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Abstract: The penetration rate is one of the most important factors that affects the effectiveness of the mobile phone-
based traffic state estimation. This article thoroughly investigates the influence of the penetration rate on the traffic
state estimation using mobile phones as traffic probes and proposes reasonable solutions to minimize such influence.
In this research, the so-called “acceptable” penetration rate, at which the estimation accuracy is kept as an “accept-
able” level, is identified. This recognition is important to bring the mobile phone-based traffic state estimation systems
into realization. In addition, two novel “velocity-density inference” models, namely the “adaptive” and the “adaptive
feedback” velocity-density inference circuits, are proposed to improve the effectiveness of the traffic state estimation.
Furthermore, an artificial neural network-based prediction approach is introduced to a the effectiveness of the velocity
and the density estimation when the penetration rate degrades to 0%. These improvements are practically meaningful
since they help to guarantee a high accurate traffic state estimation, even in cases of very low penetration rate. The
experimental evaluations reveal the effectiveness as well as the robustness of the proposed solutions.

Keywords: mobile probes, low penetration rate, inference circuit, traffic state estimation, intelligent transportation
system

1. Introduction

Traffic state estimation is one of the most important fields in
Intelligent Transportation Systems (ITS) research [1], [2]. The
essential requirement for a reliable traffic state estimation system
is that it must provide not only accurate but also real-time traf-
fic state information at any place (ubiquity). The existing traffic
state estimation systems majorly employed the conventional data
collection methods which relied on the road-side fixed sensors
such as loop detectors [3], [4], RFID readers [5], [6], video cam-
eras [7], and so forth. These traditional techniques disclosed their
essential weakness in coverage limitation since it is impractical
to install a huge number of road-side fixed sensors at every street.

Recently, with the advances of mobile phone technologies, mo-
bile devices such as mobile phones, PDA, etc., have been uti-
lized as traffic probes for collecting real-time traffic data [8], [9],
[10], [11], [12]. This approach provides a potential alternative
in collecting the real-time traffic data. Since mobile phones are
available everywhere and the mobile phone network has already
been established, the essential issues such as the coverage limita-
tion, the real-time effect, the investment and maintenance cost can
be overcome. Consequently, research in applying mobile phone
technologies in ITS is entering a new stage. Several practical is-
sues such as the accuracy of traffic state estimation models [13],
the effectiveness of data communication methods [14], the side-
effect of low penetration rate on the performance of the whole

1 Shibaura Institute of Technology, Department of Communications En-
gineering, College of Engineering, Koto, Tokyo, 135–8548, Japan

a) m709504@shibaura-it.ac.jp
b) kamioka@shibaura-it.ac.jp

estimation model [15], [16], and so on, are being investigated to
accelerate the realization of the mobile phone-based traffic state
estimation systems.

In traffic state estimation using mobile phones as traffic probes,
the essential issue is the one that relates to the operational feasi-
bility rather than the technical issues. Several researches revealed
that it is technically feasible to establish a mobile phone-based
traffic state estimation system in the real world. However, beside
the technical issues, the effectiveness of the traffic state estima-
tion is significantly affected by the volume of the sampled data.
The more data collected, the higher accuracy the estimation can
be achieved, and vice versa. In turn, the volume of the sampled
data is affected by the penetration rate of the mobile phones that
participate in the traffic state estimation system. In addition, it is
difficult to ensure that the penetration rate is always high enough,
especially when the system has just been launched. To our best
knowledge, there is no relevant research which thoroughly dis-
cusses the relationship between the penetration rate and the ac-
curacy of the mobile phone-based traffic state estimation. Conse-
quently, there is no research on assuring an “acceptable” accuracy
of the traffic state estimation in cases of low penetration rate. The
existing researches were primarily based on the assumption that
the penetration rate is always relevant [13]. This article aims at
overcoming these issues with the following contributions:

- Thoroughly analyzes the influence of the penetration rate on
the traffic state estimation’s accuracy. Based on this analysis, the
so-called “acceptable” penetration rate will be identified. This
recognition helps to set a pre-condition in order to ensure an “ac-
ceptable” accuracy of the traffic state estimation. The “accept-
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able” penetration rate also serves as a trigger to notify the com-
muters on the confidence of the estimate in cases of low penetra-
tion rate.

- Introduces two novel “velocity-density inference” circuits
based on the “adaptive” and the “adaptive feedback” approaches
to improve the traffic state estimation’s effectiveness. These mod-
els can also minimize the “acceptable” penetration rate. This con-
tribution is practically meaningful since it helps to ensure the ef-
fectiveness of the estimation model even with a small portion of
mobile phones participating in the system.

- Proposes a reasonable data mining-based approach to ensure
the accuracy of the mobile phone-based traffic state estimation
model when the penetration rate degrades to zero. This contri-
bution is very important since it helps to ensure an “acceptable”
accuracy in the traffic state estimation when the penetration rate
becomes unacceptably low such as several percent or even 0%.

This paper is organized as follows: Section 2 reviews the re-
lated works and describes the preliminary definitions. The rela-
tionship between the penetration rate and the effectiveness of the
velocity and density estimation is thoroughly discussed in Sec-
tion 3. Section 4 proposes the “adaptive” and “adaptive feed-
back” “velocity-density inference” circuits to improve the effec-
tiveness of the traffic state estimation model in cases of low pene-
tration rate. A suitable data mining approach to ensure the estima-
tion’s accuracy when the penetration rate becomes unacceptably
low is described in Section 5. The effectiveness of the proposed
solutions is deeply analyzed in detail in Section 6 using numerous
evaluations on the simulation data. Section 7 concludes this work
and draws out future research directions.

