
Journal of Information Processing Vol.20 No.1 196–206 (Jan. 2012)

[DOI: 10.2197/ipsjjip.vol.20.196]

Regular Paper

Policy Provisioning and Its Access Control
Beyond Administrative and Collaborative Domains

Hidehito Gomi1,a)

Received: April 11, 2011, Accepted: September 12, 2011

Abstract: A policy provisioning framework is described that supports management of the lifecycle of personal in-
formation and its data-handling policies distributed beyond security domains. A model for creating data-handling
policies reflecting the intentions of its system administrator and the privacy preferences of the data owner is explained.
Also, algorithms for systematically propagating and integrating data-handling policies from system entities in different
administrative domains are presented. This framework enables data-handling policies to be properly deployed and
enforced in a way that enhances security and privacy.

Keywords: policy provisioning, identity management, access control, policy management, data-handling policies

1. Introduction

Many applications are being executed in distributed systems
and among different multiple organizations with the ongoing de-
velopment of the Internet. Personal information in such environ-
ments is often exchanged beyond the boundaries of security do-
mains. It is generally difficult for both administrators and owners
to control data once they have been propagated outside their secu-
rity domains. Thus, managing identity and policy in distributed
environments is one of the most important issues in preserving
security and privacy.

There have been several technical projects on identity manage-
ment including access control and privacy management. Privacy-
aware access control [1], [2], [3] has especially aimed at incorpo-
rating privacy-related policies into traditional access-control poli-
cies. Another emerging concept of identity governance [4] has
addressed user-centric control of access and introduced a method
of tracking data for propagating identity information. Although
these research efforts have enabled fine-grained access control for
managing identity from security and privacy perspectives, they
have not fully addressed how data-handling policies can be cre-
ated and integrated, which satisfy the different requirements of
distinct actors in different security domains from a practical view-
point. Since these actors are involved with data practices, but gen-
erally have different responsibilities, enforcing policies need to
be created from administrative and privacy standpoints. Another
existing work on secure interoperation in a multi-domain envi-
ronment has proposed schemes for generating an inter-domain
security policy to grant user access from different security do-
mains [5], [6]. However, these approaches lack support of life-
cycle management of security policies in each domain and the
notion of privacy protection.

1 Yahoo! JAPAN Research, Minato, Tokyo 107–6211, Japan
a) hgomi@yahoo-corp.jp

This paper proposes a policy provisioning framework that
helps to manage the lifecycle of identity information using han-
dling policies that reflect its system administrator’s intentions and
its data owner’s preferences from both administrative and pri-
vacy viewpoints. Also described are algorithms that enable data-
handling policies or privacy preferences to be created and inte-
grated from multiple actors to control access to identity informa-
tion. This work focuses on collaboratively building a policy pro-
visioning model and framework for distributed policy and iden-
tity management systems, whereas the specific representation of
policies, detailed resolutions on policy conflicts, and the encapsu-
lation and transport mechanisms for data and policies are beyond
the scope of this work.

It was assumed that each system entity in this work had the
distinct responsibility for managing data and policies, but collab-
oratively exchanged them with one another and handled them in
conformity with the policies that they agreed upon to establish
a foundation for improving identity governance from the view-
points of administrators and users in the system.

The rest of this paper is organized as follows. Section 2
presents problems and requirements from the scenario that mo-
tivated this work. Section 3 introduces a policy provisioning
model. Section 4 describes a policy provisioning framework
based on the proposed model. Section 5 presents a case study
of the proposed framework. Section 6 discusses several issues re-
lated to policy management and Section 7 presents related work.
Section 8 concludes the paper with a summary of the key points
and an outline of future work.

2. Problem and Requirement Statements

This section describes problems that need to be addressed
when developing a framework to support policy provisioning be-
tween multiple domains, and this leads to several requirements.

Figure 1 outlines the scenario that was the motivation behind

c© 2012 Information Processing Society of Japan 196

Journal of Information Processing Vol.20 No.1 196–206 (Jan. 2012)

Fig. 1 Motivating scenario.

this work. Alice is a woman who had a medical examination
at the Japan medical center (JMC), which manages her medical
records (MRs) according to its data-handling policies. Alice can
access and view her own MRs at JMC. Since Alice has an ac-
tive account at the Internet portal service (IPS), which is run by
a different private company, but is in a coalition relationship with
the JMC, she would like to store and view a subset of her MRs
at the IPS propagated from the JMC for the sake of convenience.
In addition, Alice would like to use the MRs stored at the IPS
to take advantage of a fitness consultation service given by the
Tokyo fitness club (TFC), which has a trusted relationship with
the IPS. Alice hopes to use her own MRs for her personal bene-
fit although she is also concerned about them being disclosed to
unauthorized entities because they contain sensitive and private
information. Hence, the JMC, the IPS, and the TFC need to col-
laboratively manage and handle Alice’s MRs in a manner that is
secure and that preserves her privacy.

In this case, how does the administrator of the IPS develop
its data-handling policies, which are represented by the rounded
rectangles pointed to by the dotted lines with arrows in Fig. 1,
to manage and handle Alice’s MRs if the JMC’s data-handling
policies are given? To fulfill this scenario according to Alice’s
wishes, the IPS needs to have data-handling policies including
those that grant access requests to Alice’s MRs from the TFC
as well as obtain her consent for doing so. However, the TFC’s
use of the MRs is secondary from the viewpoint of the global
system because it was originally managed by the JMC and was
propagated to the IPS. If the JMC has its own policies on con-
straining data disclosure, i.e., denying the propagation of MRs to
the TFC, and the IPS agrees upon the policies when the MRs are
received from the JMC, then the IPS must conform to the agreed-
upon policies to retain and handle them. In addition, the JMC and
the IPS may have common policies that they must comply with
if they are in the same company group and the IPS depends on
the JMC’s formulating policies. That is, the IPS’s data-handling
policies should be developed from the perspectives of the organi-
zation or system it belongs to and the relationships with entities
it interacts with.

The above observation leads to a set of technical issues and re-
quirements that need to be addressed by the model and framework
that is proposed in this paper.
(1) Policy integration and incorporation. Data-handling poli-

cies need to be developed by reflecting on the requirements
and intentions arising from different actors who are asso-

ciated with creating and using the data. This may create
some conflict with their individual requirements or inten-
tions. Therefore, any conflicts need to be avoided to generate
consistent data-handling policies for each system entity from
the global perspective of the overall system.

(2) Lifecycle management of policies. Data need to be kept un-
der control at an entity accepting propagation from the entity
that originally managed it in an environment where personal
data are propagated in system entities distributed over net-
work. Since data propagation may successively occur from
entity to entity according to its associated policies and user
wishes, the system needs to support lifecycle management
of the policies to persistently control data wherever they are
located in the system.

