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Abstract: In this paper, we introduce a large-scale activity gathering system with mobile sensor devices such as smart
phones and accelerometers. We gathered over 35,000 activity data from more than 200 people over approximately 13
months. We describe the design rationale of the system, analyze the gathered data through statistics and clustering, and
application of an existing activity recognition method. From the recognition, the performance of existing algorithm
drastically deteriorated using the gathered data as training data. These results show that we were still able to find a
challenging field for activity recognition in larger-scale activity data.
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1. Introduction

If human activity could be objectively quantified then we could
apply this knowledge to a wide range of applications. For exam-
ple, people’s lifestyles could be quantified and this knowledge
utilized to prevent lifestyle-related diseases.

In this research, we aim to gather open data sets for evaluat-
ing activity recognition methods. Activity recognition methods
have been proposed actively in the literature, and are still being
improved, but there are few benchmarking data sets. For this,
we developed a large-scale activity data gathering system named
ALKAN. ALKAN is a server-client system that gathers a large
number of missions with mobile sensor devices, such as smart
phones with accelerometers. It enables a simple way of record-
ing and semi-automatic way of uploading activities.

In this paper, we introduce a large-scale activity gathering sys-
tem with mobile sensor devices such as smart phones and ac-
celerometers. We gathered over 35,000 activity data from more
than 200 people over approximately 13 months. We describe the
design rationale of the system, analyze the gathered data through
statistics and clustering, and application of an existing activity
recognition method. From the recognition, the performance of
existing algorithm drastically deteriorated using the gathered data
as training data. This results show that we found still a challeng-
ing field for activity recognition in larger-scale activity data. The
system requirements are as follows:
( 1 ) Large-scale: activity data varies widely among users. More-

over, there are a lot of activity types in real human life.
Therefore, we need a lot of activity data for using them for
training activity recognition algorithms.

( 2 ) Open: many existing work use small-scale data such as from
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1 to 20 people. If the collected activity data are available
to researchers then they can proceed with the research based
on the open large-scale data. However, currently there is
no such open large-scale activity data in the world, each re-
searcher has to evaluate the proposed method using their own
small-scale data.

( 3 ) Daily life: many of the existing work use activity data ob-
tained in laboratory settings. However, this is unnatural,
since human activities are not always performed in labora-
tories. Therefore, existing activity recognition algorithms
cannot be only applied to real daily life of users.

This paper is organized as follows. Related work is described
in Section 2. The ALKAN system is described in Section 3. The
gathered activity data are overviewed in Section 4. Section 5
shows the nature of gathered data by applying an existing activity
recognition method. Section 6 gives the summary and discussion
for future work.

2. Related Work

In the literature, a lot of work has tried to recognize activi-
ties with sensor devices. Chambers et al. [1] tried to distinguish
activity and movement of arm using two sensors on the arm.
Laerhoven et al. [6] tried to distinguish activities, postures, and
riding bicycle, using two sensors at waist. These studies how-
ever target only a single user. They don’t evaluate for varieties of
people like this paper.

Lee et al. [4] recognize the types and the strength of move-
ment with eight users using several sensors at waist and thighs.
Mantyjarvi et al. [5] use 6 sensors on the waist, and recognized
activities and postures with six users. Laerhoven et al. [6] attach
2 sensors on the back thigh, and 7 activities, postures, and bicy-
cles are recognized with 10 users. Herren et al. [2] uses 2 sensors
on the back and on feet, and recognizes angles and walking speed
with 20 users.
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However, these studies acquire activity data in semi-artificial
environments, and the users moved by the instruction. The data
was not obtained from actual daily life.

As the researches which aim at activity recognition in daily
life, the following work are presented. Uiterwaal et al. [8] used
two sensors at waist and one sensor at thigh, and measured move-
ments and postures in working environments. Kern et al. [3] used
36 sensors at each joint, and measured movements such as typ-
ing, chair, handshake, and writing on a blackboard. However,
these two researches used only one user. Uiterwaal et al. [8] uti-
lized an accelerometer on the wrist to record the activity of six
types of activities on ten users on daily life. The result showed
the possibility to distinguish activities in multiple users.