2. Related Work and Preliminary Definitions

Existing researches on traffic state estimation using mobile
phones as traffic probes focus on two major directions as follows:
1) real-time traffic data collection using mobile devices, and 2) ef-

fective traffic state estimation using data collected by the mobile

devices.
The first direction focuses on proposing effective techniques

on collecting relevant traffic data with the lowest cost. Studies in
Ref. [17] proposed a traffic data collection method based on vir-
tual lines (VTL) which are predefined on the road network. The
traffic data is collected only when the transponder passes a VTL.
This approach decreases the amount of data collected, thus reduc-
ing the data transmission load. However, this approach may lead
to the loss of useful data. The VTL setting (i.e., where on the
road a VTL should be created) has been a matter of argument
since it may significantly affect the effectiveness of the whole
system. The studies in Ref. [14] introduced a more flexible so-
lution, namely the “pinpoint” approach, by which traffic data is
collected only when there is change in the traffic state, which is
detected by the vehicle’s velocity change rate. More concretely, a
vehicle (or a mobile phone carried on the vehicle) collects and re-
ports the traffic data to the server when only its velocity changes
(increases/decreases) significantly. In addition, the “pinpoint” ap-
proach also successfully differentiated mobile phones carried by
walkers from the ones on vehicles, order to prevent walkers’ mo-
bile phones from reporting the data since their data are not rele-

vant to traffic state estimation. The background philosophy in the
“pinpoint” approach is that only the relevant data are collected
as the right time (i.e., when the velocity changes significantly)
by the right mobile devices (i.e., only the devices carried by ve-
hicles). Therefore, not only the data transmission load but also
the data redundancy was reduced significantly.

The second direction focuses on the data processing and in-
formation representing models by which traffic states are not
only accurately estimated but also comprehensibly presented to
the commuters. Conventional researches primarily relied on the
travel time to identify the traffic state [10]. The travel time was
commonly calculated from the average velocity of the traffic flow
which is estimated based on the data reported by some representa-
tive vehicles (the GPS-equipped ones). This approach, however,
might reveal some estimation biases since the density of a traf-
fic flow was not considered. Meanwhile, density itself is one of
the important factors affecting traffic state level [18]. Numerous
researchers proposed to integrate both the density and the aver-
age velocity to improve the effectiveness of the estimation mod-
els [13], [19]. The density has been proposed to be inferred from
the estimated average velocity using the velocity-density infer-
ence models such as the Greenshields [20], the Greenberg [21], or
the Underwood [22] models. These approaches, however, might
reveal systematic errors drawn from any error in the average ve-
locity estimation. Such a systematic error can be avoided by es-
timating both the average velocity and the density independently
and directly using the traffic data collected by mobile phones as
proposed in Ref. [13]. Nevertheless, the essential issue in this
approach is its sensitivity to the penetration rate of the mobile
phones which report traffic data to the server. To our best knowl-
edge, no prominent approach to provide accurate average velocity
and density estimation considering the penetration rate has been
proposed.

Closely related to this work, the study in Ref. [16] proposed to
apply a data mining technique on historical data to ensure error-
tolerance on traffic state estimation in cases of low penetration
rate. However, details on the data mining approach and the effec-
tiveness of the proposed models were not thoroughly discussed.
In this paper, the influence of the penetration rate on the effec-
tiveness of the traffic state estimation will be carefully analyzed.
In addition, two novel “velocity-density inference” circuits and
proposed to apply a data mining technique on historical data to
ensure error-tolerancean artificial neural network-based predic-
tion model are proposed to ensure the accuracy of the traffic state
estimation in cases of low penetration rate. On top of these pro-
posals, the preliminary definitions on penetration rate and other
related terms will be presented in the remainder of this section.

Definition 1: The penetration rate of vehicles on a road seg-
ment, denoted as ρ, is the fraction of vehicles that collect and
report data to the server per the total number of vehicles travel on
the considered road segment at the current time.

Definition 2: The average velocity of a traffic flow, denoted as
Vavg, is the average value of the velocities of all vehicles travel in
the traffic flow at the considered time.

The average velocity defined above can be mathematically ex-
pressed as in Eq. (1), where Vi is the velocity of the vehicle i, and
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Fig. 1 Road segmentation.

n is the total number of vehicles travelling on the considered road
segment.

Vavg =

∑n
i=1 Vi

n
(1)

Since the limitation speed varies from road segment to road
segment, the average velocity may not correctly represent the traf-
fic condition in terms of travel time of a road segment. The study
in Ref. [13] has proposed a new term, namely the mean speed

capacity, to better present the travel time of a traffic flow at a
specific road segment. This term can be defined as follows:

Definition 3: The mean speed capacity of a road segment, de-
noted as Mv, is defined as the average velocity divided by the
limitation speed of the considered road segment.

The mean speed capacity can be expressed as in Eq. (2), where
Vavg is the average velocity defined in definition 2 and Vmax is the
limitation speed of the considered road segment.

Mv =
Vavg

Vmax
(2)

Definition 4: The density of a traffic flow on a road segment,
denoted as D, is the fraction of the number of participating vehi-
cles per the capacity of the considered road segment.

The density can be expressed as in Eq. (3), where n is the num-
ber of vehicles on the traffic flow and C is the capacity (the max-
imum number of vehicles) of the considered road segment.

D =
n
C

(3)

The terms defined above are associated with road segments. A
road segment is a part of a road by which road-land marks such
as the intersection, the crosswalk, the curved place, and so forth,
are the end-points of road segments [13]. On the highways where
the above characteristics do not change frequently, road segments
are divided into each kilometer. It should be noted that the road
segments are divided based on the road direction instead of the
number of lanes. Therefore, a stretch of 2-way road consists of
two different segments regardless of the number of lanes in each
direction. Figure 1 shows a road segmentation by which road
segments are created at the places where the characteristics of a
road change.