In light of the above requirements, a model and a framework
for policy provisioning were designed according to the four un-
derlying concepts:
• Persistently sticky policies. This concept enables personal

data to be kept under control even after they have been prop-
agated beyond distinct domains in a distributed environment.
Although previous research efforts [7], [8] introduced the
“sticky policy” concept, they only supported a single step
for data propagation, not multiple steps from a broader per-
spective.

• Hierarchical policies. Policies to be enforced with this con-
cept are incorporated into a hierarchical organization or sys-
tem.

• A chain of policies. This concept represents a flow of poli-
cies propagated in distinct domains.

• Globally identifiable policies. This concept enables policies
to be tracked in a distributed environment to keep them and
their associated data under control.

These concepts are introduced in the proposed model, which
will be described in Section 3. Then, the proposed framework for
provisioning policies between system entities based on the model
will be described in Section 4 by specifying policy-related opera-
tions common to system entities such as policy exchange between
them and procedures for handling policies within an individual
entity to make the overall system secure.

3. Model

This section explains the model for policy provisioning.
A data user (DU) is an individual whose personal data are

related to him or her. A DU delegates secure management and
convenient utilization of his or her personal data to other entities
specifying privacy preferences on how the data are to be handled
by them. A DU can demonstrate his or her wishes by means of
consent to questions from other entities as one of the representa-
tions of privacy preferences.

A data controller (DC) is an entity that maintains a DU’s per-
sonal data on his or her behalf in compliance with its own privacy
or security policies reflecting both their privacy preferences. A
DC can securely provide a DU’s personal data to another entity
in a different administrative domain on the basis of the agreement
with the entity on how the data are to be used and handled. A DC
is liable for securely managing and propagating a DU’s personal

c© 2012 Information Processing Society of Japan 197

Journal of Information Processing Vol.20 No.1 196–206 (Jan. 2012)

data.
A data processor (DP) is an entity that processes a DU’s per-

sonal data obtained from a DC in conformity with the agreement
reached with the latter on how the data are to be handled. A DP
is placed in a distinct administrative domain from that of a DC.
A DP is liable for handling personal data originally managed by
a DC. This liability is different from that for a DC since a DP
does not need to maintain or determine the purposes for which
the data are processed, and because this liability depends on the
agreement on data processing between a DC and a DP.

The DC and DP are not actual entities; they are simply roles in
the model. Therefore, a single domain can play both roles. That
is, when domain d1 acting as a DP receives personal data from
domain d2 acting as a DC with an agreed-upon policy allowing
d1 to store and further propagate the received data to the other
domain, d3, d1 can act as a DC for d3. In other words, the rela-
tionship between DC and DP is relative and one-way specific to
the pair of two entities for the particular types of personal data in
this model. In this example, d1 can be a DC for d3, but cannot be
a DC for d2, because d2 was originally a DC for d1.

It is assumed that these entities are trusted and can be expected
to comply with the agreement. The purpose of this work was
to establish an agreement on data handling between trusted enti-
ties and create and deploy policies to be appropriately enforced,
rather than to detect their misbehaviors.

3.1 Policy Binding to Data
Data and their handling policies in this model are very closely

associated. When a DC receives an access request to data, the
DC determines whether to grant or deny the access enforcing the
handling policies associated with the data. When a DP attempts
to process data, the DP also uses the handling policies associated
with the data to make an authorization decision on data process-
ing.

If a DC needs to provide a DP with personal data, the DC en-
capsulates the data and their associated policies and transfers both
to the DP. The DP complies with the policy agreed upon and re-
ceived from the DC prior to having received the data. Namely,
agreed-upon policies migrate with the data to govern the data
practices of a DC that receives both the data and policies. The
agreed-upon policies correspond to an agreement between a DC
and a DP when data are transferred and these are the legal grounds
for appropriately restricting data processing by a DP.

The encapsulation and transport mechanisms for data and poli-
cies are beyond the scope of this model. Instead, it focuses on
the design of the framework for hierarchically developing poli-
cies among distinct entities, which will be described in the next
section.

3.2 Policy Hierarchy
Figure 2 outlines a hierarchical policy model that encompasses

the defined entities and exchanged policies.
A super-domain is a super-organization or system such as an

industrial department or a governmental body to which domains

belong. A domain is an administrative organization or system
independent of others that acts as a DC or a DP entity. A super-

Fig. 2 Hierarchical policy model.

Fig. 3 Policy provisioning chain.

domain and a domain have a relative association. The sub-domain

belongs to its upper class domain. The relationships between the
super-domain and domain, and domain and sub-domain are hier-
archical. These relationships generally hold true without limiting
the representation in Fig. 2. A domain acting as a DC provides a
DU with a service that manages the DU’s personal data. A do-
main acting as a DP provides a DU with a service that uses a
DU’s personal data. It is assumed that a domain has only one
super-domain.

A super-domain has super-domain policies that are meta-level
and general constraining the activities of all domains that belong
to the super-domain, by reflecting its laws or regulations with
which the domains need to comply.

The domain policies are organizational domain-specific that in-
herit the super-domain policies in the super-domain, and are not
specific to DUs. When a DC propagates personal data to a DP, the
DC and the DP agree on a set of policies on how the data are to
be used and handled prior to being propagated. The agreed-upon
policies migrate with the data from the DC to the DP.

The user policies are specified by a domain for a DU, reflecting
user preferences, which are a DU’s privacy-related preferences
for handling the DU’s personal data. As a result of user prefer-
ences being incorporated into user policies, a DU needs to fol-
low the user policies specified by domains to enjoy their services.
More detailed descriptions on how these policies are created and
provided will be given in the sections that follow.

3.3 Policy Provisioning Chain
A DU’s data possibly propagate from domain to domain. Here,

the data-handling policies associated with the data also propa-
gate from a domain acting as a DC to a domain acting as a DP.
The flow of the policies constitutes a chain of domains as seen in
Fig. 3.

When domain P manages data, it obtains super-domain policies
from its super-domain, and additionally agreed-upon policies if
the data have originally been propagated by another domain act-
ing as a DC to incorporate them into its domain policies. P, acting

c© 2012 Information Processing Society of Japan 198

Journal of Information Processing Vol.20 No.1 196–206 (Jan. 2012)

as a DC, propagates the data and their handling policies to domain
Q, acting as a DP, after P and Q have agreed upon the policies.
As a result of data being propagated and policies being agreed
on, Q becomes responsible for handling the data. In this way, if
data propagate from domain to domain, their associated handling
policies change to those reflecting local domain policies and they
propagate together with data to enforce the behavior of another
domain that receives the data. The first entity that provides poli-
cies in a provisioning chain is called the root domain, which is
denoted by domain O in Fig. 3.

There are two types of relationships between adjacent domains
in the policy provisioning chain. The first is a hierarchical rela-
tionship. Since the upper domain manages the lower domain in a
policy hierarchy in this case, the lower domain inherits the poli-
cies from those of the upper domain. The second is a propagation
relationship in different domains that are placed on the same level
in the policy hierarchy. Here, policies are propagated from a DC
to a DP after they reach agreement on how data are to be handled.