In contrast to these studies, our work collects not the small
scale and artificial data, but large-scale activity data of real life.
Moreover, we assume only one sensor per user due to require-
ments of usability and feasibility.

Bao et al. [7] discuss how to learn activity recognition from
annotated data by users. They explained the procedures and ex-
amples of each activity to users in advance, and eliminated the
variance of annotation. Upon which, they collected the data of
5 sensors on the body, and obtained 84% of accuracy. They also
attached 2 sensors on upper and lower body each keeps accuracy
well as 5 sensors.

Our study also uses parts of the same feature vectors as Bao
et al. [7], but we use single sensor, and also focus on the system
to enable gathering activity data.

Berchtold et al. [11] propose an activity recognition service
with mobile phones and achieve 97% accuracy at best for 20 sub-
jects. While our system is similar to this work, our system focuses
on gathering open data for activities with accurate labels with low
stress. Moreover, our work shows the result from gathering mas-
sive data.

Kawaguchi et al. [10] proposed a promotion to gather open ac-
tivity data from multiple laboratories, and has 6,700 accelerom-
eter data from 540 subjects in total. While their work is not a
system proposal, our approach is to provide a platform system to
gather activity data anytime and anywhere.

3. ALKAN System

To collect activity data efficiently, we developed a large-scale
activity gathering system named ALKAN. In this section, we de-
scribe the requirement analysis and the system design.

3.1 Requirements
For collecting large-scale activity data, the following require-

ments are addressed.
( 1 ) (Accuracy) Labels, such as activity classes and the position

of a device on the body, are accurately added.
( 2 ) (Usability) Users can record activity data anytime and any-

where with minimum stress.
( 3 ) (Motivation) Users need some type of motivation to promote

recording activity data.
( 4 ) (Flexibility) Labels must be extended if a new activity class

or new position is discovered. Also, the utilization or appli-
cation of the activity classes might be changed accordingly.

( 5 ) (Scalability) The system can record the data from multiple
users.

To address requirement ( 1 ), the most accurate way of labeling
is managed labeling: to predefine labels, and designate users to
repeat activities under the labels for designated times in managed
environment such as in a laboratory. However, this method is too
costly when collecting data on a large scale from thousands of
samples from over hundreds of people. It is not only costly for
experimenter, but also costly for participant (users) to be forced
to perform designated activities. Moreover, it is almost impossi-
ble to cover any kinds of activity classes in laboratory situations,
such as sitting.

Another option of labeling is unmanaged labeling: labeling
that asks users to label their activity of their real life log, once
per certain period of hours/days. Although this is easier, since
users can record their activities in instant ways in their life, and
the experimenter can obtain ‘real’ activities without preparing ar-
tificial environments, the labels might become contaminated in
the sense that they are mixed with others, polysemous, insuffi-
cient, omitted, and/or mistimed. Therefore, compromised way of
managed/unmanaged labeling is required.

To compromise them, we introduce the idea of a “mission.”
A mission is a sequence of choosing an activity class, choosing
the position on the body, and performing the activity. Using this
method, users can record activities anytime they want, and the la-
bel is accurately stamped within a few second. This method is not
suitable for the sequence multiple activities, it can be effective for
single activity recordings as first-level activity recognition.

For requirement ( 2 ), users must be able to record activities
without network connectivity. In spite of the fact that we live in
the era of pervasive network access, there are still a lot of envi-
ronments without network connection, such as in subway. Not
only that, but also low latency in usage is important for usability.
If a user has to wait for the response from the server before/after
an activity, it will be an obstacle for her/him to record. Activ-
ity recording should be independent of network connection and
latency. The data collected can be uploaded to the server spare
time after a while between recordings.

For usability, we adopted smart phones as mobile sensor de-
vices. Standard smart phones were equipped with 3-axis ac-
celerometers, non-volatile storage, and wireless communication.
By this, an activity can be performed anytime, and stored. The
data can then be uploaded to the server when it is connected to
the network.

