
Journal of Information Processing Vol.20 No.1 185–195 (Jan. 2012)

[DOI: 10.2197/ipsjjip.vol.20.185]

Regular Paper

DP-FEC: Dynamic Probing FEC for High-Performance
Real-Time Interactive Video Streaming

KazuhisaMatsuzono1,a) Hitoshi Asaeda1 JunMurai1

Received: April 11, 2011, Accepted: September 12, 2011

Abstract: High-quality and high-performance real-time interactive video streaming requires both keeping the highest
data transmission rate and minimizing data packet loss to achieve the best possible streaming quality. TCP-friendly
rate control (TFRC) is the most widely recognized mechanism for achieving relatively smooth data transmission while
competing fairly with TCP flows. However, because its data transmission rate depends largely on packet loss con-
ditions, high-quality real-time streaming suffers from a significant degradation of streaming quality due to both a
reduction in the data transmission rate and data packet losses. This paper proposes the dynamic probing forward er-
ror correction (DP-FEC) mechanism that is effective for high-quality real-time streaming to maximize the streaming
quality in a situation in which competing TCP flows pose packet losses to the streaming flow. DP-FEC estimates the
network condition by dynamically adjusting the degree of FEC redundancy while trying to recover lost data packets.
It effectively utilizes network resources and adjusts the degree of FEC redundancy to improve the playback quality at
the user side while minimizing the performance impact of competing TCP flows. We describe the DP-FEC algorithm
and evaluate its effectiveness using an NS-2 simulator. The results show that by effectively utilizing network resources,
DP-FEC enables to retain higher streaming quality while minimizing the adverse condition on TCP performance, thus
achieving TCP friendliness.

Keywords: real-time streaming, forward error correction, dynamic FEC, TCP-friendly rate control

1. Introduction

The evolution of the Internet has seen a rapid growth in both
users and applications. Owing to the dissemination of high-speed
broadband networks, users are expecting to fulfill an application
demand more comfortably, and applications promote users to in-
crease their motivation. High-quality and high-performance real-
time applications are the primary ones. Engineers are develop-
ing high-performance streaming applications [5], [23] that can be
used easily with consumer electronic devices and ordinary PCs
for the purposes of e-learning, international symposiums, and
telemedicine [2]. It is easily expected that as the Internet evolves
to higher-speed networks, these video applications will become
increasingly popular.

Typically, real-time interactive video streaming requires the
minimization of packet losses while maintaining the highest data
transmission rate under acceptable transmission delays, to pro-
duce the best possible streaming quality. However, because high-
quality and high-performance streaming flows consume a large
amount of network bandwidth for data transmission, they may
compete for bandwidth with other data flows (e.g., transmis-
sion control protocol (TCP) and/or user datagram protocol (UDP)
flows) in a shared best-effort network like the Internet, and cause
packet losses that can severely impact playback quality. The qual-
ity degradation caused by packet loss is a critical problem, espe-

1 Graduate School of Media and Governance, Keio University, Fujisawa,
Kanagawa 252–0882, Japan

a) kazuhisa@sfc.wide.ad.jp

cially for mission-critical applications such as telemedicine. The
type of packet loss caused by congested routers, which is charac-
terized by near-random and unpredictable behavior, is inevitable
even with the future Internet, and therefore presents a formidable
challenge to high-performance streaming applications seeking to
optimize streaming quality.

TCP-friendly rate control (TFRC) has become the de facto
standard to control network congestion [10], [12]. In accordance
with the definition of TCP friendliness, TFRC tries to maintain
fairness with competing TCP flows in the same network condi-
tion while providing a promising mechanism for a smooth data
transmission rate [17], [27]. The throughput of non-TCP flows
is strongly affected by the average throughput of a conformant
TCP connection under the same conditions. Since this constraint
can force a high-performance streaming flow to reduce the data
transmission rate at the expense of video quality, TFRC is not
suitable for the flow to maximize the streaming quality. In addi-
tion, when the feedback delay (i.e., the round trip time) is large, a
timely and correct estimation of network conditions becomes an
impossible task. As a result, unacceptable conditions for video
streaming (i.e., packet loss or data rate oscillations) continuously
occur [24], and they can have a negative impact on the communi-
cation quality of other competing flows (e.g., throughput). In this
context, existing approaches do not properly control congestion
to fulfill the demands of end-users wanting the highest streaming
quality.

To address the problem that TFRC fails to maintain higher
streaming quality, we propose the dynamic probing forward er-

c© 2012 Information Processing Society of Japan 185

Journal of Information Processing Vol.20 No.1 185–195 (Jan. 2012)

ror correction (DP-FEC) mechanism that provides a promising
method for achieving higher streaming quality while seeking the
behaviors of competing TCP flows. DP-FEC estimates the net-
work conditions by dynamically adjusting the degree of FEC re-
dundancy while trying to recover lost data packets. By succes-
sively observing variation in the intervals between packet loss
events, DP-FEC effectively utilizes network resources. It opti-
mally adjusts the degree of FEC redundancy to recover as many
lost data packets as possible while minimizing the performance
impact of competing TCP flows. We evaluated the DP-FEC algo-
rithm using an NS-2 simulator, and showed that it allows stream-
ing flows to retain higher streaming quality and minimizes the
impact of FEC on TCP performance to achieve TCP friendliness.

The remainder of this paper is organized as follows: Section 2
examines the requirements for high-performance real-time video
streaming. Section 3 gives an overview of the DP-FEC algorithm.
Section 4 evaluates the effectiveness of DP-FEC using an NS-2
simulation. Section 5 describes related work, and in Section 6,
we present our conclusions.