3.4 Policy Components
Let DI denote the set of domain identifiers that uniquely iden-

tify domains in the system and PI denote the set of policy identi-
fiers that uniquely identify policies in a domain.
Definition 1 (Global policy identifier (GPI)). A GPI is a pair

〈d id, p id〉, where d id ∈ DI is the identifier of the domain that

creates and issues a policy and p id∈PI(d id) is the identifier of

the corresponding policy in the domain.

A GPI is used to uniquely identify the corresponding policy in
the proposed distributed system, where GPI represents the set of
GPIs.

Next, the following definition is given as a component of a pol-
icy.
Definition 2 (Target). A target is a four-tuple 〈domains,

sub jects, data, action〉, where domains ⊆ {d|d ∈ DI} represent

the set of identifiers of domains in the system, sub jects ⊆ {s|s ∈
(U ∪DI)} are the subjects that consist of the union set of DUs

U and domains DI, data represent the target group of objects

or resources in the domains that is accessed by the subjects, and

action∈A is a specific activity that invokes a function call on the

data.

This model specifies a policy as the following definition.
Definition 3 (Policy). A policy is a four-tuple 〈gpi, par gpi,

target, constraints〉, where gpi ∈ GPI is the GPI of this policy,

par gpi∈GPI is the GPI of the parent policy on which basis this

policy is created, and target∈T is the target of the former policy.

3.5 Policy Classification and Examples
There are several classes of policies. There are two types of

domain policies, i.e., common policies and governance policies.
Common policies control the actions of DUs on data in corre-
sponding domains while governance policies specify the actions
and constraints of corresponding domains, not DUs.
Example (Common domain policies). A common domain pol-
icy statement in a natural language is “Any users are allowed, by
the domain to which they belong, to propagate their personal at-
tribute data to other users or domains if they show their explicit

consent to the propagation.” This statement can be specified in
the form described in Section 3.4:

(P0.a) : 〈〈d0, p0.a〉, , 〈∗, {u0}, data, propagate〉,
〈d0 ∈ DI, p0.a ∈ PI(d0), u0 ∈ U(d0),

propagate ∈ A, att(u0, data), consent(u0)〉〉,

where “∗” means that any sub-domains in domain d0 are in-
cluded in the target of this policy and axioms att(u0, data) and
consent(u0) denote that data represent the set of u0’s personal
attributes and that u0 consents to the execution of the action
(propagate). The “ ” stands for the empty global policy identi-
fier indicating that this policy is the root.

A domain in another common domain policy that is a digi-
tal content owner can state that no subscribers have any right to
propagate the content in the following form:

(P0.b) : 〈〈d0, p0.b〉, , 〈{d0}, {u0}, content,¬propagate〉,
〈d0 ∈ DI, p0.b ∈ PI(d0), u0 ∈ Us ⊆ U,

propagate ∈ A, own(d0, content)〉〉,

where operator ¬ specifies a logical negation, the set of DUs, Us,
denotes the subscribers of the content in the domain, and axiom
own(d0, content) indicates that domain d0 owns the content.

Governance policies are directives for managing the behavior
of sub-domains from an administration point of view.
Example (Governance domain policies). Information on per-
sonal attributes such as name and address can ultimately be man-
aged by the DU that owns them, assuming the concept is accept-
able from the standpoint of local laws.

(P0.c) : 〈〈d0, p0.c〉, , 〈{d1}, {d1}, buying history, retain〉,
〈d0, d1 ∈ DI, p0.c ∈ PI(d0), d1 < d0, retain ∈ A,

retentionPeriod(3years)〉〉,

where buying history denotes a DU’s buying history collected by
domain d1 as a result of providing its commercial service, oper-
ator “<” between domains indicates the hierarchical relation be-
tween them, and retentionPeriod(·) specifies the period during
which d1 may retain the history data so that domain d0 restricts
d1’s actions in retaining DU’s data.

Another example

(P0.d) : 〈〈d0, p0.d〉, , 〈{d1}, {d0}, policies, publish〉,
〈d0, d1 ∈ DI, p0.d ∈ PI(d0), d1 < d0,

publish ∈ A, create(d0, policies)〉〉

specifies that domain d1 grants d0’s publishing message contain-
ing the policies created by d1. The d0 can administer its d1 to ac-
cept its policies by d1’s deploying and enforcing the above (meta-
level) policy (P0.d) distributed by d0.

The representation of domain policies can be changed into one
specific to a domain to which the policies are propagated. The
following policy example is created from domain policy (P0.a) as
a baseline policy.
Example (Instantiated domain policies). A policy instantiating
policy (P0.a) is

c© 2012 Information Processing Society of Japan 199

Journal of Information Processing Vol.20 No.1 196–206 (Jan. 2012)

(P1.a) :〈〈d1, p1.a〉, 〈d0, p0.a〉, 〈{d1}, {u1}, data, propagate〉,
〈d0, d1 ∈ DI, p0.a ∈ PI(d0), p1.a ∈ PI(d1),

u1 ∈ U(d1), propagate ∈ A,

att(u1, data), consent(u1)〉〉.

In policy (P1.a), the administrator of this domain (d1) limits
the subjects of the target to DUs in domain d1 whereas the target
subjects of original policy (P0.a) are DUs in domain d0.

User policies in a domain are policies for a particular DU re-
stricting a specific type of the DU’s personal data within a certain
context. The following example is a user policy created based on
the policy (P1.a) by using the same approach as that in creating
(P1.a) from (P0.a).
Example (User policies). A domain policies instantiating policy
(P1.a) for DU Alice in the domain is

(P1.b) :〈〈d1, p1.b〉, 〈d1, p1.a〉, 〈{d1}, {alice}, data, propagate〉,
〈d0, d1 ∈ DI, p0.a ∈ PI(d0), p1.a, p1.b ∈ PI(d1), alice,

bob ∈ U(d1), propagate ∈ A,

att(alice, data), consent(alice),

recipient(data, bob)〉〉.

Policy (P1.b) is specific to Alice by converting a general DU
u1 in (P1.a) into Alice. In addition, an axiom recipient(·) is added
to restrict the recipient of Alice’s data only to DU Bob.

4. Policy Provisioning Framework

This section describes detailed procedures on managing the
lifecycle of policies as well as on data to be managed using these
policies.

4.1 Architecture
The system architecture of each domain for the proposed pro-

visioning framework is shown in Fig. 4. Both DC and DP sys-
tems have common functions such as filter, access control, policy

management, and user interaction. The filter function monitors
requests from a DC or a DU whose access needs to be controlled.
The access control function determines whether requests are to
be granted or denied, the policy management function consists of
sub-functions, which will be described later, and the user inter-
action function interacts with DUs with a DC or DP to perform
policy-related actions.