For requirement ( 3 ), since the users are human, some means to
prevent boring them was required. A simple way is to give feed-
back by e-mail. It will become more interactive if the feedback
is done within the sensor device. The contents for feedback can
be created in variety of ways, such as the summary of their own
log, statistic data of the whole data, and ranking of each/whole
activity classes. Furthermore, domain specific applications can
be provided data results, such as calorie consumption estimation,
training logs, practicing sports or dances. If these applications are
provided, they also motivate users to record activity data.

In ALKAN, we prepared several feedback services of 1) rank-
ing of activity execution and 2) calendar of activity history, at the
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first stage. Although they can be extended as mentioned below,
these can help to motivate users.

To address requirement ( 4 ), we provide feedback services that
are dynamically updated through web browser interfaces on mo-
bile devices. As for scalability of the network, we tested con-
current data transmissions to send activity information from 50
iPodTouches to the server through the internet, and confirmed
there are no network traffic overflows. Moreover, we do not as-
sume that users will upload the activity data continuously in the
real time, but periodically as a batch processing. It means that the
timing of uploading will be distributed among users. Therefore,
we can assume that the network can handle more than 50 clients
for the ALKAN system. For requirement ( 5 ), smart phone client
software is easy to scale up by installing client software through
application deploying services. On the other hand, the server can
be scaled up by existing distributed web technology.

3.2 Mission
A Mission is a sequence of three operations: 1) a user selects

an activity class and a position of the device on the body; 2) starts
the activity and the corresponding three axis acceleration data are
recorded; 3) inputs additional information as a text comment.

3.3 System Architecture
The ALKAN system consists of A) mobile device clients and

B) a server which gathers activity data. A user records missions
using the mobile device client. The information is uploaded to the
server when it is online and accumulated in the server database.
The user can view statistical information of the uploaded data,
such as a calendar of activity history and rankings, by connect-
ing to the web server through the mobile device or another web
browser on a PC.
3.3.1 Client

We developed client software both for iOS and Android OS. In
this paper, we show the views on iOS, which runs on iPhones or
iPodTouches by Apple, Inc. in Fig. 1 and Fig. 2.

The client software has the following functionalities:
( 1 ) Mission execution
( 2 ) View and send mission history
( 3 ) View statistical information of the server

In ( 1 ), users first select an activity class as in Fig. 1 (a) and a
position as in Fig. 1 (b). Then they start the activity and finish it.
The sensor can record GPS information and three axis accelerom-
eter data at 20 Hz.

In ( 2 ), users can view the recorded mission history and add a
comment to each mission as an annotation. Users can also delete
missions if he or she does not wish to upload to the server. The
mission data can be sent to the server as activity data either by
each mission or all at once. After the mission data is sent, it is
removed from the history.

In ( 3 ), the software shows a web browser access to the server,
and shows statistical information such as ranking (Fig. 2 (a)) and
calendar history (Fig. 2 (b)). This architecture of web browser
interface is suitable not only when we update the statistic infor-
mation, but also when we serve new information or even when
we add a service to specific a user group.

(a) (b)

(c) (d)

Fig. 1 Mission views in ALKAN: (a) select activity class, (b) select device
position and start sensing. (c) start activity, and (d) finish activity.

(a) (b)

Fig. 2 Statistical information Viewed in a web browser in ALKAN: (a)
ranking of the number of activities, and (b) calendar of activity his-
tory.

3.3.2 Server
The server gathers the activity data sent from clients, stores it

to the database, and calculates and provides statistical informa-
tion as a web server.

An example of current statistical information is shown in the
ranking of the number of executed missions among users. The
rankings are divided into the total ranking and those for each ac-
tivity class. The ranking are supposed to motivate users to per-
form missions. Moreover, the total ranking can be weighted by
activity class to promote collecting fewer activities.

Other statistical information is the history of executed missions
for each user. Users can view the start/end date/time, activity
class, positions, and GPS information linked from a calendar for-
mat. This information is similar to lifestyle-related service, such
as managing the lifestyle-related diseases, in which users record
their own lifestyles. Moreover, in the near future this will be pro-
vided with an automatic lifestyle recognition algorithm when in
the near future.
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3.3.3 Data Structure
The communication between a client and the server is done

over HTTP. Upon connection, the client is authenticated by a
user account, and XML-formatted data or CSV-formatted data
are transferred between the client and the server.