3. The Influence of the Penetration Rate on the
Estimation Accuracy

This section analyzes the relationship between the penetration
rate and the effectiveness of the traffic state estimation. As an ex-
tension of the studies in Refs. [13] and [19], the traffic state of a
considered road segment is estimated as a function of the mean

speed capacity (Mv) and the density (D) as described in Eq. (4).
In this equation, Mv0 and D0 are the thresholds of mean speed ca-
pacity and density, respectively, by which the traffic state of the
road segment is considered as good enough. These thresholds

can be identified by the transportation experts or via numerous
evaluations on simulation data. For example, in Ref. [13] both
the thresholds were defined as 0.6. Regardless of what values are
set for the thresholds, the accuracy of the traffic state estimation
is affected by the effectiveness of the mean speed capacity and
the density estimation. Obviously, it is relevant to analyze the
relationship between the penetration rate and the effectiveness of
the mean speed capacity and the density estimation. As defined
in Eq. (2), the accuracy of the mean speed capacity estimation is
drawn directly from the accuracy of the average velocity estima-
tion. Therefore, the relationship between the penetration rate and
the mean speed capacity estimation degrades to the relationship
between the penetration rate and the average velocity estimation.

s = f (Mv,D) = Mv − Mv0 + D0 − D (4)

In the mobile phone-based traffic state estimation, mobile de-
vices carried by vehicles report the traffic data which includes the
position (longitude, latitude), the heading, the velocity, etc., of
the vehicles to the server. The average velocity of a traffic flow on
the considered road segment is estimated based on the aforemen-
tioned reported data. If all the vehicles travel on such a traffic flow
report the data, the estimated average velocity, denoted as Vavgest,
and the “actual” average velocity (Vavg) must be identical. How-
ever, this condition is inappropriate in real world applications for
a variety of reasons. For example, the mobile phones have not yet
registered to the estimation system, especially when the system
has just been launched; the mobile phones are busy serving their
conventional functions such as calling, sending message; or even
the users do not want any data to be reported from their mobile
phones, and so forth. The error on the estimated average veloc-
ity (Vavgest) occurs in cases of low penetration rate is analyzed as
follows.

With a penetration rate ρ (please refer to the definition 1), the
average velocity is estimated as in Eq. (5), where Vi is the velocity
of the vehicle i, and n is the actual number of vehicles travelling
on the considered road segment. The average velocity estimation
error can be expressed as in Eq. (6), where Vavg and Vavgest are the
“actual” and the estimated average velocities defined in Eqs. (1)
and (5), respectively.

Vavgest =

∑nρ
i=1 Vi

nρ
(5)

Ev = |1 − Vavgest

Vavg
| = |1 − 1

ρ
.

∑nρ
i=1 Vi∑n
i=1 Vi

| (6)

According to the Eq. (6), the average velocity estimation error
is affected by two factors as follows: 1) the penetration rate ρ, and
2) the distribution of the collected velocities (the set of ρ*n ve-
locities) in the set of the actual velocities (the set of n velocities).
The penetration rate has been defined as in definition 1. How-
ever, the factor in 2) is a complicated phenomenon. If most of the
collected velocities (the ones on the numerator of the Eq. (6)) are
on the centroid of the distribution of the “actual” velocities (the
ones on the denominator of the Eq. (6)), then the error is minor.
In contrast, if most of the collected velocities are the outliers in
the “actual” velocities’ distribution, then the error will drastically
increase.
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As analyzed previously, the lower penetration rate commonly
reveals a lower accuracy in average velocity estimation. However,
real-field studies also revealed that the influence of the penetra-
tion rate on the average velocity estimation varies with differing
traffic situations. More concretely, in the heavy traffic flow, even
the penetration rate is low by which a large amount of actual data
is missed, there are many vehicles travel in the considered road
segment. Therefore, the movements of vehicles in such a traf-
fic flow are highly correlated with each other. This correlation is
called the “inter-correlation” by which no individual vehicle can
travel significantly faster than the others, neither faster than the
actual average velocity of the traffic flow. As a result, the differ-
ence between the actual average velocity and the estimated one is
still small enough. In contrast, the velocity fluctuation in a light
traffic flow is usually large since several vehicles may travel faster
or slower than the others (i.e., the outlier). Consequently, the er-
ror of the estimated average velocity will drastically increase if
more actual data is missed (i.e., low penetration rate). As a brief
conclusion, the penetration rate directly affects the effectiveness
of velocity estimation with regard to the real traffic state. This
effect seems to be minor in heavy traffic situations but it becomes
more serious in light traffic states. This statement will be con-
firmed by the evaluations on Section 6 – the evaluation section.

Similar to the average velocity, the density estimation is also
affected by the penetration rate. As defined in definition 4 and
Eq. (3), the density estimation error, denoted as (ED), is directly
affected by the penetration rate ρ, as expressed in Eq. (7). In the
real world application, especially when the system has just been
launched, the penetration rate is usually very low, namely 5%,
10% or less. Therefore, the density estimation error will be dras-
tically large. For example, if the penetration rate is 10% then the
density estimation error will be 90%, which cannot be accepted
in any estimation model.

ED = 1 − ρ (7)

As mentioned in Section 2 (the related work section), one of
the possible ways to improve the effectiveness of the density es-
timation is to apply the velocity-density inference models with a
given estimated average velocity. The Greenshields-like velocity-
density inference models [20], [21], [22], however, cannot ad-
dress this issue thoroughly since any error in the estimated av-
erage velocity will propagate to the inferred density. In addition,
as analyzed above, the lower penetration rate draws a higher er-
ror in average velocity estimation. Therefore, the conventional
Greenshields-like models cannot effectively work in low pene-
tration rate situations. This paper proposes two novel velocity-
density inference models, namely the “adaptive” and the “adap-
tive feedback” velocity-density inferences circuits and a data
mining-based approach to solve the aforementioned issues thor-
oughly. These proposed solutions will be discussed in the follow-
ing sections.

4. Velocity-Density Inference Circuits

4.1 The Conventional Velocity-Density Inference Models
The Greenshields velocity-density inference model is com-

monly used to infer the density when it cannot be directly esti-

mated using real traffic data. The Greenshields model is described
as in Eq. (8), where V and D are the current velocity and density
of a traffic flow, respectively; Vmax and Dmax are the speed limita-
tion and the maximum density (the density of the congested state)
of the considered road segment, respectively. The drawback of
this model is that it assumes a linear relation between the density
and the velocity. However, the linear model is not appropriately
describes the relationship between the velocity and the density in
cases of high and low density.