The mapper, creation, update, revocation, and incorporation

are common to DC and DP in the policy management function.
The mapper function changes a target contained in a policy repre-
sentation into a domain specific one and converts the name iden-

Fig. 4 System architecture.

tifiers of DUs. Since each domain manages DUs, policies, and
objects independently of other domains as a basic unit of admin-
istration in the distributed system, their identifiers may differ from
those of other domains. In such cases, the mapping function re-
solves the name differences between domains. The creation func-
tion creates a new policy. The update and revocation functions
update and revoke an existing policy. The incorporation function
integrates a policy with another that has been provided by other
domains. The publisher function in a DC publicizes and sends
policies to DPs in other domains in a push manner in which the
DC initializes the propagation of its policies or in a pull manner
in which it returns with them in response to DPs’ requests. In
contrast, the subscriber of a DP subscribes and receives a DC’s
policies in the opposite manner to a DC.

A DC manages policies, data, published policy information,
and agreed upon policies. The published policy information a
DB manages is a set of the identifier of a propagated policy and
its recipient domains. This information is used to send notifica-
tions to the domains when the policies are updated or revoked.
The agreed upon policies are user policies that DC and DP agree
upon how to handle DUs’ data. A DP also manages its policies
whereas it may not have data depending on the constraints of the
policies. Both a DC and a DP manage policies in each policy DB
so that they are retrieved using a key such as a policy identifier
and an action value.

4.2 Policy Operations
This section describes policy operations that include creation,

update, revocation, publication, subscription, and incorporation
using the functions outlined in Fig. 4.
4.2.1 Policy Creation

Policies are created by the administrator of the domain. Since
a root domain corresponds to an administrative organization such
as an industrial company or governmental body, its domain poli-
cies are created from the administrative viewpoints of security
or privacy. The brief algorithm for creating a policy is listed in
Algorithm 1.

Algorithm 1 createPolicy(domains, sub jects, data, action,

constraints)
Require: d: the identifier of the domain within which this function operates.
1: p← new policy()
2: p.gpi = new gpi(generate id(), d)
3: p.par gpi = null
4: p.target = new target(domains, sub jects, data, action, constraints)
5: P.putPolicy(p)
6: return p

A new policy is created in this procedure and its GPI and tar-
get are set if arguments such as domains, data, actions, and con-
straints are given. The parent global-policy identifier is set to null
indicating that there is no parent information because this domain
is the root of the policy.
Creation Request. If the administrator of a DC domain would
like a DP domain to deploy the created policy, he or she propa-
gates a message encapsulating it to the DP domain. The proce-
dure for creating and sending policies is listed in Algorithm 2.

c© 2012 Information Processing Society of Japan 200

Journal of Information Processing Vol.20 No.1 196–206 (Jan. 2012)

Algorithm 2 sendCreatedPolicies(pols, d)
Require: pols: the created policies; d: the domain to which p is propagated.

PP: published policy information DB.
1: pols′ ← copy(pols)
2: for all i such that pi ∈ pols do
3: pi ← map(pi, d)
4: gpi = new gpi(d, pi.gpi.p id)
5: PP.putDomains(gpi, d)
6: end for
7: msg← createMessage(“creation”, pols′)
8: send(msg, d)

In step 1, the local identifier of a DU is converted into his or her
federated identifier if it is used to identify him or her between the
domain sending and receiving the policy. Function new gpi(·) in
step 4 creates a new GPI and this is then stored in the published
policy information DB PP (step 5). A message containing pol-
icy p′ with the message indication tag “creation” is produced and
then the message is propagated to d (steps 7–8).
Operation for Received Creation Request. When a DC do-
main receives the creation request, the following procedure is per-
formed.

Algorithm 3 receiveCreatedPolicies(pols, ds)
Require: pols: the created policies received; d: this domain; ds: the domain

propagating the policies.
1: for all i such that pi ∈ pols do
2: p← map(pi, ds)
3: p.par gpi = pi.gpi
4: p.gpi = new gpi(d, generate id())
5: P.putPolicy(p)
6: end for

When the DP domain receives the created policies, it recreates
a policy by resolving the name identifiers of subjects for each pol-
icy (step 2) , sets the parent GPI as domain ds, sets the local GPI
as the domain operating this algorithm (steps 4–5), and it is then
registered in the policy DB (step 5).
4.2.2 Policy Update

The administrator of the domain updates an existing policy;
the policy created as a result of the update is checked whether it
is consistent with the super-domain policies on which the original
policy is based, which is listed in Algorithm 4.

Algorithm 4 updatePolicy(p)
Require: p: the updated policy; P: the policy DB.
1: pols← P.getDomainPolicies()
2: result ← checkSimilarity(pols, p)
3: if result = true, then
4: sendUpdatePolicy(p)
5: end if

In step 1, existing policy p is updated. In step 2, the lat-
est domain policies in the domain’s policy DB are retrieved by
calling P.getDomainPolicies() and the similarities between
the domain policies and the updated policy are checked using
checkSimilarity(·), which will be explained with Algorithm 5
(step 3). The types of relationship between two policies are listed
in Fig. 5 [9].

Fig. 5 Types of similarities in policies.

Algorithm 5 checkSimilarity(pols, p)
1: spols← pols.getPolicy(p.target.action)
2: if spols = null, then
3: pols.add(p)
4: return true
5: end if
6: for all i such that pi ∈ spols do
7: if pi.diverges(p) or pi.restricts(p), then
8: return false
9: else if pi.extends(p), then

10: pols.del(pi)
11: pols.add(p)
12: else if pi.shuffles(p), then
13: p′ ← createMeetPolicy(pi, p)
14: pols.del(pi)
15: pols.add(p′)
16: end if
17: end for
18: return true

There are five types of similarities in policies, “converges,” “di-
verges,” “restricts,” “extends,” and “shuffles.” Note that the sim-
ilarities between two policies are viewed with respect to which
of their conditions hold and that the area covered by a circle rep-
resenting a policy corresponds to the scope with which it grants
execution. Of these, the relationship between an existing domain
policy and a new policy to be checked corresponds to “diverges”
or “restricts” (step 7); a false value is returned (step 8), since
the new policy has a different constraint from that of the existing
one. If the relationship corresponds to “extends” (step 9), the ex-
isting policy is deleted and the new policy is registered (steps 10–
11). Otherwise, if the two policies are in a “shuffles” relationship
(step 12), a policy for the union of the existing and new poli-
cies is newly created by calling function createMeetPolicy(·)
(step 13); the existing one is deleted (step 14), and the new inter-
section policy is added to the list of domain policies (step 15).
Finally, this function returns true with a set of registered do-
main policies (step 18). Note that the above approach to integrat-
ing policies strengthens policy constraints except for “converges,”
“diverges,” and “restricts” cases in which the existing policy en-
compasses the new one.
Update Request. If the administrator updates a policy that has
been propagated to a domain, he or she propagates the updated
policy to the domain to reflect the update to the policy that has
been deployed. The procedure for updating and sending an up-
dated policy to domains is listed in Algorithm 6.