The transferred data consists of 3 types: 1) Mission informa-
tion, 2) Position information, and 3) Activity data set.

1) Mission list is a list of activity classes. 2) Position list is a
list of device positions on the body. 1) and 2) are represented in
XML format, and are provided by the server to each client. This
makes updating the candidates of activity classes and positions
dynamically in operation. To enable it, 1) and 2) also have ver-
sion information to be able to intermingle multiple versions into
the field.

Finally, 3) Activity data set is a set of mission executions, sent
from each client to the server. When we call an activity data, we
mean that it corresponds to a single mission execution and a ac-

tivity data set, it corresponds to one or more mission executions.
An activity data includes the device product information, the user
ID, the activity class ID, the position, and the sensor data with
time stamps. They are mainly represented in XML format for ex-
tensibility, but the sensor data is in CSV format for efficiency of
data size.

The activity class ID is one of the 1) Mission list. Moreover,
the position can be either represented by position ID listed in
2) Position list, or by XYZ coordinates in the body image in
Fig. 1 (b).

Sensor data is in CSV format, and currently contains the data
from the three-axis accelerometer and GPS coordinates, but it can
be easily extended by adding columns.

4. Collected Activity Data

ALKAN offers an opportunity to obtain large-scale activity
data, which contributes to researches of not only activity recog-
nition, but also context awareness, and various of social sciences.
As far as we know, such large scale of open activity data does not
exist other than our work. By viewing and analyzing how the data
are gathered, we can expect the knowledge attaining such large-
scale activity data gathering. In this section, we investigate the
property of gathered activity data.

Since December 3, 2009, we have delivered 216 iPod touches,
as mobile sensors, to university students and staff. So far, 216
devices were delivered by the January 21st, 2011.

We asked users a favor to collect activity data once a day on av-
erage. The activity data recorded by a device can be uploaded at
any time when it is online to the Internet. When there is no Inter-
net connection, the data is accumulated to the mobile device, and
uploaded when it is connected. We are asking the user to perform
missions at least once a day. But we are not forcing them to do
so. Therefore, there exist users who get tired and do not transmit
data. Moreover, there also exist the users who don’t send once
a day. Therefore, on average, each person has uploaded only 1
activity data at every other day.

4.1 Setting
The activity classes, which are the types of activities, are based

Activity Classes: bbq, bicycle, bowling, bus.sit, bus.stand, car, change.cloth,
chat.sit (sit and chat), chat.stand (stand and chat), cook.stand, cut.grass, darts,
eat.sit (sit and eat), elevator.down, elevator.down.5fl (go down in elevator
over 4 floors.), elevator.up, elevator.up.5fl, escalator.down, escalator.up,
escalator.walk.down, escalator.walk.up, ferry, mono.rail (ride monorail),
motorbike, play.courage (play a test of courage), radio.taiso1 (a kind of
physical excercise), recline, run, shinkansen (rapid train), sit, slope.down
(walk down slope), slope.up, stair.down, stair.run.down (run stairs down),
stair.run.up, stair.up, stand, stretch, test.data (for test), train.sit (sit in train),
train.stand, type (do typing), walk, walk.fast, walk.slow, weight (weight
training)
Device Positions: belt, breast.pocket, hand.bag, left.ankle, left.arm,
left.hand, left.jacket.pocket, left.pants.pocket, left.wrist, neck.strap,
no.label (as a result, right.ankle, right.arm, right.hand, right.jacket.pocket,
right.pants.pocket, right.wrist, rucksack, shoulder.bag

Fig. 3 Listed activity classes and device positions.

Fig. 4 Histogram of collected activity classes.

on “Exercise Guide 2006” by the Ministry of Health Labour
and Welfare, Japan, which gives a guideline to calculate mets:
the strength of each activity. For this reason, several activities
are divided to several strength, such as “walk slowly,” “walk,”
and “walk fast.” Additionally, to enrich the activity classes for
transportations, some vehicle activities such as “train sit (sit in
a train)” were added. Furthermore, we added classes for recre-
ational events, such as “bbq” and “darts.”