2. High-Quality Real-Time Video Streaming
over IP

2.1 Background and Problem Statements
Most of the proposed congestion control mechanisms for real-

time video streaming applications try to achieve TCP-friendliness
according to its definition [1], [10], [11], [17], [27]; TFRC thus
enables a streaming flow to maintain a desired smoothness of data
transmission rate and fairness with coexisting TCP flows. How-
ever, because high-performance video streaming requires a large
amount of bandwidth that cannot be utilized by TCP, throughput
regulation based on TCP-friendliness reduces the data transmis-
sion rate at the expense of a reduction in video quality (i.e., the
transmission rate is adjusted by changing the parameters for en-
coding the video). Video quality is increasingly reduced as the
round trip time (RTT) increases, because TCP is inefficient under
network conditions in which the RTT is large *1. In addition, be-
cause TFRC examines packet loss conditions as an indicator of
congestion, it often delays the action for rate control and causes
the degradation of playback quality. Estimated RTT variations
are also utilized as a congestion indicator to avoid packet losses
caused by traffic congestion. Yet, delay-based congestion control
mechanisms [13], [14] (e.g., TCP Vegas) react to RTT variations
incorrectly and cause a severe quality degradation, especially in
high bandwidth paths [15], [16].

To clarify the specific problem of competition between a high-
performance real-time streaming flow and TCP flows, we used an
NS-2 simulator to simulate a single bottleneck with a 100 Mbps
link capacity. The round-trip propagation delay varied from 1
to 200 ms. DropTail queue is used and the queue size is set
to max{100, Bandwidth Delay Product (BDP)}. To create net-
work congestion, we generate short-lived TCP flows using a Pois-
son process with an average rate of 30 flows per second, and

*1 A high-performance TCP protocol (such as scalable TCP and high-speed
TCP) could be used in real-time streaming, but it typically results in
some quality degradation (such as a longer startup delay and lack of
smoothness).

(a) Average throughput of a single flow (the cases of
TFRC/TCP-Vegas/HSTCP/Scalable-TCP)

(b) Average data loss rate of a single flow (the cases of
TFRC/normal-UDP)

Fig. 1 Average throughput of a single streaming flow, and the average data
loss rate of a single streaming flow under varied RTTs.

the size of a TCP flow follows Pareto distribution with an av-
erage of 180 packets and a shape parameter of 1.5. As a high-
performance real-time streaming, we used 1) a TFRC flow, 2) a
TCP-Vegas [13] flow, 3) a High-speed TCP (HSTCP) [19] flow,
4) a Scalable TCP [20] flow, or 5) a normal UDP flow. We as-
sume that the maximum data rate of a streaming flow is 30 Mbps.

Figure 1 (a) shows the average throughput of a single stream-
ing which adopts TFRC/TCP-Vegas/HSTCP/Scalable-TCP. The
maximum average throughput of a TCP-Vegas flow under the
RTTs becomes about 25 Mbps. The maximum average through-
puts of both a HSTCP and Scalable TCP flow become around
30 Mbps. Because of losses caused by short-lived TCP flows,
each of these TCP flows causes the regulations and fluctuations
of the data transmission rate. Since these behaviors lead to a se-
vere degradation of video quality, these TCP protocols are not
suitable for a high-performance real-time streaming application.
A TFRC flow under the RTTs achieves the average throughputs
between 5 and 10 Mbps. Despite reducing the transmission rate,
as shown in Fig. 1 (b), the average data loss rates of a TFRC flow
under the RTTs becomes more than 0.1%, which is not much dif-
ferent from that of normal UDP flow. In addition, a normal UDP
flow does not have a negative impact on the time necessary for
TCP flows to complete data transfer. In this context, a TFRC
flow with relatively high available bandwidth tends to suffer from
a degradation of streaming quality caused by packet losses that
TCP flows induce.

2.2 Requirement
As described and shown in Section 2.1, high-performance real-

time streaming using TFRC suffers from an unnecessary reduc-
tion in the data transmission rate (i.e., video quality) due to im-
proper congestion control. Instead of using TFRC, an alternative
protocol is indispensable for high-performance real-time stream-

c© 2012 Information Processing Society of Japan 186

Journal of Information Processing Vol.20 No.1 185–195 (Jan. 2012)

ing to preserve the highest data transmission rate and avoid a
degradation of playback quality caused by packet losses in con-
gested networks, especially when the physical network band-
width is much larger than the total consumption bandwidth of
high-performance streaming flows *2. From this point of view, it
is important to protect playback quality from packet loss while
executing effective congestion control to achieve TCP friendli-
ness.

An application level forward error correction (AL-FEC) ap-
proach prevents retransmission delays by preventively adding re-
dundancy packets to the streaming data flow. Thanks to this re-
dundancy, a certain number of missing data packets can be re-
covered. Even if a certain degree of FEC redundancy is applied
to a high-performance streaming flow with TFRC, the flow can-
not improve the video quality in congested networks as described
before. However, ascertaining and controlling optimal FEC re-
dundancy at the highest data transmission rate is a real challenge,
because 1) it is difficult for a sender to determine the packet loss
pattern at each moment (as there is a feedback delay) and to pre-
dict the futural packet loss pattern, and 2) increasing FEC redun-
dancy may disturb both streaming and competing flows such as
TCP when the conditions of competing flows are sensitively os-
cillated in the network. The following factors are important when
enhancing FEC redundancy.
• Because failure to appropriately adjust FEC redundancy

(such that FEC cannot recover lost data packets) will lead
to non-recoverable data loss, FEC redundancy must be ad-
justed to optimize the recovery of lost data packets.

• Controlling FEC redundancy is not inconsequential to the
behavior of other flows. It is important, therefore, to esti-
mate the network conditions and the impact of FEC on the
communication quality of other flows while controlling FEC
redundancy.

3. Design of Dynamic Probing FEC Mecha-
nism

In this section, we propose the dynamic probing forward er-
ror correction (DP-FEC) mechanism to satisfy the requirements
aforementioned. According to the network condition, the mech-
anism changes “FEC window size” (packets) to make a packet
loss tolerance, while considering the impact of FEC on the per-
formances of competing TCP flows.

3.1 Overview
Figure 2 illustrates the DP-FEC overview. DP-FEC operates

mainly at the sender. A sender transmits data and FEC repair
packets over a real-time transport protocol (RTP) [3] carried on
top of the Internet Protocol (IP) and UDP. The DP-FEC collects
the feedback information transmitted over the real-time trans-
port control protocol (RTCP) delivered by a receiver, then adjusts
the degree of FEC redundancy using feedback information about
packet losses. The data transmission rate, which depends on the

*2 When the physical bandwidth is notably less than the total consumption
bandwidth of high-performance streaming flows, end-users should re-
duce the sending data rate at the cost of video quality. In this study, we
do not assume such a situation.

video format preliminarily assigned, is maintained during trans-
mission.