c© 2012 Information Processing Society of Japan 201

Journal of Information Processing Vol.20 No.1 196–206 (Jan. 2012)

Algorithm 6 sendUpdatedPolicies(pols)
Require: pols: the updated policies; PP: published policy information DB.
1: pols′ ← copy(pols)
2: for all i such that pi ∈ pols′ do
3: domains← PP.getDomains(pi)
4: for all j such that d j ∈ domains do
5: p← map(pi, d j)
6: msg← createMessage(“update”, {p})
7: send(msg, d j)
8: end for
9: end for

In step 1, the information on domains to which policy p has
been propagated is obtained by searching the published policy
data. Then, for each domain stored in the domains, an updated
policy is propagated after the corresponding message is created
with its indication tag “update” (steps 2–6).
Operation for Received Update Request. When a DP domain
receives the update request in Algorithm 6, it uses the following
procedure in Algorithm 7.

Algorithm 7 receiveUpdatedPolicies(pols, ds)
Require: pols: the updated policies, ds: the domain propagating the poli-

cies.
1: for all i such that pi ∈ pols do
2: p← P.getPolicy(pi.gpi.p id)
3: p← map(p, ds)
4: updatePolicy(p)
5: end for

The DP domain searches a policy corresponding to each up-
dated policy it receives with its policy identifier in the policy DB
(step 1). Then, it resolves the name identifier in the policy and
recreates a new policy by calling function updatePolicy(p) in
Algorithm 4. This means that policy-update operations are re-
cursively performed beyond distinct domains if an update policy
complies with its corresponding policy propagated by the DP’s
super-domain.
4.2.3 Policy Revocation

When the administrator of the domain revokes an existing pol-
icy, the parent domain is checked to restore a parent domain pol-
icy if the policy to be revoked has been created by restricting the
parent policy. This procedure is listed in Algorithm 8.

Algorithm 8 revokePolicy(p)
Require: p: the policy to be revoked.
1: if p.par gpi = null, then
2: sendRevocations({p})
3: P.delPolicy(p)
4: else
5: p′ ← p.par gpi.p id
6: P.delPolicy(p)
7: P.putPolicy(p′)
8: sendUpdatePolicies({p′})
9: end if

If the policy to be revoked has been created locally (step 1),
a revocation message is sent by calling sendRevocations(·),
which will be explained with Algorithm 9, and the policy is re-
voked (step 3). If the policy to be revoked is based on a parent
policy (step 4), a corresponding update message is sent to do-
mains to which the original policy has been propagated so that

they can deploy the parent policy instead of the policy that has
been deployed.
Revocation Request. If the administrator revokes a policy that
has been propagated to a domain, he or she sends a revocation
message to the domain to successively revoke the policy that has
been deployed. The procedure for revoking and sending a revoca-
tion message to corresponding domains is listed in Algorithm 9.

Algorithm 9 sendRevocations(pols)
Require: pols: the policies to be revoked; PP: published policy information

DB.
1: for all i such that pi ∈ pols do
2: domains← PP.getDomains(pi)
3: for all j such that d j ∈ domains do
4: msg← createMessage(“revocation”, {pi})
5: send(msg, d j)
6: PP.delDomain(pi, d j)
7: end for
8: end for

In steps 3–6, a revocation message is created and sent to each
domain d j regarding policy p, which has been propagated. Af-
ter that, each item of domain information and policy is delegated
from the published policy DB (step 6).
Operation for Received Revocation Request. When a DC do-
main receives the revocation request, it uses the following proce-
dure listed in Algorithm 10.

Algorithm 10 receiveRevocations(pols)
Require: pols: the policies to be revoked.
1: for all i such that pi ∈ pols do
2: p← P.getPolicy(pi.gpi.p id)
3: revokePolicy(p)
4: end for

In the same way as the procedure performed in Algorithm 7,
policies to be revoked are sought by their policy identifier in the
policy DB and revoked. In this procedure, the operations related
to revocation are successively performed in the domains that have
propagated and deployed the original policies.
4.2.4 Policy Subscription

The policy subscription function in a DP retrieves a DC’s poli-
cies. The following procedure for a DP creates and sends a policy
subscription request to a DC, which is listed in Algorithm 11.

Algorithm 11 sendSubscriptionRequest(dc, pols)
Require: dc: a DC domain; pols: the policies of a DP sending this request.
1: pols(dp) ← ∅
2: for all i such that pi ∈ pols do
3: p← map(pi, dc)
4: pols(dp).add(p)
5: end for
6: msg← createMessage(“subscription”, pols(dp))
7: send(msg, dc)

The policies in the arguments of the above function specify the
DP’s policies restricted by the target encapsulated therein. The
information on elements in the target affects what kinds of poli-
cies the DP would like to retrieve from a DC to which the re-
quest has been transmitted. If the policies, pols, are null, the
DC hopes to obtain the DC’s latest policies related to the DP that

c© 2012 Information Processing Society of Japan 202

Journal of Information Processing Vol.20 No.1 196–206 (Jan. 2012)

have been propagated to the DP. If pols is not null, on the other
hand, there are some variations in the requested policies. For ex-
ample, they are domain policies that do not constrain any specific
subjects or user policies that specify how a DU’s data are to be
handled if these elements are contained in their target. The DC
domain sends a subscription request with the indication tag “sub-
scription” attaching the requested policy information after name
identifier resolution (steps 1–6).

When the DP receives a response to the above subscription re-
quest from a DC or a publication message initiated by a DC, the
following procedure is performed by the DP to subscribe to poli-
cies from the DC, which is listed in Algorithm 12.

Algorithm 12 subscribePolicies(ds)
Require: pols: the published policies; ds: super-domain.
1: for all i such that pi ∈ pols do
2: p← map(pi, ds)
3: pols.add(p)
4: end for
5: return pols

The received policies are not added to the policy DB since the
DP has already received them if they are domain policies. If they
are user policies, they are stored in the agreed upon policy DB as
the agreement between the DC and the DP.
4.2.5 Policy Publication

A DC domain publishes the latest policies managed in the pol-
icy DB to sub-domains at every fixed period in a push manner or
when the domain receives policy subscription requests from sub-
domains in a pull manner. The policies published to a sub-domain
are limited to those whose target encompasses the sub-domain.
Publication Message. A DC’s publication message corresponds
to the propagation of the DC’s latest policies that have been prop-
agated to DP domains or in response to DP domains’ policy sub-
scription requests, which was explained in Section 4.2.4. Each
publication message has the indication tag “publication.” The
procedure for a DC to create and send publication messages is
listed in Algorithm 13.