V = Vmax

(
1 − D

Dmax

)
(8)

The Greenberg [21] and the Underwood [22] models were pro-
posed to better describe the relationship between the velocity and
the density in cases of high and low densities, respectively. These
two models are expressed as in Eqs. (9) and (10), where V, D,
Vmax and Dmax are the same parameters as those in Eq. (8). In
addition, V0 and D0 are the velocity and the density at the time
by which the volume of the traffic flow hits the maximum value.
The volume of a traffic flow at a current time is calculated as in
Eq. (11).

V = V0 log
(Dmax

D

)
(9)

V = Vmaxe−
D

D0 (10)

Q = V.D (11)

As mentioned, the Greenberg and the Underwood models bet-
ter express the velocity-density relationship in special traffic flows
such as in dense and sparse density, respectively. However, dif-
ferent to the Vmax and Dmax in the Greenshields model, V0 and
D0 are not known in advance. Furthermore, there is no effective
way to estimate these values while the density is still a variable.
Consequently, neither the Greenberg nor the Underwood model
can be suitably applied to the mobile phone-based traffic state es-
timation.

Turning back to the Greenshields inference model, the density
can be inferred from a given velocity, and vice versa. However,
as analyzed in the previous section, the density is directly and
hence more seriously affected, compared to that of the velocity,
by the penetration rate. More concretely, in cases of low pene-
tration rate, the directed density estimation error is usually dras-
tically high as described in Eq. (7). In contrast, at the same time,
the velocity estimation error may be much smaller because of
the “inter-correlation” between vehicles in a traffic flow. There-
fore, in prior works, the velocity was usually estimated in ad-
vance and then used to infer the density. However, this approach
might reveal the systematic error drawn from the estimated ve-
locity error. This work introduces novel velocity-density infer-
ence models, namely the “adaptive” and the “adaptive feedback”
velocity-density inference circuits, to address the drawback of the
Greenshields-like estimation models. Here, both the velocity and
the density estimated from the real data are applied as inputs of
the inference models to alleviate any distortion from outliers (i.e.,
the ones move too fast or too slow compared to the others). This
model will be presented in the remainder of this section.
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Fig. 2 The adaptive Velocity-Density inference circuit.

4.2 The Adaptive Velocity-Density Inference Circuit
The proposed adaptive “velocity-density inference circuit” is

depicted as in Fig. 2. In this model, both the velocity and the den-
sity estimated/calculated directly from the real data collected by
mobile phones, namely Vreal and Dreal, respectively, are served
as the inputs. The outputs of this circuit are the final estimated
values of velocity and density, namely Vest and Dest, respectively.
The intermediate velocity (Vin f er) and the density (Din f er) also
contribute to the effectiveness of the inference circuit. The back-
ground philosophy of this inference model is that both the veloc-
ity calculated directly from real data and inferred from estimated
density must contribute to the final velocity estimation. More
concretely, the final estimated velocity, Vest, is a function of the
directly calculated and the Greenshield-based inferred velocities
as expressed in Eq. (12). The same rationale is also applied to the
density estimation as in Eq. (13). The intermediate velocity and
density are inferred using the Greenshields model as described in
Eqs. (14) and (15).

Vest = f (Vreal,Vin f er) = αVreal + (1 − α)Vin f er (12)

Dest = f (Dreal,Din f er) = (1 − α)Dreal + αDin f er (13)

Vin f er = Vmax

(
1 − Dreal

Dmax

)
(14)

Din f er = Dmax

(
1 − Vreal

Vmax

)
(15)

In Eq. (12), α (0 ≤ α ≤ 1) is the coefficient represents the im-

pact of velocity calculated directly from the real data, Vreal, on
the whole average velocity estimation model. Therefore, the im-
pact of the velocity inferred from the estimated density, Vin f er,
must be 1−α. Since Din f er in Eq. (13), is inferred from Vreal as in
Eq. (15), its impact on the whole density estimation model should
be α, thus 1-α is the impact of the Dreal. One may argue that Din f er

in Eq. (15) may impractically be estimated as a negative value if
some (or all) of the vehicles that report the data illegally travel
faster than the limitation speed. To solve this side effect, Vreal

should be clarified as which it is the velocity of the traffic flow at
the considered road segment. It is defined as in Eq. (16).

Vreal =

∑k
i=1 Vi

k
(16)

where, k is the number of vehicles on the considered road segment
that report the data to the server, and Vi is the estimated velocity
of any individual vehicle i, which is defined as in Eq. (17).

Vi = min(Vsensed i,Vmax) (17)

Equation (17) describes that the estimated velocity of an in-
dividual vehicle i (Vi) is the minimum value of the limitation

Fig. 3 Relationship between the meanspeed capacity and the velocity
estimation error (both are estimated from real data).

speed (Vmax) and the detected real-time velocity of the vehicle
i (Vsensed i). The rationale of this normalization is that Vmax de-
scribes the best condition of the road segment. At the same time,
vehicles can travel with an illegally high speed (Vsensed i � Vmax)
in only the best traffic conditions. The pre-processing of the es-
timated velocity described in Eq. (17) can help to avoid any bias
caused by illegally speeding vehicles without compromising the
effectiveness of the whole traffic state estimation model. In prac-
tice, when Vi is selected as Vmax, that is to say, Vsensed i is larger
than Vmax, the road segment can be regarded as almost in the best
condition. In this case, it is reasonable that Din f er is calculated as
0 or close to 0. The difficulty here is to reasonably identify α.

Obviously, the impact of the velocity calculated from the real
data, referred as Vreal shortly, on the whole velocity estimation
model is affected by the penetration rate. Intuitively, the lower
penetration rate the higher error of the Vreal, thus the lower im-
pact the Vreal should be. Concretely, the impact of Vreal, referred
as α shortly, can be expressed as a function of the penetration
rate. However, the penetration rate cannot be exactly known in
advance when the “actual” density of the traffic flow is still a
variable (please refer to the penetration rate’s definition in defi-
nition 1, Section 2). Therefore, another way to express this im-
pact should be investigated. One suitable method is using the
statistical studies on historical experimental or simulation data.
The statistical study must be based on features which can be es-
timated at the estimation time. Fortunately, besides the penetra-
tion rate, the mean speed capacity estimated from the real data
collected by mobile phones also reflects on the accuracy of the
Vreal. As defined in definition 3 and Eq. (2), Section 2, the mean
speed capacity can be completely estimated at any time using real
data. Therefore, the impact of Vreal, α, can be expressed as in
Eq. (18). The rightmost expression on the Eq. (18) states that the
accuracy of Vreal can be retrieved from historical data given a
value of Mvreal (the mean speed capacity obtained from the real
data collected by mobile phones).