DP-FEC leverages an application level forward error correc-
tion (AL-FEC). In AL-FEC, n − k repair packets are added to a
block of k data packets. We consider maximum distance separa-
ble (MDS) codes such as Reed-Solomon codes [4] which can re-
cover all of the missing packets from any set of exactly k packets.
Here, we define the number of repair packets as the “FEC window
size,” indicated by “n − k”. If the code parameters, the FEC win-
dow size and n, are appropriately set in the event of packet losses,
a receiver may recover all of the missing data packets within a
block. DP-FEC changes the FEC window size in a fixed FEC
encoding block length n during transmission. Furthermore, all of
the generated data packets are stored once in the FEC encoding
block buffer. Depending on the FEC window size, the number of
data packets stored in the FEC encoding block buffer will vary.

DP-FEC is designed as an end-to-end model in consideration
of the following criteria:
(1) Utilizing network resources effectively, the FEC window

size during data transmission is increased to make a packet
loss tolerance as high as possible. At the same time, network
estimation for congestion control can be conducted.

(2) In accordance with the network estimation, DP-FEC adjusts
the FEC window size to minimize the impact of FEC on the
performances of competing TCP flows.

3.2 DP-FEC Algorithm
The DP-FEC algorithm consists of three components: 1) the

congestion estimation function, 2) repeating congestion estima-
tion, and 3) the FEC window size adjustment function. Next, we
describe the algorithm in detail and the parameters used.
3.2.1 Congestion Estimation Function

The decision to adjust the FEC window size can be summa-
rized as follows:
• If no congestion is sensed, the FEC window size is increased

except when the FEC window size is already at its maxi-
mum.

• If congestion is sensed, the FEC window size is decreased
except when the FEC window size is at its minimum.

The DP-FEC recognizes above a certain degree of FEC impact
on competing TCP performances as an indicator of network con-
gestion. This means that the DP-FEC does not just use packet
loss as a congestion indicator, but allows a certain level of packet
loss during transmission. Here, we assume that a DP-FEC flow
competes with TCP flows in the same bottleneck link, and de-
fine FEC impact as a ratio of FEC bw to TCP abw; FEC bw is
the consumption bandwidth of FEC repair packets that a DP-FEC
flow adds per unit time, and TCP abw is the available bandwidth
that existing TCP flows can utilize per unit time. Thus, in compe-
tition with N TCP flows, the change in the degree of FEC impact
(ΔFEC impact) caused by added ΔFEC bw is given by:

ΔFEC impact = (ΔFEC bw/TCP abw)

= (ΔFEC bw/N)/(TCP abw/N)

= (ΔFEC bw/N)/(TCP1 bw) (1)

c© 2012 Information Processing Society of Japan 187

Journal of Information Processing Vol.20 No.1 185–195 (Jan. 2012)

Fig. 2 The DP-FEC Overview.

where TCP1 bw is the data bandwidth that one TCP flow con-
sumes. According to TCP1 bw and N, the FEC impact on the
TCP performances varies. TCP1 bw can be estimated as fol-
lows [10]:

TCP1 bw =
PacketS ize

RTT
√

2p
3 + RTO

[
3
√

3p
8 p(1 + 32p2)

] (2)

where PacketS ize is the size of sending packet (bytes); p is
the loss event rate; RTT is the Round Trip Time (sec); RTO
is the retransmission timeout value (sec). If we can know N,
ΔFEC impact can be estimated. However, N changes from mo-
ment to moment, and it is naturally hard for an end system on an
end-to-end model to precisely know N at the right time.

DP-FEC approximates ΔFEC bw/N by successively changing
FEC bw and observing the loss interval (LI) defined as the inter-
val of time between packet loss events. An occurrence of more
than one packet loss within a specific time is recognized as a sin-
gle packet loss event. In order to approximate ΔFEC bw/N, we
now focus on the steady-state behavior of one TCP flow adopting
the well-deployed AIMD algorithm [30] known as a mechanism
for the remarkable stability of the Internet [11]. We assume that
when a TCP flow observes more than one packet loss event dur-
ing an RTT that results in halving the congestion window size, a
DP-FEC flow also observes the same packet loss event. Since the
TCP flow adopts the AIMD algorithm, LI can be approximated
as follows:

LI ≈ (TCP abw/N) ∗ RTT 2

2 ∗ MS S
(3)

where MSS is the TCP maximum segment size (bytes). When
DP-FEC adds ΔFEC bw, ΔLI can be approximated using Eq. (3),
as follows:

ΔLI ≈ (TCP abw/N) ∗ RTT 2

2 ∗ MS S

−{(TCP abw − ΔFEC bw)/N} ∗ RTT 2

2 ∗ MS S

= (ΔFEC bw/N) ∗ RTT 2

2 ∗ MS S
(4)

Using Eqs. (1), (2) and (4), we can approximate ΔFEC impact as
follows:

ΔFEC impact ≈ ΔLI
TCP1 bw

∗ 2 ∗ MS S
RTT 2

(5)

DP-FEC estimates ΔFEC impact using an observed ΔLI. An ob-
servation of a larger value of ΔLI implies that the increasing FEC
window size has a more negative impact on TCP performances
by reducing TCP abw. DP-FEC recognizes network congestion
when an estimated ΔFEC impact exceeds Threshold FEC Im-

pact. The value of Threshold FEC Impact in DP-FEC is set to
0.1. Since an observed ΔLI is influenced by packet loss patterns
that vary according to ever-changing network conditions (e.g., the
number of competing TCP flows and the available bandwidth),
precisely estimating ΔFEC impact is naturally difficult. There-
fore, by successively observing ΔLI while changing the FEC
window size, DP-FEC evaluates whether ΔFEC impact exceeds
Threshold FEC Impact or not. Although this strategy leads to
low responsiveness to a change in network conditions, DP-FEC
can effectively utilize network resources by adding FEC repair
packets while considering the impact of FEC on TCP flows. The
decision frequency is described in next Section 3.2.2.