Algorithm 13 publishPolicies(req, d)
Require: req: a DP’s subscription request; d: the identifier of the DP to

which the published policies are sent.
1: if req � null, then {publishing in a pull manner}
2: pols(dp) ← req.getPolicies()
3: for all j such that p j ∈ pols(dp) do
4: p′ ← map(p j, d)
5: pols← P.getPolicies(p′.target)
6: if ¬(∃p ∈ pols); p.converges(p′) or p.extends(p′), then
7: return false
8: end if
9: end for

10: else {publishing in a push manner}
11: pols(dp) ← P.getPolicies(d)
12: end if
13: msg← createMessage(“publication”, pols(dp))
14: send(msg, d)
15: return true

When the DC receives a DP’s subscription request, req (step 1),
it obtains the DP’s policies that are requirements for handling the

data specified therein (step 2). Each policy from the DP is con-
verted to a domain specific one (step 3), policies related to the DP
policy are retrieved by searching the policy DB with a key to its
target information (steps 4–5), and whether the DP policy con-
flicts with existing DC policies is checked (steps 6–8). Although
this procedure is a policy negotiation between a DC and a DP, if
there is conflict between their policies, the DC refuses to provide
the DP with the data corresponding to the requested DP policies.
If req is null, the DC obtains the latest policies related to a DP
to initiate a message being sent that contains them (steps 10–11).
Finally, the DC creates a message containing the policies with
the indication tag “publication” and propagates them to the DP
(steps 13–14).
4.2.6 Policy Incorporation

Policies in a domain need to be created based on its existing
domain policies to avoid conflicts between them. The procedure
in a domain for incorporating policies is listed in Algorithm 14.
This procedure is used when a DC or DP creates a new domain
policy complying with the existing domain policies or when a DP
receives the agreed upon policies after requesting a subscription
message from the DC.

Algorithm 14 incorporatePolicy(p)
1: pols(d) ← getPolicies()
2: result ← checkSimilarity(pols(d), p)
3: if result = true, then
4: return pols(d)

5: else
6: return null
7: end if

The DC retrieves its domain policies (step 1) and checks the
similarities between the existing policies and the policy to be in-
corporated (step 2). If there are no conflicts, the policy is incor-
porated and the updated policy set is returned (steps 3–4). This
procedure avoids policies from being incorporated that have con-
flicts.

5. Case Study

This section presents a case study using the proposed frame-
work.

A domain’s user policies are generally not sufficient to enforce
them when the domain attempts to make a decision to grant a data
access request because it is difficult for a domain’s administrators
to statically specify any constraints dependent on data types and
DUs, or because it is impossible for a DU to specify his or her
user preferences unless conditions are presented. If the policies
include a DU’s decision or consent, the domain especially needs
to interact with the DU and obtain it at runtime. Since this DU’s
decision or consent indicates one of the DU’s user preferences,
they need to be incorporated into a domain’s policies.

Figure 6 outlines a series of interactions between a DP, a DC,
and a DU for the DP to retrieve the DU’s personal attribute data
managed by the DC. The procedure includes control by a DC
to access managed personal data and dynamically incorporate the
user preferences of the DU.

The DP sends a request for attaching an agreement to its DC

c© 2012 Information Processing Society of Japan 203

Journal of Information Processing Vol.20 No.1 196–206 (Jan. 2012)

Fig. 6 DC’s policy and procedure for data provisioning.

policies specifying how and for what purpose the DC intends
to use a particular DU’s personal attributes (step 1, see Sec-
tion 4.2.4). The DC verifies the request message and checks
whether the policies sent from the DP conflict with the DC’s poli-
cies (step 2, see Section 4.2.5). The DC requests consent from
the DU that owns the target data to consent by describing how
the data will be used by the DP because the DC’s policies have
a constraint on the DU’s consent to the action of data propaga-
tion (step 3). The DU shows the consent to the DC, which is
one of the user preferences (step 4). Therefore, the consent is
incorporated into the DC policies and agreed-upon policies are
created using the updated DC policies and DP policies (step 5,
see Section 4.2.6). The policies are in agreement including an
identifier that can be used to identify the authenticity of the data
request arriving from the DP. After the DC responds with these
agreed-upon policies (see Section 4.2.5), the DP stores these poli-
cies as an agreement with the DC on data-handling (step 6, see
Section 4.2.4). The DP then makes a new request for the DU’s
personal data with a GPI of the agreed-upon policies (step 7).
The DC confirms whether it manages the agreed-upon policies
identified by the GPI contained in the received request from the
DP. The DC verifies the agreed-upon policies (step 8) and then
propagates the requested data to the DP (step 9).

In the above example, a DC incorporates a DU’s consent into
its user policies at runtime when a decision on access control to
propagate data is needed. In the same way, a DP also incorporates
a DU’s consent to process the DU’s data at runtime when the DP
attempts to do so.

6. Discussion

This section discusses several topics and issues related to the
proposed model and framework.

6.1 Validation of Proposed Framework
The proposed framework integrates the data-handling policies

of a DC and a DP when they exchange corresponding personal
data. When a domain creates new domain policies, the proposed
framework incorporates super-domain policies into the new ones.
In these operations, a parent domain’s policies are always re-
flected in the new policies while conflicts between policies are
detected and avoided by checking for similarities. Hence, re-
quirement (1) presented in Section 2 is satisfied. In addition,
the proposed framework can keep track of data-handling policies
wherever their corresponding data propagate in different entities
in a distributed environment by assigning the GPIs to the data
based on the proposed model and by conveying the information

along with the data as specified in the policy operations in Sec-
tion 4. Therefore, requirement (2) presented in Section 2 is also
satisfied.

6.2 Data Retention
Policies in the proposed model that reflect local laws or regu-

lations of social organizations or computer systems are appropri-
ately provided beyond administrative domains in distributed envi-
ronments since the model has a hierarchical structure for creating
and propagating policies and supports a policy propagation chain
in accordance with data propagation. By means of this approach,
the administrator of a root domain can retain the management of
data enforcing their provisioned policies that reflect his or her in-
tentions regarding data governance even after the data have been
propagated in the distributed system. In addition, participating
parties in the system can clarify their liabilities concerning data
practices and improve their accountability for activities in han-
dling data.

6.3 Policy Conflicts
The proposed model facilitates the avoidance of policy con-

flicts between entities detecting similarities between policies
when new policies are created or integrated. Since DP entities
need to accept a DC’s controlling policies or strengthen their con-
straints, there is no room for policy negotiations in policies be-
tween them. This is appropriate from the governance and compli-
ance viewpoints of a root domain’s administrator. However, this
approach may reduce the expressiveness of policies when flex-
ible representations such as exceptional action rules are needed.
Although this is a problem involving a trade-off, finding an appro-
priate balance between administrative restrictive descriptions and
rich representations of policies is an open issue that bears further
investigation.