α = Accuracy(Vreal) = 1 − MeanErrFrom(Mvreal) (18)

Investigations on the historical experimental data and simula-
tion data revealed that the mean speed capacity and the velocity

estimation errors (both estimated from real data collected by mo-
bile phones) are closely related with each other. As shown in
Fig. 3, with a given mean speed capacity, the mean error of the
estimated velocity can be retrieved, thus the impact of Vreal, α,
can be inferred using Eq. (18).

In practice, in order to reduce the retrieval time, the mean error
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of the estimated velocity coming from the estimated mean speed
capacity can be approximated. As shown in Fig. 3, the error dis-
tribution can be divided into 3 zones. The first zone represents the
mean speed capacity which is greater 0.6, the second zone repre-
sents the mean speed capacity from 0.6 to 0.15 and the third zone
for the remainder. The velocity estimation error of each traffic
state belong to a zone is almost similar to the mean error of that
zone. The mean errors of all the three zones are extracted from
historical data and presented as in Eq. (19).

MeanErrFrom(Mvreal) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
16.8%(≈ 0.2) Mvreal ≥ 0.6
43.1%(≈ 0.4) other
17.2%(≈ 0.2) Mvreal ≤ 0.15

(19)

Applying the Eq. (19) into Eq. (18), the impact coefficient α
can be simply approximated as in Eq. (20).

α =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − 0.2 = 0.8 Mvreal ≥ 0.6
1 − 0.4 = 0.6 other
1 − 0.2 = 0.8 Mvreal ≤ 0.15

(20)

After obtaining the coefficient α, the final velocity and den-
sity can be easily estimated using Eqs. (12) and (13) mentioned
before. The effectiveness of this “adaptive velocity-density in-
ference” circuit will be thoroughly discussed in Section 6 – the
evaluation section.

4.3 The Adaptive Feedback Velocity-Density Inference Cir-
cuit

Obviously, traffic state is a phenomenon which does not change
drastically in a short time interval, but the change must have some
relationship with previous traffic states at the same road segment.
More concretely, the velocity and density at time t must relate
with those at time t−1, t−2, and so forth. Therefore, the estimated
velocities/densities at some previous phases in the past are useful
for estimating velocity/density at the current time. This section
introduces the so-called “adaptive feedback velocity-density in-
ference” circuit to benefit the estimated values in the previous
phases for estimating the current velocity/density as depicted in
Fig. 4 and described as follows.

Figure 4 shows that, the “adaptive feedback velocity-density
inference” circuit is a modification of the “adaptive velocity-
density inference” circuit proposed in the previous section. The
velocity and density, which are estimated in every time interval
t, namely every minute as in this work, are stored and re-used
for the future estimations. The moving averages of the estimated
velocity and the density at time t, namely MVt and MDt, are cal-
culated within a sliding window ξ, and fed back to the estimation

Fig. 4 The adaptive Feedback Velocity-Density inference circuit.

components in the circuit for the estimation at time t + 1. The
moving average of the estimated velocity and density are calcu-
lated as in Eqs. (21), (22), respectively. The sliding window can
be set by the domain experts and was set to 3(ξ = 3) in this work.

MVt =

∑t−ξ
i=t Vesti

ξ
(21)

MDt =

∑t−ξ
i=t Desti

ξ
(22)

Since MVt is the moving average of the estimated velocity in
ξ previous calculation phases, it must have the same impact of
the velocity estimated directly from the real data, Vreal. Thus the
estimation model for estimating the velocity at the current time,
which was expressed in Eq. (12), is modified as in Eq. (23). In this
equation, the Avg(Vreal, MVt) is the average function of the two
corresponding parameters. Applying MDt at the same way, the
density estimation model described in Eq. (13) is modified as in
Eq. (24). It should be noted that the impact of the MDt should be
the same as that of the inferred density, Din f er, which is inferred
from Vreal.

Vest = f ((Vreal,MVt),Vin f er)

= αAvg(Vreal,MVt) + (1 − α)Vin f er (23)

Dest = f (Dreal, (Din f er,MDt))

= (1 − α)Dreal + αAvg(Din f er,MDt) (24)

As mentioned above, it is expected that the “adaptive feed-
back velocity-density inference” circuit is more effective than the
“adaptive” counterpart introduced in Section 4.2. The effective-
ness evaluation of these both “velocity-density inference” circuits
will be presented in Section 6.

5. A Data Mining Approach to Error-
Tolerance in Velocity/Density Estimation

In addition to improving the traffic state estimation’s effective-
ness, the proposed “velocity-density inference” circuits can min-
imize the “acceptable” penetration rate, thus they are adaptively
workable in more strict conditions in terms of penetration rate.
However, when the penetration rate degrades significantly to a
very low value such as several percents or even to zero, they can-
not work properly. To address the low penetration rate related
issues thoroughly, a data mining technique applying the histori-
cal data of traffic states should be investigated.

Field studies reveal that the traffic state not only represents the
movement phenomenon of vehicles on the considered road seg-
ment but also represents a complicated relation with the move-
ment on the nearby road segments. For example, if the traffic state
of the road segment in the front is heavy then the traffic state of
the considered road segment is also heavy. Therefore, the traffic
state of a road segment can be predicted if the current traffic states
of the nearby road segments and the “rules” which represent the
relationship between traffic states at different road segments in
a region are given. The relation “rules” can be “learned” by a
machine-learning technique from the historical traffic state data.
In this work, an artificial neural network (ANN) with a multilayer
perceptron (MLP) [23] is employed to learn such “rules” in order
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Fig. 5 An ANN-based velocity/density prediction model applied in cases of
very low penetration rates.

to effectively predict the average velocity and density of a road
segment in cases of very low penetration rate. This ANN-based
prediction model is depicted as in Fig. 5.