As Eq. (5) shows, the estimation of ΔFEC impact depends
largely on RTT that competing TCP flows have, since TCP perfor-
mance generally relies on RTT. If the RTT value is large, DP-FEC
tends to conservatively behave and keep a small FEC window
size even in slightly congested networks. This situation causes
a number of non-recovered data packets without effectively uti-
lizing network resources. To avoid such a behavior, DP-FEC es-
timates ΔFEC impact assuming that all competing TCP flows
have RTT = 0.01 (sec). Thus, in competition with TCP flows
with RTT > 0.01, the DP-FEC tends to keep a larger FEC win-
dow size due to the underestimation of ΔFEC impact.
3.2.2 Repeating Congestion Estimation

A DP-FEC receiver sends feedback information at constant
time interval (SYN time), which denotes whether packet loss
happened or not during the SYN time. Multiple packet losses
in the same SYN time are considered as a single loss event.
As described before, DP-FEC assumes that 1) both a DP-FEC
flow and TCP flow observe the same packet loss event during an
RTT and 2) all competing TCP flows have RTT = 0.01 (sec).
Thus, the value of SYN time in DP-FEC is set to 0.01 (sec). A
sender receives feedback information at the SYN time interval,
and calculates the sample loss interval (S ampleLI), the minimum
value of which is equivalent to 0.01 (sec). Using the Exponential
Weighted Moving Average (EWMA), current LI is calculated as
follows: LI = α ∗ LI + (1 − α) ∗ S ampleLI. DP-FEC uses the

c© 2012 Information Processing Society of Japan 188

Journal of Information Processing Vol.20 No.1 185–195 (Jan. 2012)

smoothing factor α = 0.9, and estimates ΔFEC impact with the
observed variation of LI (ΔLI) at the constant interval (ResT ime).
The ResT ime relates to the tradeoff between the aggressiveness
(i.e., increasing rate of FEC window size) and estimation accu-
racy of FEC impact (i.e., TCP-friendliness). In an ever-changing
network condition, the appropriate setting of ResT ime value is
quite difficult. In this paper, we set ResT ime to 0.16 (sec) based
on our comprehensive simulation results as of now.

Figure 3 shows the relation between the current LI and max-
imum acceptable ΔLI, where MSS=1,460 (bytes), RTT=0.01
(sec). If an observed ΔLI exceeds the maximum acceptable ΔLI,
a sender recognizes an occurrence of network congestion (i.e.,
ΔFEC impact > 0.1). Note that if a network condition drasti-
cally becomes worse (e.g., due to an occurrence of bursty traffic),
LI severely decreases. If this situation continues, DP-FEC needs
to decrease the FEC window size in order to avoid congestion col-
lapse. Therefore, DP-FEC also recognizes a network congestion
when LI becomes less than the minimum value (MinLI). Every
time a sender receives feedback information, the current LI is cal-
culated and judged to be below MinLI. When DP-FEC uses an
extremely-low value of MinLI, the attainable FEC window size
becomes large even in highly congested networks due to the slow
response to the network congestion. Such a situation causes a
significant degradation of the performances of competing TCP
flows. To avoid it, we set MinLI to 0.035 (sec) based on our sim-
ulation experiments as of now.
3.2.3 FEC Window Size Adjustment Function

DP-FEC recognizes network congestion when estimated
ΔFEC impact exceeds Threshold FEC Impact or current LI falls
below MinLI. In DP-FEC, AIMD algorithm is used to adjust
the FEC window size. FEC window size (Fwnd(t)) in packets is
given by:

Fwnd(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Fwnd(t − 1) + 1 per ResT ime

�βFwnd(t − 1)� per congestion
(6)

During no congestion, Fwnd is linearly increased. During con-
gestion, DP-FEC immediately decreases Fwnd using multiplica-
tive factor β. DP-FEC with a low value of β tends to fail to recover
lost data packets in continuously congested networks, because
the attainable FEC window size becomes small. Since 1) DP-
FEC should try to recover data loss as much as possible, and 2)
by estimating and controlling ΔFEC impact, DP-FEC can avoid

Fig. 3 Relation between the current calculated loss interval (LI) and maxi-
mum acceptable variance of loss interval (ΔLI).

a negative impact on TCP performances in network conditions
where added FEC redundancy significantly disturbs TCP perfor-
mances, DP-FEC sets β to a relatively high value, 0.8 (i.e., more
than 0.5).

4. Evaluation

4.1 Simulation Setup and Performance Metrics
Using an NS-2 simulator extended with DP-FEC module, we

performed experiments using the dumbbell topology shown in
Fig. 4. The bandwidth and propagation delay of the bottleneck
link between B1 and B2 were set to 1 Gbps and 10 ms, respec-
tively. A drop-tail queuing was used at the router, and the queue
length size in packets was set to 128. Each sender and receiver
were connected to the bottleneck link through the 1 Gbps access
link with a propagation delay of 1 ms. The packet size was set
to 1,500 bytes for all connections. Each simulation ran for about
120 seconds.

In all simulation experiments, a DP-FEC sender takes the same
algorithm for sending data packets. It transmits smoothed data
packets at a rate of 30 Mbps. As a practical matter, both the
FEC encoding block length and the maximum FEC window size
should be determined by the acceptable FEC encoding/decoding
time for the streaming application. Here, we set the FEC encod-
ing block length to 127 and the maximum FEC window size to
63, modeling a real environment.

As the DP-FEC performance metrics, we observed 1) the aver-
age residual data loss rate of DP-FEC flows (i.e., the rate of non-
recovered data packet) and 2) the average throughput of compet-
ing TCP flows. The metric of the average residual data loss rate of
DP-FEC flows was compared with those observed when we used
a normal UDP flow at a rate of 30 Mbps or a TFRC flow [10]
under the same network condition. As TCP friendliness index
(T Findex), we use the result of the average throughput of TCP
flows observed when they compete with TFRC flows, and define
T Findex as follows:

T Findex =
TCPthuput Target
TCPthuput T FRC

(7)

where TCPthuput Target is the result of the average through-
put of TCP flows competing with normal UDP flows or DP-FEC
flows; TCPthuput T FRC is the result of the average throughput
of TCP flows competing with TFRC flows under the same net-
work condition.