Finally, we adopted 46 activity classes and 19 device positions
as shown in Fig. 3.

4.2 Activities
We acquired activity data, and reached a level of 35,310 activ-

ity data by the beginning of February 2011.
Figure 4 shows the number of missions for each activity type.
From the figure, we can see that simple daily life activities were

the sources of most collected data.

4.3 Positions
Figure 5 shows the number of missions for each position. For

simplicity, we only used those which are listed in the position in-
formation, and ones represented in XYZ coordinates on the body
are classified as “no labels” as well as ones with no position in-
formation.

Together with no labels, “pants pocket” and “jacket pockets”
were in the majority. Unsurprisingly, positions such as “ankle,”
“arm,” and “belt” are hardly collected. “neck.strap” data are also
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Fig. 5 Histogram of collected device positions on the body.

Fig. 6 Dendrogram of hierarchical clusters of activity classes by
durations.

rarely collected, but may be more frequently collected in office
situations. The reason why “backpack” data are not collected of-
ten is likely because putting a device in and out of a backpack is
cumbersome, though it is more popular among students.

4.4 Clustering
To find the differences of durations among activity classes or

device positions, we applied hierarchical cluster analysis as for
mean durations to the groups by activity classes or device posi-
tions. In the analysis, Ward’s minimum variance method with
Euclidean distance was used.

Figure 6 is the dendrogram of the clustering result for the
groups by activity classes as for mean durations, After dropping
those groups with under 100 missions. In the dendrogram, a
branch or a leaf means a cluster, and the sum of the height of
any paths denotes the distance between the clusters of the end of
the path.

From the figure, we can see that we can first divide the activity
classes with a non-negligible distance into 2 clusters. From this,
we can infer that there are both classes of longer duration and
shorter duration.

4.5 Lessons Learned
From the long-running and large-scale data collection, we can

conclude the following:

( 1 ) The ALKAN system is well designed and developed. Since
the system is stable and the data has been collected con-
stantly, we can infer that the requirements for usability, mo-
tivation, and scalability addressed in Section 3.1 are satisfied
as far as we know.

( 2 ) The number of data collected is unbalanced in both activity
classes and device positions. There is no problem. If the
imbalance is caused by the probability distribution in natu-
ral life. However, since this might also be by the ease of
recording data for each activity using ALKAN, but we have
to balance them in some way.

( 3 ) The durations have distributions with specific variance, but
it can be used for clustering both activity classes and device
positions. This means this knowledge can be used for im-
proving recognition techniques for sequences of activities.
Also, device position recognition in sequences can also uti-
lize the technique.

As for ( 2 ), we propose and use a method to balance the num-
ber of activity classes and device positions in the following sec-
tion.

5. Activity Recognition

In this section, we demonstrate activity recognition based on
Bao et al. [7]. However, the goal of this section is not to im-
prove the accuracy of activity recognition. As shown in Bao
et al. [7], the accuracy of a single mobile sensor does not compare
well against that from multiple mobile sensors. Moreover, better
recognitions are proposed in the literature. Instead, the goal of
this section is to show the nature of gathered data by ALKAN,
using the most standard activity recognition method.

5.1 Sampling
As addressed in Section 4.5, the number of data collected has

large biases. Therefore, we need a way to sample activities uni-
formly from the gathered data. Here, we present an algorithm to
pick samples from the activity data sets according to the follow-
ing policy:
( 1 ) (uniform positions) The sampled set has the same number of

positions.
( 2 ) (uniform activity classes) The sampled set has the same set

of activity classes among positions.
( 3 ) (uniform users) The sampled set has the same number of

users for each pair of position and activity, while the entities
of users might be different for each pair.

( 4 ) (uniform samples) The sampled set has the same number of
samples for each combination of position and activity and
user.

Algorithm 1 is the algorithm to achieve the policy. In the al-
gorithm, we assume the Pos as the position set, Act as the set of
activity classes, User as the set of users, and S ensor as the set of
sensor data. D denotes the set of all the data, and we use the no-
tation Pos(D) (Act(D),User(D)) to denote the position (activity
class, users, respectively) factors of D.