6.4 Directive and Recommendation Policies
Governance policies state that personal information can be

managed by a DU as its owner from a user-centric perspective.
However, it is difficult for a DU to take appropriate action in all
environments. For example, privacy laws and privacy guidelines
such as those of the OECD [10] dictate that enterprises should
take into account the consent given by people to use their data
for specified purposes. However, people may possibly act inap-
propriately if they do not understand what their consent involves,
which unfortunately does not match the intentions of legislators
of privacy-related guidelines. In such cases, administrators can
specify complementary directive policies stating that enterprises
should provide sufficient explanations to people about how their
data will be used or that enterprises should suggest possible ac-
tions for them to take.

6.5 Practicality
Although this work dealt with policy provisioning by introduc-

ing a general description of data-handling policies to describe the
general framework and algorithms, further more specific repre-
sentations of data-handling policies are needed to deploy them in
real systems because the mapping and resolution of name iden-

c© 2012 Information Processing Society of Japan 204

Journal of Information Processing Vol.20 No.1 196–206 (Jan. 2012)

tifiers depend on what policy representations are deployed. Al-
though policy operations as well as their propagation are evi-
denced by each algorithm, an overall implementation and fea-
sibility study of the proposed framework remain to be done in
future work.

7. Related Work

This section highlights research efforts in the area of access
control, privacy management, and policy-specification languages
related to the work presented in this paper.

The idea of controlling access to data even after they have been
disseminated has been considered especially by the digital rights
management (DRM) community [11]. Their work has focused
on protecting digital content from unauthorized copying and dis-
tribution by disseminating packages containing the content data
and access control policies. Prior work [7], [8] toward managing
privacy has introduced the concept of “sticky policies,” in which
handling policies are directly associated with personal informa-
tion. In their approaches, users retain control over their personal
information even after it has been disclosed by enforcing privacy
policies, which reflect their preferences about how it is to be used
next at its recipient site. The work here inherits the basic idea of
tight bundling of data and policy described above, regardless of
whether the type of policy is security or privacy related.

There have been numerous research efforts related to exten-
sions of traditional mechanisms for access control to protect pri-
vacy [1], [2], [12]. Ardagna et al. [2] proposed a privacy-aware
system to control access that enforced access control policies to-
gether with privacy policies such as release and data-handling
policies that regulated the use of personal information in sec-
ondary applications. They focused on the introduction of data-
handling policy language and the integration of traditional access
control and data-handling policies created from two actors, i.e.,
a service provider that managed personal information and a user
who originally had the information. However, their work did not
describe how data-handling policies were created and deployed
in a system that consisted of entities that had distinct responsi-
bilities or roles and that supported multiple chains to disseminate
data among those entities. The work described here instead fo-
cuses on policy management in which a data managing provider
collaboratively establishes data enforcing policies.

Other relevant work on privacy and identity management has
been on identity governance, which is an emerging concept to
provide fine-grained conditional disclosure of identity informa-
tion and enforce corresponding data-handling policies. Liberty
Alliance specifies fundamental privacy constraints on such gov-
ernance as the use, display, retention, storage, and propagation of
identity information [4]. Although this work allows access con-
trol that enhances privacy by defining new types of expressive
privacy policies, it does not fully take into consideration the inte-
gration or composition of policies among distinct actors located
in different administrative domains. The proposed framework ad-
dresses a method of transmitting and incorporating data-handling
policies associated with shared identity information between ac-
tors. Previous work [13] has addressed the notion of provisioning
policies in a distributed environment. However, it has not sup-

ported persistent management policies. In contrast, the present
work provides a comprehensive framework for keeping data and
their associated policies under control from the broad perspective
of distributed systems.

Relevant work has been done in the field of policy management
such as policy integration and conflict resolution. Mazzoleni
et al. [9] proposed policy integration algorithms for XACML [14].
They believed that XACML had not been built to manage security
for systems in which enterprises were dynamically constructed
with the collaboration of multiple independent subjects. The ap-
proach proposed here is relevant in that entities located in dif-
ferent security domains collaboratively share data and their poli-
cies. Belokosztolszki and Moody [15] introduced meta-policies
for distributed role-based access control (RBAC) [16]. Warner
et al. [17] proposed a coalition-based access control (CBAC)
model in which access control policies were dynamically agreed
upon between entities in a coalition relationship. Although their
work was relevant in that they considered a hierarchical struc-
ture for managing policy in distributed systems, they did not deal
with how to integrate and deploy the policies of entities in a hier-
archical structure and distributed environment. Bettini et al. [18]
formalized a rule-based policy framework that controlled access
by user requests for action by evaluating rules associated with
provisions and obligations, which were pre-conditions to be sat-
isfied before and post-conditions to be satisfied after the action
had been performed. Their framework provided a mechanism for
reasoning about the policy rules in the presence of provisions and
obligations in a single administrative domain to derive an appro-
priate set of these. In contrast, the framework presented here is
composed of a set of policies using different actors with differ-
ent responsibilities in distinct domains and it enforces the com-
posed policies that reflect a system administrator and a user in
distributed identity management systems.

Another important contribution has focused on secure interop-
eration in a multi-domain environment where user access from
different domains is allowed by employing their own security
policies [5], [6]. Shafiq et al. [5] proposed a policy integration
framework for merging the heterogeneous RBAC policies of dis-
tinct domains into a global access control policy by resolving
conflicts that may have arisen among them. Although their re-
search shared this work’s goal of creating and integrating poli-
cies that satisfied requirements arising from distinct entities in
different domains, their approach lacked support for the lifecyle
management of access control policies in each domain in which
personal information is propagated. In addition, their approach
lacked the notion of protecting a user’s privacy because it did
not deal with administrative policies or user preferences in han-
dling identity information. In contrast, the present work proposes
an interoperation framework for providing data-handling policies
to trusted systems to persistently control identity information in
a way that preserves privacy. Promruen et al. [6] proposed an
RBAC framework using generalized temporal role based access
control (GTRBAC) [19], which generates an inter-domain policy
with temporal constraints to allow secure access from an external
partner. They presented algorithms in the framework for gen-
erating a minimal disjoint set of merged policies by determin-

c© 2012 Information Processing Society of Japan 205

Journal of Information Processing Vol.20 No.1 196–206 (Jan. 2012)

ing the relations between them such as containment, equivalence,
overlapping, and disjunction, which are relevant to the proposed
schemes for updating, publishing, and incorporating policies in
this work. The main limitation to their solution with respect to
policy integration was that it was specific to roles because its
operation involved restructuring a role hierarchy to establish an
inter-domain access policy. In contrast, the proposed solution
provides a scheme for integrating policies from distinct entities
in a hierarchical relationship to control identity information re-
gardless of access control models that an individual entity uses
therein.