We used two types of TCP flows using a NewReno, 1) Short-
lived TCP flows and 2) Long-lived TCP flows. Short-lived TCP

Fig. 4 Simulation network model.

c© 2012 Information Processing Society of Japan 189

Journal of Information Processing Vol.20 No.1 185–195 (Jan. 2012)

(a) Average data loss rate (b) TCP-friendliness index

(c) Average FEC window size

Fig. 5 DP-FEC Performances and average FEC window size under 25% load of TCP flows.

flows arrive at the bottleneck link, as a Poisson process with an
average rate of r tcp flows per second. The size of each TCP flow
follows a Pareto distribution with an average of s tcp packets and
shape parameter 1.5. Here, we define the load of short-lived TCP
flows as ρ tcp = r tcp ∗ s tcp. Long-lived TCP flows are persis-
tent in the network.

4.2 Competition with Only Short-Lived TCP Flows
We evaluated the DP-FEC performance in competition with

only short-lived TCP flows. The load of short-lived TCP flows
(ρ tcp) was set to 25%, 50% and 75% of the bottleneck link ca-
pacity. In addition, the number of UDP streaming flows (i.e.,
TFRC, normal UDP or DP-FEC flows) was changed from 1 to
10.

As shown in Fig. 5 (a), the average data loss rates of DP-FEC
flows under 25% load of TCP flows are considerably improved
by added FEC redundancy, compared to those of TFRC or nor-
mal UDP flows. In addition, Fig. 5 (b) shows that the TCP friend-
liness indexes of both normal UDP and DP-FEC flows are main-
tained at more than approximately 0.9, which means that DP-FEC
flows add a well-coordinated degree of FEC redundancy by effec-
tively utilizing network resources that competing TCP flows can-
not consume. In Fig. 5 (c), we can see that the FEC window sizes
are almost the same (between 17 and 20) regardless of the number
of competing DP-FEC flows, because FEC impacts that each DP-
FEC flow estimates during transmission are not largely different
(i.e., there is little difference in the available bandwidth for TCP
flows in each test). Because of an occurrence of packet losses
caused by a behavior in slow start phase of generated short-lived
TCP flow, the average FEC window size is suppressed to below
20. TFRC flows in each test also observe packet losses caused
by a slow start phase of generated short-lived TCP flow, and re-
duce the data transmission rates to about 6 Mbps. As opposed to a

TFRC flow, a DP-FEC flow suppresses the average data loss rate
and preserves the highest data transmission rate while achieving
high TCP friendliness index.

When ρ tcp is 50% of the bottleneck link capacity, the average
data loss rates of TFRC and normal UDP flows becomes more
than 1%, as shown in Fig. 6 (a). On the other hand, owing to
added FEC redundancy, the average data loss rates of DP-FEC
flows are suppressed to below 1%. In addition, Fig. 6 (b) shows
that although the TCP friendliness indexes of both normal UDP
and DP-FEC flows decrease with an increase in the number of
streaming flows, DP-FEC flows in each test retains more than ap-
proximately 0.85% of the TCP friendliness index. In Fig. 6 (c),
we can see that as the number of DP-FEC flows increases, the
average FEC window size gradually decreases to about 9. This is
because, under 50% load of TCP flows, DP-FEC flows tend to ex-
perience continuous packet loss and estimate higher FEC impact
with an increase in the number of DP-FEC flows. The continuous
packet loss leads to an increase in average data packet loss rate,
as shown in Fig. 6 (a).

When ρ tcp is 75% of the bottleneck link capacity, the average
loss rates of DP-FEC flows are slightly improved except when the
number of DP-FEC flows is more than 8, as shown in Fig. 7 (a).
In Fig. 7 (b), we can see that as the number of streaming flows
increases, the TCP friendliness indexes of both flows of Normal
UDP and DP-FEC severely decrease because of a reduction in
the available bandwidth for heavy short-lived TCP traffic. Due to
the continuous packet loss caused by heavy short-lived TCP traf-
fic, the average FEC window sizes are suppressed to between 5
and 10, as shown in Fig. 7 (c). Since DP-FEC is designed to mini-
mize FEC impact defined as a ratio of the consumption bandwidth
of FEC repair packets to the available bandwidth for TCP flows,
the TCP friendliness indexes of DP-FEC flows become approxi-
mately the same as those of normal UDP. Therefore, in a situation

c© 2012 Information Processing Society of Japan 190

Journal of Information Processing Vol.20 No.1 185–195 (Jan. 2012)

(a) Average data loss rate (b) TCP-friendliness index

(c) Average FEC window size

Fig. 6 DP-FEC Performances and average FEC window size under 50% load of TCP flows.

(a) Average data loss rate (b) TCP-friendliness index

(c) Average FEC window size

Fig. 7 DP-FEC Performances and average FEC window size under 75% load of TCP flows.

in which a normal UDP flow severely decreases the TCP friend-
liness index, a DP-FEC cannot retain a higher TCP friendliness
index.

4.3 Competition with Both Short-Lived TCP Flows and
Long-Lived TCP Flows

We evaluated the DP-FEC performance in competition with
both short-lived TCP flows and long-lived TCP flows. The load
of short-lived TCP flows (ρ tcp) was set to 25% of the bottle-
neck link capacity, and the number of long-lived TCP flows was
changed from 1 to 101. The number of UDP streaming flows was
set to 3.