Figure 5 shows that the historical data of the moving averages
of the velocities and the densities of all the road segments in a re-
gion are fed to the ANN for “learning” the prediction “rules.” As-
suming that there are n road segments in a region, hence n moving
average velocities and n moving average densities are put into the
model at the same time, namely t. In Fig. 5, MV1t, MV2t, MD1t,
MD2t are the moving averages of the velocity and density at time
t, which were defined in Eqs. (21) and (22), Section 4.3, respec-
tively. The experimental evaluations revealed that the proposed
ANN-based prediction model can effectively predict the density
and average velocity regardless any penetration rate of the con-
sidered segment. The effectiveness of this ANN-based prediction
model will be analyzed in the next section.

6. Evaluation

This section evaluates the effectiveness of the proposed
“velocity-density inference” circuits and the ANN-based predic-
tion model. In addition, the influence of the penetration rate on
the velocity/density estimation accuracy will be thoroughly eval-
uated.

6.1 The Experiment Evironment and the Data Structures
Several simulations were performed using the Traffic Simula-

tion Framework (TSF) [24] to generate synthetic data for eval-
uations. In each simulation, the desired road segments and the
desired regions (i.e., an area with several segments) on which
the traffic state related data would be generated were selected as
shown in Fig. 6. For each selected road segment, two kinds of
data were created concurrently as follows:

a) The GPS-based detail data reported by individual vehicles
was recorded in the “cars.csv” file. Each record in this file con-
tains the Time stamp (in seconds) when the data is reported, the
road segment Id, the position (longitude, latitude), the current ve-

locity, and the vehicle Id of the vehicle which reports the data.
The penetration rates were also configured by the TSF by which
only the “penetration rate” percents of random vehicles, namely
20%, 25%, 30% vehicles, and so forth, reported the data to the
server. The frequency of the data report timing was set to every
3s (i.e., similar to the GPS (Global Positioning System) signal
frequency).

b) The summarized data on the traffic state of the selected road
segments in a predefined time interval were recorded in the “av-

Fig. 6 The road segmentation in TSF.

erageVelocity.csv” file. Each record in this file contains the in-
formation of the Time interval Id (in minutes), the road segment

Id, the average velocity, and the density of the traffic flow on the
selected road segment in such a time interval. The time interval
for recoding the summarized traffic state information was set to
every minute in this work. This summarized traffic state informa-
tion was used to evaluate the accuracy of the estimation method
applying the GPS-based detailed data described in a).

It should be noted that the density of the vehicles in all the
simulation was also configured by different levels. These settings
helped to avoid any bias in evaluations which comes from an ar-
bitrary density. The details of the effectiveness evaluations will
be presented in the remainder of this section.

6.2 The Influence of the Penetration Rate on the Estimation
Accuracy

As discussed in Section 3, the penetration rate significantly af-
fects the effectiveness of the velocity and density estimation. This
section evaluates this relationship using the simulation data. As a
result, the so-called “acceptable” penetration rate, where the es-
timation accuracy is good enough and satisfies the designer, was
recognized. The acceptable penetration rate is important since it
ensures that the estimated traffic state information is not wrong
so much and still be reliable.

To analyze the relationship between the penetration rate and the
estimation’s effectiveness, several simulations were performed
with different penetration rates. For each penetration rate, namely
20%, 30% for instance, the GPS-based detailed data and the sum-
marized data of the selected road segments were recorded in the
“car.csv” and the “averageVelocity.csv” files, respectively. The
average velocity and average density were estimated from the
GPS-based detailed data in the “car.csv” file, applying the con-
ventional estimation model as described in Eqs. (1) and (3), Sec-
tion 2. Both the average velocity and the density were estimated
in each time interval, namely every minute in this work, by which
they could be compared with the “actual” average velocity and
density generated by the TSF simulator (i.e., in the “averageVel-

ocity.csv” file). This comparison was repeated with different sim-
ulation data generated from 10 randomly selected road segments.
For each road segment, five one-hour simulations with different
density levels were performed. After then, the average differ-
ences between the estimated and the “actual” average velocity
were drawn out and shown in Fig. 7.

Figure 7 shows that the higher the penetration rate the better
the estimation is, and vice versa. If the penetration rate degrades
to 20% or lower, the estimation error increases significantly. At
the same time, the deviations in cases of low penetration rate are
also higher. For example, when the penetration rate is 20%, the
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Fig. 7 The relationship between the penetration rate and the everage error
on the estimated average velocity.

deviation is around 24% (i.e., ±12%). This figure also reveals that
if the expected accuracy is set to 70%, the acceptable penetration
rate must be around 30%. This recognition of the “acceptable”
penetration rate helps researchers and practitioners to prepare the
prerequisite on the penetration rate (i.e., the portion of mobile
phone users joining the system) for an acceptable estimation ac-
curacy. Otherwise, alternative solutions to avoid the wrong esti-
mation before bring the mobile phone-based traffic state into the
realization should be considered.

As mentioned above, the expected accuracy is set to 70%.
There are two reasons for that. First, the accuracy of 70% is a
quite critical value. Second, the value is useful to compare this re-
search with related research. More concretely, as shown in Fig. 7,
the penetration rate must be around 25% when the accuracy is set
to 60% (inappropriate accuracy), and the penetration rate must be
around 50% when the accuracy is set to 80% (accurate enough). It
means that the ratio of accuracy to the penetration rate drastically
changes at the point of accuracy of 70%. Generally speaking,
it is almost impossible to keep the penetration rate of 50% even
though the accuracy of 80% is high enough. However, it is more
confident that the penetration rate of 27% which corresponds to
the accuracy of 70% could be realized in a real situation and this
accuracy is acceptable. In addition, as a related research, Muraki
et al. [25] illustrated the traffic prediction accuracy based on travel
time estimations using the Nearest Neighbor Method. They eval-
uated the proposed method in terms of traffic prediction error.
The error ranges are from 33% to 38% for Metropolitan Express-
way and from 19% to 23% for ordinary roads. The average error
for both road types is almost 30% which shows the prediction ac-
curacy is 70%. Therefore, the expected accuracy was set to 70%
in this work as a criterion for our evaluation.