There has been a great deal of work on description languages
and constraints on privacy policies. P3P [20] and its complement
APPEL [21] provided the means for expressing comprehensive
user preferences. XACML [14] specified an access control lan-
guage to describe access control constraints and provides privacy
extensions to support privacy related constraints. EPAL [22] pro-
vided a privacy policy language for governing data practices in
enterprise systems. The Liberty Identity Governance Framework
(IGF) [4] specified privacy constraints. Although the framework
proposed here assumes such an expressive privacy policy and ac-
cess control language as basic building blocks, it focuses on man-
aging the lifecycles within which security and privacy policies are
enforced irrespective of their schema or the format they are rep-
resented in.

8. Conclusion and Future Work

This paper described a policy provisioning model in which dis-
tinct entities in distributed environments collaboratively create
and propagate data-handling policies. Algorithms for creating
and integrating policies enable data-handling policies to be de-
ployed and enforced to securely and privately control access to
personal data in an enhanced manner. The proposed framework
helps to manage the lifecycle of personal data and their data-
handling policies to reflect the intentions of the system admin-
istrator and their owners. Future work includes the incorporation
of policy-conflict resolutions and feasible studies on the proposed
framework.

Reference

[1] Byun, J.-W., Bertino, E. and Li, N.: Purpose Based Access Control of
Complex Data for Privacy Protection, Proc. 10th ACM Symposium on
Access Control Models and Technologies (SACMAT’05), pp.102–110
(2005).

[2] Ardagna, C.A., Cremonini, M., De Capitani di Vimercati, S. and
Samarati, P.: A Privacy-Aware Access Control System, Journal of
Computer Security, Vol.16, No.4, pp.369–397 (2008).

[3] Ni, Q., Bertino, E., Lobo, C., Brodie, C., Karat, C.-M., Karat, J.
and Trombetta, A.: Privacy-Aware Role-Based Access Control, ACM
Trans. on Information and System Security, Vol.13, No.3, pp.24:1–
24:31 (2010).

[4] Liberty Alliance Project: Liberty IGF Privacy Constraints Specifica-
tion (2008), available from 〈http://www.projectliberty.org/specs〉.

[5] Shafiq, B., Joshi, J., Bertino, E. and Ghafoor, A.: Secure Interopera-
tion in a Multidomain Environment Employing RBAC Policies, IEEE
Trans. Knowledge and Data Engineering, Vol.17, No.11, pp.1557–
1577 (2005).

[6] Piromruen, S. and Joshi, J.: An RBAC Framework for Time Con-
strained Secure Interoperation in Multi-domain Environments, Proc.
10th IEEE International Workshop on Object-Oriented Real-Time De-
pendable Systems (WORDS’05), pp.36–48 (2005).

[7] Karjoth, G., Schunter, M. and Waidner, M.: Platform for Enterprise

Privacy Practices: Privacy-Enabled Management of Customer Data,
Proc. 2nd International Conference on Privacy Enhancing Technolo-
gies (PET’02), pp.69–84 (2002).

[8] Casassa Mont, M., Pearson, S. and Bramhall, P.: Towards Account-
able Management of Identity Privacy: Sticky Policies and Enforceable
Tracing Services, Proc. 14th Internatinal Workshop on Database and
Expert Systems Applications (DEXA’03), pp.377–382 (2003).

[9] Mazzoleni, P., Crispo, B., Sivasubramanian, S. and Bertino, E.:
XACML Policy Integration Algorithms, ACM Trans. on Information
and System Security, Vol.11, No.1, pp.1–29 (2008).

[10] OECD: OECD Guidelines on the Protection of Privacy and Transbor-
der Flows of Personal Data (2004), available from 〈http://www.oecd.
org/document/18/0,2340,en 2649 201185 1815186 1 1 1 1,00.html〉.

[11] Schneck, P.: Persistent Access Control to Prevent Piracy of Digital
Information, Proc. IEEE, Vol.87, No.7, pp.1239–1250 (1999).

[12] Casassa Mont, M. and Thyne, R.: Privacy Policy Enforcement in En-
terprises with Identity Management Solutions, Journal of Computing
Security, Vol.16, No.2, pp.133–163 (2008).

[13] Gomi, H.: Policy Provisioning for Distributed Identity Management
Systems, Proc. 2nd IFIP WG 11.6 Working Conference on Poli-
cies and Research in Identity Management (IDMAN’10), pp.130–144
(2010).

[14] OASIS: eXtensible Access Control Markup Language (XACML)
(2005).

[15] Belokosztolszki, A. and Moody, K.: Meta-Policies for Distributed
Role-Based Access Control Systems, Proc. 3rd International Work-
shop on Policies for Distributed Systems and Networks (POLICY’02),
pp.3–18 (2002).

[16] Sandhu, R., Coyne, E., Feinstein, H. and Youman, C.: Role-based Ac-
cess Control Models, IEEE Computer, Vol.29, No.2, pp.38–47 (1996).

[17] Warner, J., Atluri, V. and Mukkamala, R.: A Credential-Based Ap-
proach for Facilitating Automatic Resource Sharing Among Ad-Hoc
Dynamic Coalitions, Proc. 19th Anuual IFIP WG 11.3 Working Con-
ference on Data and Applications Security (DBSec’05), pp.252–266
(2005).

[18] Bettini, C., Jajodia, S., Sean Wang, X. and Wijesekera, D.: Provi-
sions and Obligations in Policy Management and Security Applica-
tions, Proc. 28th International Conference on Very Large Data Bases
(VLDB’02), pp.502–513 (2002).

[19] Joshi, J., Bertino, E., Latif, U. and Ghafoor, A.: Generalized Tempo-
ral Role Based Access Control Model, IEEE Trans. on Knowledge and
Data Engineering, Vol.17, No.1, pp.4–23 (2005).

[20] W3C: The Platform for Privacy Preferences 1.0 (P3P1.0) Specification
(2002), available from 〈http://www.w3.org/TR/P3P/〉.

[21] W3C: A P3P Preference Exchange Language 1.0 (APPEL1.0) (2002),
available from 〈http://www.w3.org/TR/P3P-preferences/〉.

[22] IBM: Enterprise Privacy Authorization Language (EPAL 1.2) (2003),
available from 〈http://www.w3.org/Submission/2003/SUBM-EPAL-
20031110/〉.

Hidehito Gomi received his B. Eng. de-
gree from the Department of Applied
Mathematics and Physics and the M. Eng.
degree from the Division of Applied Sys-
tems Science, Faculty of Engineering,
Kyoto University, Kyoto, Japan, in 1994
and 1996, respectively. From 1996 to
2007, he was a researcher in the labora-

tories of NEC Corporation. From 2001 to 2003, he was a visiting
researcher in the Computer Science Department of Stanford Uni-
versity, CA, USA. In 2007, he joined Yahoo! JAPAN Research,
where he is continuing his research on security architecture, iden-
tity management, and trust management. He is a member of the
IEEE-CS, ACM, IEICE, and IPSJ.

c© 2012 Information Processing Society of Japan 206