Figure 8 (a) shows that whereas the average data loss rates of
TFRC and normal UDP flows become more than 1% in competi-
tion with more than 20 of long-lived TCP flows, those of DP-FEC
flows are suppressed to below 1% in competition with less than 60
of long-lived TCP flows. As the number of long-lived TCP flows
increases, the average data loss rates of DP-FEC flows also in-
crease and approach those of TFRC and normal UDP flows. This
is because many long-lived TCP flows probe available bandwidth
during the congestion avoidance phase and incur more continu-
ous packet loss. Due to the continuous packet loss, DP-FEC flows
recognize higher FEC impact, resulting in the reduction of aver-
age FEC window sizes, as shown in Fig. 8 (c). However, the aver-

c© 2012 Information Processing Society of Japan 191

Journal of Information Processing Vol.20 No.1 185–195 (Jan. 2012)

(a) Average data loss rate (b) TCP-friendliness index

(c) Average FEC window size

Fig. 8 DP-FEC Performances and average FEC window size in competition with long-lived TCP flows,
under 25% load of TCP flows.

age FEC window sizes are kept between 15 and 20 when the num-
ber of long-lived TCP flows is less than or equal to 60. This con-
dition is almost the same as in the case of competition with only
short-lived TCP flows causing 25% load, because a DP-FEC flow
recognizes that there is a certain level of available bandwidth by
observing the interval between packet loss events while adjusting
the FEC window size (i.e., the available bandwidth for TCP flows
is not largely different despite increasing in FEC window size).
Figure 8 (b) shows the TCP friendliness indexes of normal UDP
flows and DP-FEC flows. The TCP friendliness index is distin-
guished by the type of TCP flow. Although DP-FEC flows retain
the average FEC window size between 15 and 20 in competition
with less than 60 of long-lived TCP flows, the TCP friendliness
indexes for long-lived TCP flows always become more than 0.9.
Whereas a TFRC flow reduces the data transmission rate to below
about 6 Mbps under the influence of packet loss conditions, a DP-
FEC flow utilizes network resources effectively by adding FEC
repair packets which contribute to the recovery of data packet
losses. On the other hand, the TCP friendliness indexes of both
normal UDP and DP-FEC flows for short-lived TCP flows be-
come more than 0.9 when the number of long-lived TCP flows is
below 25. When the number of long-lived TCP flows becomes
more than 25, the TCP friendliness indexes for short-lived TCP
flows becomes between 0.7 and 0.9. This is because the total con-
sumption bandwidth of long-lived TCP flows increases, which
deteriorates the performances of short-lived TCP flows. How-
ever, as described in Section 4.2, the TCP friendliness indexes of
DP-FEC flows for short-lived TCP flows become approximately
the same as those of normal UDP, since DP-FEC flows try to sup-
press the impact of FEC on the TCP performances.

4.4 Effect of the Value of Threshold FEC Impact
The value of Threshold FEC Impact (the default value is 0.1)

is considerably important for DP-FEC to recognize network con-
gestion and adjust the FEC window size. Thus, we evaluated
the performances of DP-FEC with Threshold FEC Impact of
0.3 under TCP load of 25%/50%/75%, and compared the results
with those of DP-FEC with Threshold FEC Impact of the default
value.

Figure 9 (a) shows the average loss recovery rates of DP-
FEC flows (the cases of Threshold FEC Impact of 0.1/0.3) under
25%/50%/75% load of TCP flows. The loss recovery rate is de-
fined as the ratio of the number of the recovered data packets to
that of the lost data packets in the network. We can see that under
25% load of TCP flows, DP-FEC flows with Threshold FEC Im-

pact of 0.1 maintain the average loss recovery rates of more than
0.98. However, under both 50% and 75% load of TCP flows,
the average loss recovery rates decrease because the attainable
FEC window size of each DP-FEC flow tends to become small as
described in Section 4.2. On the other hand, the average loss re-
covery rates of DP-FEC flows with Threshold FEC Impact of 0.3
almost become 100% except when the number of DP-FEC flows
under 75% load of TCP flows is more than 6. This is because
a DP-FEC flow with Threshold FEC Impact of 0.3 keeps larger
FEC window size than that of a DP-FEC flow with Threshold

FEC Impact of 0.1.
Figure 9 (b) shows the corresponding TCP friendliness indexes

of DP-FEC flows. When the number of competing DP-FEC flows
is the same, the TCP friendliness indexes of DP-FEC flows with
Threshold FEC Impact of 0.3 becomes lower than those of DP-
FEC flows with Threshold FEC Impact of 0.1. Under 25% load
of TCP flows, the difference of TCP friendliness indexes is not
large regardless of the number of DP-FEC flows. However, as
the number of DP-FEC flows increases under 50% or 75% load
of TCP flows, the difference becomes large (i.e., the TCP friend-
liness indexes of DP-FEC flows with Threshold FEC Impact of

c© 2012 Information Processing Society of Japan 192

Journal of Information Processing Vol.20 No.1 185–195 (Jan. 2012)

(a) Average loss recovery rate

(b) TCP-friendliness index

Fig. 9 Average loss recovery rates and TCP friendliness indexes of DP-FEC
flows (the cases of Threshold FEC Impact of 0.1/0.3 under TCP load
of 25%/50%/75%).

0.3 largely decrease). This is because, since DP-FEC flows with
Threshold FEC Impact of 0.3 tends to keep a larger FEC window
size, the total bandwidth of FEC repair packets increases con-
siderably. Since the value of Threshold FEC Impact relates to
the tradeoff between efficiency (i.e., loss recovery rate) and TCP
friendliness, it is of greater importance for DP-FEC to appropri-
ately set the value.

5. Related Work

Many congestion control mechanisms for real-time stream-
ing have been proposed and analyzed. Rejaie et al. [1] devel-
oped a rate-based congestion control mechanism that employs
an additive-increase, multiplicative-decrease (AIMD) algorithm
to achieve TCP-like behavior. The datagram congestion control
protocol (DCCP) [26] was proposed by Kohler et al. to provide
TCP-friendly rate control [10], [12]. The mechanism function is
designed to behave fairly with coexisting TCP flows in terms of
the consumption bandwidth. Papadimitriou et al. have proposed
a rate control mechanism from the perspective of inter-protocol
fairness [11]. Using a packet loss as a congestion indicator, this
mechanism decreases the data transmission rate by a previously
determined degree. If no congestion is sensed, it periodically in-
creases the data transmission rate in incremental steps. Feng et
al. [27] defined the new TCP friendliness necessary to achieve
a desired constant data rate while maintaining fairness with co-
existing TCP flows. However, because these mechanisms uti-
lize packet loss as a congestion indicator and severely reduce the
data transmission rate in response, they are not suitable for high-
quality real-time video streaming that needs to maintain a higher
data rate and avoid a degradation of playback quality, as described

