for w2, even if the first scheme requires a higher cost than
the second one to generate the final solution.

Table 3 summarizes some values for w2 as determined by
SLACK+ and the other three schemes, where the value of param-
eter α is fixed to 50, and the values of other parameters are de-
termined as shown in Table 4 (those values are acquired through
simulations, and in the experiments, we confirmed that the tech-
nique shown in Section 4.2 reduces the cost ce for the SLACK+

scheme). The first row in the table indicates that for every pattern,
the total cost of SLACK+ becomes lower than the cost of NAIVE

if w2 > 171, and similarly, we can observe that SLACK+ beats

Table 3 Value for w2.

P1 P2 P3 P4 P5
NAIVE 120 163 168 128 171

SIMPLE 211 308 393 216 268
SLACK 473 481 485 699 561

Table 4 Total cost of SLACK+.

P1 P2 P3 P4 P5
c f 12000 12000 12000 12000 12000
ce 234232 581931 991364 193938 270747
l1 141 218 272 148 160
l2 101 145 155 120 132
w1 204 357 649 131 149

SIMPLE if w2 > 393, and SLACK+ beats SIMPLE+ if w2 > 699.
The above results indicate that although additional cost is needed
to calculate an improved solution, the local search used in the
proposed scheme ultimately reduces the total cost of the overall
scheme if the lifetime of the given WSN is sufficiently long; e.g.,
if each source reports its status to sinks every minute, the above
values correspond to about 10 hours.

6. Concluding Remarks

This paper proposed a distributed algorithm to calculate a sub-
graph of a given WSN connecting a set of sources and a set of
sinks with as small number of links as possible. The proposed al-
gorithm tries to improve an initial solution generated by a heuris-
tic scheme by repeatedly applying a local search.

Future works include:
• We need to reduce the cost required for a local search by

performing the search in parallel.
• We have to implement the proposed scheme in an actual

WSN (we are now constructing an infrastructure consisting
of several SunSPOT devices).
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