In addition to evaluating the relationship between the penetra-
tion rate and the estimation’s effectiveness, the influence of the
“actual” traffic states on the estimation accuracy in cases of low
penetration rate was also evaluated. In this evaluation, the “ac-
tual” traffic state of a road segment was represented by the mean

speed capacity (Mv) as defined in Eq. (2), Section 2. Therefore,
the relationship between the mean speed capacity and the mean
error on the average velocity estimation was analyzed. The same
dataset used for estimating the relationship between the penetra-
tion rate and the estimation’s effectiveness was re-used in this
evaluation. Here, the detailed information about the error on the
average velocity estimation was recorded at different mean speed

Fig. 8 Relationship between the meanspeed capacity and the mean error of
average velocity estimation.

capacity. The mean error of the average velocity estimation with
regard to the mean speed capacity is shown in Fig. 8. This figure
reveals that, the mean error of the average velocity estimation is
small in cases of very light (i.e., Mv is very high), and very heavy
(i.e., Mv is very low) traffic flows. However, the mean error of the
average velocity estimation is higher in cases of medium traffic
state. The reason of this phenomenon comes from the “inter-

correlation” of the movements of vehicles in the corresponding
traffic flows. In the cases of very heavy traffic state (i.e., Mv is
very small), no individual vehicles can travel faster than the oth-
ers, thus even though the penetration rate is low, the estimated
average velocity is almost the same as the “actual” average veloc-
ity. However, in the cases of medium traffic states, there may exist
several outliers (i.e., the vehicles that move faster or slower than
the others), thus the deviation of the velocity is high revealing a
high mean error on average velocity estimation. The deviation on
velocity at the light traffic states (i.e., Mv is very high) may also
high. Nevertheless, the number of vehicles travelling in such a
traffic state is usually small, thus the probability for the outliers
to be occurred and collected is small. As a result, the mean error
on average velocity estimation is still small as shown Fig. 8. This
figure also confirms Fig. 3 and the rationale on identifying the co-
efficients on the proposed “adaptive velocity-density inference”
circuit as discussed in Section 4.2.

It should be noted that the penetration rate directly affects the
accuracy of the density estimation as expressed in Eq. (7), Sec-
tion 3. Therefore, it is clear that when the penetration rate de-
grades, the error on density estimation drastically increases. For
example, at 40% of penetration rate, the density estimation er-
ror will be 60% (please refer to Eq. (7)), and this error drastically
increases to 80% if the penetration rate degrades to 20%. The ef-
fectiveness of the proposed “velocity-density inference” cricuits
will be analyzed in the remainder of this section.

6.3 Effectiveness of the Velocity-density Inference Circuits
The same datasets used to evaluate the influence of the pene-

tration rate on the effectiveness of the average velocity estimation
mentioned in the previous section were reused. In this evaluation,
the effectiveness of the proposed “velocity-density inference” cir-
cuits was compared with that of the conventional model.

Figure 9 shows the effectiveness of the “adaptive” and the
“adaptive feedback” velocity-density inference circuits in esti-
mating the average velocity. The effectiveness of the “adaptive”
and the “adaptive feedback” circuits are represented as Circuit V

and Circuit1 V, respectively. Both of these models are clearly
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Fig. 9 The effectiveness of the velocity-density inference circuits in
estimating the average velocity.

Fig. 10 The effectiveness of the velocity-density inference circuits in
estimating the density.

better than the conventional estimation model (Normal V). The
effectiveness of the “adaptive velocity-density inference” circuit
(without the feedback information from the previous estimation
phases) degrades somewhat when the penetration rate increases.
For example when the penetration rate is greater than 70%, its
effectiveness is not prominent. The reason is that with a relevant
penetration rate (e.g., 70%) the conventional estimation method
may obtain enough data for a high accurate estimation. In con-
trast, the “adaptive feedback” velocity-density inference circuit
shows its power to be far better than both the conventional and
the previous adaptive inference counterpart. In addition, this in-
ference circuit can minimize the “acceptable” penetration rate.
As mentioned in Section 6.2, the acceptable penetration rate (i.e.,
the penetration rate to guarantees 70% of accuracy) in the conven-
tional average velocity estimation model is 30%. However, the
“adaptive feedback” velocity-density inference circuit reduces
this value to around 25%. Furthermore, in all cases of penetration
rates which are greater than this acceptable value, the estimation
errors are always smaller than 10%. This effectiveness is great
and far satisfies the requirement in this research.

Figure 10 shows the effectiveness of the “adaptive” and the
“adaptive feedback” velocity-density inference circuits, repre-
sented by Circuit D and Circuit1 D, respectively, in estimating
the average density. The figure shows that these models are
far better than the conventional estimation model (naive D), and
the Greenshields (Greenshields D) counterparts. However, dif-
ference from the average velocity estimation case, the “adaptive
feedback” velocity-density inference circuit is not far better than
its “adaptive” counterpart. This result also reflects the issue dis-
cussed in section 3 that “the density is directly and hence more

seriously affected, compared to that of the velocity, by the pene-

tration rate.” Therefore, the “adaptive” and the “adaptive feed-

Fig. 11 A region of road segments including the disired segment and its
related ones.

back” inference circuits could not improve the effectiveness of
the density estimation as good as that in case of average velocity
estimation as shown in Fig. 9.

It should be noted that, although the proposed “velocity-
density inference” circuits improve the effectiveness of the ve-
locity and density estimations significantly, they could not ensure
the estimation accuracy when the penetration rate becomes un-
acceptably low, namely lower than 25% as shown in Fig. 9 and
Fig. 10. Meanwhile, in the real world application, the penetration
rate may degrade to a very low value such as several percent or
even zero. As discussed in Section 5, this issue can be addressed
by a suitable ANN-based prediction model. The effectiveness of
this model is evaluated in the remainder of this section.