in Section 2.
Various numerical studies, using actual experimental measure-

ment or analytical models, have evaluated the effectiveness of
FEC. Bolot et al. [21] measured audio packets transmitted via the
Internet, and analyzed the packet loss patterns. The results sug-
gested that FEC is effective for low bandwidth streaming, such
as an audio application, even when the network conditions are
unstable because of network congestion. However, Altman et
al. [25] proposed a detailed queuing analysis based on a ballot
theorem, and concluded that FEC caused only a slight improve-
ment in the audio streaming quality under any amount of redun-
dant FEC data. In Ref. [6], an analysis of FEC effectiveness in
ATM networks indicated that performance gains quickly diminish
when all traffic sources employ FEC and the number of sources
increases. Shacham et al. [7] used both analytic and simulation
models to evaluate a situation using redundant parity packets,
residual packet-loss rates after FEC decoding were reduced by up
to three orders of magnitude. However, Xunqi et al. [8] indicated
that the simplified analysis in Ref. [7] overestimated the perfor-
mance of FEC because it assumed that the packet loss process
is independent. As an alternative approach, Xunqi et al. [8] pro-
posed a recursive algorithm based on the algorithm proposed by
Cidon et al. [9] to compute block error density, and analyzed FEC
performance in various FEC parameters (i.e., the encoding length,
code rate, and interleaving depth). They concluded that an inter-
leaving method increases FEC effectiveness for real-time stream-
ing over congested networks. Although these numerical results
vary depending on the loss model that is used or the testbed net-
work, they provide insights into FEC recovery capability that can
be applied to audio and video streaming.

A number of mechanisms for adjusting FEC redundancy have
been proposed. Bolot et al. [31] mentioned that the congestion
losses were modeled with a two-state Gilbert model, and the pro-
posed scheme determined the FEC redundancy together with a
TCP-friendly rate control scheme. Wu et al. [22] described that
bandwidth constraints derived by the TFRC equation were used to
optimally adjust FEC redundancy and the data transmission rate
to maximize the video and playback quality. Seferoglu et al. [17]
proposed TFRC with FEC to deal with packet losses induced by
competing TCP flows. The mechanism utilizes the correlation
between packet losses and the estimated RTT fluctuation as a net-
work indicator. Moreover, they provided a rate-distortion opti-
mized way to decide the best allocation of the available TFRC
rate between source and FEC packets, and performed a signif-
icantly extended performance evaluation [18]. However, such a
delay-based control which susceptibly reacts to RTT variations
leads to a severe quality degradation, especially in high band-
width paths [15], [16]. In addition, because these proposed mech-
anisms depend largely on the TFRC throughput equation, they do
not effectively utilize network resources, which results in a fail-
ure to maintain higher video quality. In contrast, the approach
of our proposed DP-FEC does not rely on TFRC rate to avoid a
degradation of video quality caused by the regulation of the send-
ing rate of source packets. We previously proposed an adaptive
rate control mechanism that dynamically adjusts both the FEC
redundancy and the data transmission rate [29]. It is an effective

c© 2012 Information Processing Society of Japan 193

Journal of Information Processing Vol.20 No.1 185–195 (Jan. 2012)

technique for a single stream. However, it does not cooperate
with other competing flows. This type of self-organized method
adversely increases traffic congestion and disturbs other commu-
nication qualities. However, our proposed DP-FEC attempts to
utilize the network resource effectively to optimize the recovery
of lost data while minimizing the impact of FEC on other com-
peting flows.

6. Conclusion and Future Work

In this paper, we proposed the DP-FEC that effectively
achieves streaming quality for a high-performance real-time
streaming. This mechanism tolerates packet loss in the network
through the adjustments of the FEC window size while exam-
ining network congestion. By successively observing variation
in the intervals between packet loss events, DP-FEC effectively
utilizes network resources and adjusts the degree of FEC redun-
dancy while minimizing the impact of FEC on the performance of
competing TCP flows. We verified the efficiency of DP-FEC us-
ing an NS-2 simulator, and recognized that DP-FEC retains high
streaming quality.

In our future work, we will make more investigation to opti-
mally set a parameter such as Threshold FEC impact according to
network conditions. Then, we will evaluate the DP-FEC mecha-
nism competing with more high-performance streaming and TCP
flows in complex and higher bandwidth networks. This evalua-
tion will improve the DP-FEC algorithm, and then accelerate de-
ployment of high-quality streaming applications over future het-
erogeneous networks.

Reference

[1] Rejaie, R., Handley, M. and Estrin, D.: RAP: An end-to-end rate-
based congestion control mechanism for realtime streams in the Inter-
net, Proc. IEEE INFOCOM ’99, New York, USA (Mar. 1999).

[2] Nakashima, N., Okamura, K., Hahm, J.S., Kim, Y.W., Mizushima, H.,
Tatsumi, H., Moon, B.I., Han, H.S., Park, Y.J., Lee, J.H., Youm, S.K.,
Kang, C.H. and Shimizu, S.: Telemedicine with digital video trans-
port system in Asia-Pacific area, Proc. 19th International Conference
on Advanced Information Networking and Applications (Mar. 2005).

[3] Schulzrinne, H., Casner, S., Frederick, R. and Jacobson, V.: RTP:
A Transport Protocol for Real-Time Applications, RFC 3550 (July
2003).

[4] Rizzo, L.: Effective erasure codes for reliable computer communica-
tion protocols, Proc. ACM Comput. Commun, Vol.27, No.2, pp.24–36
(Apr. 1997).

[5] Ogawa, A., Kobayashi, K., Sugiura, K., Nakamura, O. and Murai, J.:
Design and implementation of DV based video over RTP, Proc. Inter-
national Packet Video Workshop (PV 2000) (May 2000).

[6] Biersack, E.: Packet Recovery in High-Speed networks using coding
and buffer management, Proc. ACM SIGCOMM’90 (Nov. 1992).

[7] Shacham, N. and Mckenney, P.: Packet recovery in high-speed net-
works using coding and buffer management, Proc. IEEE INFO-
COM’90, San Francisco, CA (June 1990).

[8] Xunqi, Y., Modestino, J.W., Kurceren, R. and Chan, Y.S.: A Model-
Based Approach to Evaluation of the Efficacy of FEC coding in Com-
bating Network Packet Losses, IEEE/ACM Trans. on Networking,
Vol.16, No.3, pp.628–641 (June 2008).