Moreover, we use the notation of Dapu to specify the subset
of D with activity class a ∈ Act, position p ∈ Pos, and user
u ∈ User. We also introduce wild card notation such as D∗p∗,
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which means a subset of D with any activity class and any user
with position p.

Algorithm 1 Data Item Sampling
Input: D = Pos×Act×User×S ensor, the number of users for each activity

of position: nu, and the number of samples for each user n.

Output: D′ ⊆ D which satisfies the policy above.

// REMOVE DATA ITEMS WITH FEW SAMPLES

1: for all (p, a, u) ∈ Pos(D) × Act(D) × User(D) do

2: D← D − Dpau if ||Dpau || ≤ n

3: end for

// REMOVE ACTIVITIES WITH FEW USERS

4: for all (p, a) ∈ Pos(D) × Act(D) do

5: D← D − D∗a∗ if ||User(Dpa∗)|| ≤ nu

6: end for

// USER SAMPLING

7: D′ ← ∅
8: for all (p, a) ∈ Pos(D) × Act(D) do

9: randomly sample nu users from User(Dpa∗), and add the correspond-

ing data to D′,
10: end for

// DATA SAMPLING

11: Result ← ∅
12: for all (p, a, u) ∈ Pos(D′) × Act(D′) × User(D′) do

13: randomly sample n items from D′pau, and add them to Result

14: end for

15: return Result

In the algorithm, line 1–3 are for ( 4 ) uniform samples, by
omitting the combinations of (position, activity, user) with a few
samples and to ensure no less than n samples for any combina-
tion. In line 11–14, n samples are sampled for each combination.

Line 4–6 are for ( 3 ) uniform users, by omitting activities with
few users, for any position, and to ensure no less than nu users for
any activity. In line 7–10, nu users are sampled for each pair of
position and activity.

We used the statistical processing software R [12] for data pro-
cessing and machine learning shown in the rest of the paper.

Using the algorithm, we applied sampling upon gathered data,
and investigated how many activity classes are sampled for sev-
eral samples n, users nu for single position. Figure 7 is that of
one of the positions, where Pos = {"left.pants.pocket"}.

From Fig. 7, the number of activity classes starts from 39 with
1 users, but decreases to 12 activity classes with 20 users, 6 with
60 users, and 2 with 80 users, when the number of samples is 1.
If we take more samples, the values become lower, such as 8 ac-
tivity classes for 20 users and 2 samples. We omit the results for
other positions, but the curves are similar for other positions.

Thus, the number of activity classes and number of data is
rapidly reduced when using the sampling algorithm. However,
since the number of activity classes, users, and samples for each
users and activity classes are balanced, we adopt this algorithm
for the rest of the paper.

5.2 Feature Extraction
We extracted feature vectors from the 3-axis accelerometer

data. At first, we removed 10 seconds of the beginning and end-
ing, since it will include the action of touching, attaching, or op-
erating the mobile sensors. By doing this, we were able to omit

Fig. 7 Changes of # of activity classes for position: “left pants pocket.”

data of less than 20 seconds.
After that, we applied the sampling algorithm shown above,

and calculated feature vectors based on Bao and Intille [7] for
sampled activity sensor data.

For a sensor data item, time windows of 5-second durations are
extracted at first, shifting 2.5 seconds for each extraction. For the
time window, we calculated:
• Mean value of each axis.
• Frequency-domain energy: the sum of the absolute FFT val-

ues divided by the number of the FFT values for each axis.
• Frequency-domain entropy: the entropy of the absolute FFT

values minus the mean of the FFT values for each axis.
• Correlation among axes: the correlations between x-y, y-z,

and z-x values. In Bao and Intille [7], they also used the cor-
relations among multiple sensors on the body, but we only
used correlations among individual sensors, since our setting
is to use single sensor.

Thus, 12 dimensions are used for each feature vector.