6.4 Effectiveness of the ANN-based Prediction Model
To evaluate the accuracy of the ANN-based prediction model,

another dataset was prepared. Five road segments were randomly
selected as the desired ones whose average velocity and density
are required to be predicted. In addition, the related road seg-
ments of the desired ones were also identified so that their cor-
responding data (average velocity and density) were recorded.
The related road segments are those whose traffic states influ-
ence the traffic state of the desired road segment. In this work,
the related road segments have been divided into two types: the
“direct” and “in-direct” connected ones. The “direct” connected
road segments are those connect to the desired road segment di-
rectly. The “in-direct” connected road segments are the ones that
directly connect to the desired road segment’s direct connected
ones. For legibility, the “direct” connected and the “in-direct”
connected road segments are called the level 1 (l1) and level 2 (l2)
related ones, respectively, as depicted in Fig. 11. Assuming that
k is the desired road segment, its l1 and l2 related road segments
are {c, d, e, i, l} and {a, b, h, j, m, g, f}, respectively.

For each desired road segment, 10 1-hour simulations were
performed by which the average velocity and density of the de-
sired road segment and its related counterparts were generated.
The summarized traffic state information was recorded in each
minute, thus in each simulation, 60 patterns including both the
average velocity and density of the desired road segment and its
related road segments were generated. Therefore, totally a dataset
of 600 patterns (i.e., in 10 1-hour simulations) was created for
each desired road segment. At each time interval, namely every
minute, the moving averages of the velocity and density of each
road segment were calculated as described in Eqs. (21) and (22),
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Fig. 12 The effectiveness of the ANN-based prediction model.

Fig. 13 The effectiveness comparison between the ANN-based prediction
and the “velocity-density inference” circuits - The average velocity
case.

Section 4.3. This dataset was then divided into two parts as the
portion of 75% and 25% for the training and the testing datasets,
respectively. The training dataset was used to train an ANN with
6 hidden nodes. The testing dataset was used to evaluate the effec-
tiveness of the ANN-based prediction model. The target values
to be estimated were the average velocity and the density of the
aforementioned 5 randomly selected desired road segments. The
average predicted error of these 5 selected road segments was cal-
culated to evaluate the effectiveness of the ANN-based prediction
model. The results of these evaluations are shown in Fig. 12 and
described as follows.

Figure 12 shows the effectiveness of the ANN-based predic-
tion in predicting the average velocity and the density of the road
segments. It seems that the prediction accuracy is a little bit bet-
ter in estimating the average velocity (the average error is around
27%) than in estimating the density (the average error is around
29%). The reason of this difference may be that the velocity of
the desired road segment has a better relation with the traffic state
of the related road segments than the density does. However, this
difference is minor and both of the prediction results are good
enough. In addition, both the prediction results are not affected
by any penetration rate. The predicted errors are almost identical
regardless of the penetration rate (either 100% or 0%). This is
because that the penetration rate of the desired road segments has
not played any role in the ANN-based prediction model.

Figure 13 and Fig. 14 show the summarized evaluation results
of all the proposed “velocity-density inference” circuits and the
ANN-based prediction model in estimating the average velocity
and the density, respectively. Both the figures reveal that, the
“adaptive feedback velocity-density inference” circuit is the best

Fig. 14 The effectiveness comparison between the ANN-based prediction
and the “velocity-density inference” circuits - The density case.

one if the penetration rate is low but still relevant. When the pen-
etration rate is lower than the so-called “acceptable” penetration
rate, namely 25%, the estimation error of the “adaptive feedback
velocity-density inference” circuits increases drastically, thus the
ANN-based prediction model is dominant.

7. Conclusions and Future Work

This article thoroughly analyzed the influence of the penetra-
tion rate on the mobile phone-based traffic state estimation. As a
result, the so-called “acceptable” penetration rate with regards to
a predefined expected accuracy could be identified by statistical
studies on a huge amount of simulation data. This recognition
is useful for researches and practical investigations in order to
bring a traffic state estimation system using mobile phones into
the realization. Furthermore, two notable “velocity-density in-
ference” circuits, based on the so-called “adaptive” and “adap-
tive feedback” approaches, were proposed to improve the ve-
locity/density estimation’s effectiveness. These “velocity-density
inference” circuits not only make the velocity/density estimation
more accurate but also help to minimize the “acceptable” pene-
tration rate required. This advantage is very important in practice
since it guarantees the effectiveness of a traffic state estimation
system even with a small number of vehicles (mobile phones)
participating.

This article also introduced a suitable ANN-based prediction
model to ensure the effectiveness of the mobile phone-based traf-
fic state estimation when the penetration rate degrades to a very
low value, namely several percent or even 0%. At such very
low penetration rates, the aforementioned “velocity-density in-
ference” circuits will not properly work. The effectiveness of all
the proposed solutions (i.e., the “velocity-density inference” cir-
cuits and the ANN-based prediction model) has been confirmed
by a plenty number of experimental evaluations.

The results of this research open a new research direction in
the traffic state estimation using mobile phones. This research re-
vealed that 100% of the vehicles travelling on the road network
are not required to send the data to the server for ensuring an ac-
curate estimation. In contrast, the estimation accuracy is kept to
be high enough if the penetration rate passes the minimum thresh-
old, namely the “acceptable penetration rate.” Furthermore, the
value required for an “acceptable” penetration rate can be reduced
by reasonable estimation methods such as the proposed “velocity-
density inference” circuits and the ANN-based prediction model.
These results brace the confidences of accelerating the realization
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of mobile phone-based traffic state estimation systems. However,
more detailed performance based on real-field experiments needs
to be evaluated in order to confirm the robustness of the proposed
approaches. In addition, combining both the “velocity-density
inference” circuits and the data mining approach in a reasonable
way for further effectiveness improvement is also a relevant re-
search direction which should be considered in the future work.
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