[9] Cidon, I., Khamisy, A. and Sidi, M.: Analysis of packet loss processes
in high-speed networks, IEEE Trans. Inf. Theory, Vol.39, No.1, pp.98–
108 (1993).

[10] Floyd, S., Handley, M., Padhye, J. and Widmer, J.: Equation-based
congestion control for unicast applications, Proc. ACM Comput. Com-
mun, Vol.30, No.4, pp.43–56 (Oct. 2000).

[11] Papadimitriou, P. and Tsaoussidis, V.: A rate control scheme for adap-
tive video streaming over the Internet, Proc. IEEE ICC ’07, Glasgow,
Scotland (June 2007).

[12] Floyd, S., Handley, M., Padhye, J. and Widmer, J.: TCP Friendly Rate

Control (TFRC): Protocol Specification, RFC 5348 (Sep. 2008).
[13] Brakmo, L.S., O’Malley, S.W. and Peterson, L.L.: TCP Vegas: new

techniques for congestion detection and avoidance, Proc. ACM Com-
put. Commun, Vol.24, No.4, pp.24–35 (1994).

[14] Wei, D.X., Jin, C., Low, S.H. and Hegde, S.: FAST TCP: Motivation,
architecture, algorithms, performance, IEEE/ACM Trans. on Network-
ing, Vol.14, No.6, pp.1246–1259 (2006).

[15] Prasad, S., Jain, M. and Dovrolis, C.: On the effectiveness of delay-
based congestion avoidance, PFLDnet Workshop (Feb. 2004).

[16] Martin, J., Nilsson, A. and Rhee, L.: Delay-based congestion
avoidance for TCP, IEEE/ACM Trans. on Networking, Vol.11, No.3,
pp.356–369 (2003).

[17] Seferoglu, H., Kozat, U.C., Civanlar, M.R. and Kempf, J.: Congestion
state-based dynamic FEC algorithm for media friendly transport layer,
Proc. International Packet Video Workshop (PV 2009) (May 2009).

[18] Seferoglu, H., Markopoulou, A., Kozat, U.C., Civanlar, M.R. and
Kempf, J.: Dynamic FEC Algorithms for TFRC Flows, IEEE Trans.
on Multimedia, Vol.12, No.8, pp.869–885 (2010).

[19] Floyd, S.: Highspeed TCP for Large Congestion Window, IETF
RFC3649 (2003).

[20] Kelly, T.: Scalable TCP: Improving Performance in High-speed Wide
Area Networks, PFLDnet Workshop (Feb. 2004).

[21] Bolot, J.C., Crépin, H. and Vega-Garcia, A.: Analysis of Audio Packet
Loss over Packet-Switched Networks, Proc. ACM NOSSDAV ’95, New
Hampshire, USA (Apr. 1995).

[22] Wu, H., Claypool, M. and Kinicki, R.: Adjusting forward error correc-
tion with quality scaling for streaming MPEG, Proc. ACM NOSSDAV
’05, Washington, USA (June 2005).

[23] Bao, C., Li, X. and Jiang, J.: Scalable Application-Specific Measure-
ment Framework for High Performance Network Video, Proc. ACM
NOSSDAV ’07, Urbana, Illinois USA (2007).

[24] Zhang, Y. and Loguinov, D.: Oscillations and Buffer Overflows in
Video Streaming under Non-Negligible Queuing Delay, Proc. ACM
NOSSDAV ’04, Cork, Ireland (2004).

[25] Altman, E., Barakat, C. and Ramos, V.M.: Queuing analysis of simple
FEC schemes for IP telephony, Proc. IEEE INFOCOM (Nov. 2001).

[26] Kohler, E., Handley, M. and Floyd, S.: Designing DCCP: Congestion
control without reliability, Proc. ACM SIGCOMM’06, Piza, Italy (Sep.
2006).

[27] Feng, J. and Xu, L.: TCP-Friendly CBR-Like Rate Control, Proc.
IEEE ICNP (Oct. 2008).

[28] Jin, C., Wei, D.X. and Low, S.H.: FAST TCP: Motivation, architec-
ture, algorithms, performance, IEEE Infocom’04, Hongkong, China
(Mar. 2004).

[29] Matsuzono, K., Sugiura, K. and Asaeda, H.: Adaptive rate control
with dynamic FEC for real-time DV streaming, Proc. IEEE Globecom
’08, New Orleans, USA (Dec. 2008).

[30] Chiu, D. and Jain, R.: Analysis of the increase and decrease algorithm
for congestion avoidance in computer networks, Comput. Netw. ISDN
Syst. J., Vol.17, No.1, pp.1–14 (June 1989).

[31] Bolot, J.C., Fosse-Parisis, S. and Towsley, D.: Adaptive FEC-based
error control for Internet telephony, Proc. IEEE INFOCOM ’99, New
York, USA (Mar. 1999).

Kazuhisa Matsuzono received his B.E
from Keio University in 2005. He re-
ceived his master’s degree in 2007 from
Graduate School of Media and Gover-
nance Keio University and is now a Ph.D.
student in the same university. His current
research interests include streaming pro-
tocol and its architecture.

c© 2012 Information Processing Society of Japan 194

Journal of Information Processing Vol.20 No.1 185–195 (Jan. 2012)

Hitoshi Asaeda is Associate Professor of
Graduate School of Media and Gover-
nance, Keio University. He received his
Ph.D. in Media and Governance from
Keio University. in 2006. From 1991 to
2001, he was with IBM Japan, Ltd. From
2001 to 2004, he was a research engi-
neer specialist at INRIA Sophia Antipolis,

France. His research interests are IP multicast routing architec-
ture and its deployment, dynamic networks and streaming appli-
cations. He is a member of ACM, IEEE, IPSJ, and WIDE Project.

Jun Murai is Professor of Faculty of En-
vironment and Information Studies, Keio
University. He received his M.E. and
Ph.D. in Computer Science from Keio
University in 1981 and 1987 respectively.
He was a director of Keio Research Insti-
tute at SFC, the president of Japan Net-
work Information Center (JP-NIC), board

director of ICANN. Adjunct Professor at Institute of Advances
Studies, United Nation University. He also teaches computer net-
work and computer communication.

c© 2012 Information Processing Society of Japan 195