5.3 Training
From the calculated feature vectors, we applied machine learn-

ing to generate a model for activity recognition. As machine
learning algorithms, we used 1) a recursive partitioning tree, 2)
a Naive Bayes classifier, 3) nearest neighbor classification, and
4) a support vector machine with a radial basis function kernel
for the feature vectors.

To evaluate accuracy of recognition, we applied a special case
of cross validation. Usual n-fold cross validation is to divide the
data (feature vectors) to n groups, use n − 1 groups for training
and the rest 1 for test, and repeat it for n groups. Beside the tra-
ditional cross validation, we first picked up the subset for each
activity, divided the users into n groups, and then divided the fea-
ture vectors according to the user groups. This is to maintain the
balance of the numbers of each activity and user. The result is
that users for training and testing are different.

Note that since each activity data item has variety of duration,
and since we extract multiple time windows from it, the number
for each activity for machine learning will not be uniform, but it
can be assumed to be natural, since the duration was decided by
the ALKAN users.

We adopted the position of “left.pants.pocket,” picked 40 users,

c© 2012 Information Processing Society of Japan 182



Journal of Information Processing Vol.20 No.1 177–184 (Jan. 2012)

Table 2 Confusion matrix of activity recognition.

→ trained eat.sit bicycle car sit stand train.sit train.stand walk
↓predicted
eat.sit 1224 170 719 1703 177 1742 165 184
bicycle 58 1764 1054 41 161 178 182 462
car 146 965 3371 918 44 1028 98 1041
sit 1193 22 538 4156 160 1685 139 65
stand 255 293 15 4210 392 1321 701 379
train.sit 803 61 1132 2625 228 1751 934 20
train.stand 780 172 403 341 988 272 2684 1072
walk 388 470 252 1278 514 50 431 3732

Table 1 F-measures(%) for each activity recognition algorithm.

Activity Class Rpart NB 1-NN SVM
eat.sit 10.74 5.19 17.58 22.40
bicycle 40.91 46.61 36.64 45.10
car 37.69 16.82 25.38 44.65
sit 33.77 55.09 30.42 35.76
stand 2.64 1.71 11.11 7.68
train.sit 36.77 8.79 23.83 22.48
train.stand 48.89 62.67 38.12 44.56
walk 54.16 50.95 42.03 53.09

and sampled 1 activity data for each pair of activity and user. By
this sampling, we obtained 8 activity classes. For the sampled
data, we applied feature extraction, trainings, and 3-fold cross
validations by each algorithm. Table 1 is the F-measure for each
activity class and algorithm.

Even though we utilized the same feature vectors, the accuracy
in this table is worse than that obtained by Bao and Intille [7], al-
though we used the same feature vectors. Aside from using single
mobile sensor, the following are considered as the reasons:
• A mobile sensor was not firmly fixed to the body, and was

shaken around in the pocket.
• The number of users is as large as 40 users. It may make the

feature vectors non-general.
• Activity classes are similar to each other. Table 2 is the con-

fusion matrix of the recognition. As we can imagine, similar
activity pairs such as “eat.sit”–“sit” and “sit”–“train.sit” are
often misrecognized.

• Actual activities may have varieties. Since users have per-
formed activities in their own situations, environments could
differ greatly on each trial.

• Labels are not clearly understood by the users. Since we only
showed the names of labels, users may have understood each
activity in varieties of ways.

Although these factors will decrease the recognition accuracy,
they can produce a more challenging data set for activity recogni-
tion since these situations are more realistic than laboratory set-
tings which most of the existing work studied.

In this sense, these results of worse accuracy imply the data set
gathered by ALKAN is a ‘good’ data. Especially, it will be valu-
able as a good test bed when we find sophisticated feature vectors
in the near future.

6. Conclusion

In this paper, we developed an activity data gathering system
using mobile sensor devices. We also described the gathered
data, introduced the sampling algorithm from unbalanced data,
and presented activity recognition results to show the nature of

obtained data.
ALKAN data are open and free to use. ALKAN users have al-

ready agreed to make the data available to the public. Open data is
necessary since several techniques have been proposed for activ-
ity recognition. Methodologies must be evaluated using the same
data set. ALKAN could prove a useful platform for evaluating
current or future activity recognition methodologies.
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