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Abstract: Graph patterns are able to represent the complex structural relations among objects in many applications in
various domains. The objective of graph summarization is to obtain a concise representation of a single large graph,
which is interpretable and suitable for analysis. A good summary can reveal the hidden relationships between nodes
in a graph. The key issue is how to construct a high-quality and representative super-graph, GS , in which a super-node
summarizes a collection of nodes based on the similarity of attribute values and neighborhood relationships associated
with nodes in G, and a super-edge summarizes the edges between nodes in G that are represented by two different
super-nodes in GS . We propose an entropy-based unified model for measuring the homogeneity of the super-graph.
The best summary in terms of homogeneity could be too large to explore. By using the unified model, we relax three
summarization criteria to obtain an approximate homogeneous summary of reasonable size. We propose both ag-
glomerative and divisive algorithms for approximate summarization, as well as pruning techniques and heuristics for
both algorithms to save computation cost. Experimental results confirm that our approaches can efficiently generate
high-quality summaries.
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1. Introduction

Researchers have made great efforts on mining graph data re-
cently, because of its ability to represent complex relationships
among entities in many applicable areas such as Web, social net-
works, biological networks, telecommunication, etc. It is not an
easy task for users to manage and explore graph data, due to the
complex structure, and the increasing size of graphs themselves.
Graph summarization is a potential solution to this problem.

The goal of summarizing a large graph G is to obtain a con-
cise graph representation GS , which is smaller than G in size, for
visualization or analysis. Although specific summarization rep-
resentations can be various in different approaches, the main idea
behind them is to construct a super-graph GS with super-nodes
and super-edges. The nodes in G are partitioned into several node
sets and each node set is represented by a single super-node in GS .
Two super-nodes are connected by a super-edge in GS if there ex-
ist edges in G between nodes from the two corresponding node
sets. The basic assumption is that nodes in the same node set is
similar to each other under certain criteria, which is called homo-
geneous in this paper, otherwise using a single node to represent
them will not be reasonable.

In the literature, there are two major approaches for super-
graph construction, where the main difference lies in how to cre-
ate super-edges between two super-nodes. A strict approach [6]
requires that a super-edge exists between two super-nodes in
GS only if every pair of nodes residing in the two correspond-
ing super-nodes is connected by an edge in G. A relaxed ap-
proach [7], [10] allows two super-nodes to be connected with a
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super-edge in GS if there is at least one connected node pair in
G among all the node pairs summarized by the two super-nodes.
Here, each super-edge is associated with a participation ratio to
indicate the percentage of connected nodes in the two super-nodes
among all the nodes in the two super-nodes.

Unfortunately, both approaches have their disadvantages. In
the strict approach, since only cliques or bipartite cliques can be
represented by super-nodes according to the very rigorous re-
quirement, the size of the summarized graph cannot be small
in most cases, even when super-nodes are near-cliques, which
makes the summarized super-graph still difficult to explore and
access. In the relaxed approach, the issue lies in the quality of the
summarization, which we will discuss soon. For example, if the
participation ratio between two super-nodes is close to 1, it means
almost all nodes in one super-node have neighbors in the other
super-node. If the participation ratio is close to 0, it means almost
no nodes have neighbors in the other super-node. So we can in-
fer whether nodes in one corresponding node set may have edges
connected to certain nodes in the other node set with high con-
fidence. However, if the participation ratio is somewhat around
0.5, then the summarized super-nodes cannot provide much con-
nection information of the neighborhood in the original graph.
Because it implies that only partial nodes in one super-node have
neighbors in the other super-node, and the chance of a node hav-
ing neighbors almost equals the one of a random guess.

We focus on an information-preserving graph summarization
for attribute graphs, which means the summarized representation
must satisfy the quality criteria as much as possible. The sum-
mary for a graph in our solution consists of two parts: a super-
graph and a list of probability distributions for each super-node
and super-edge. Figure 1 shows a conceptual example. A DBLP
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(a) DBLP Co-Author Network

(b) Our Proposed Graph Summary

Fig. 1 An example of graph summarization.

co-author graph to be summarized is presented in Fig. 1 (a). In-
side the dotted area is the structure information of the co-author
graph, where nodes represent authors and edges represent col-
laborations between these authors. There is attribute informa-
tion associated with authors possibly, for example, the table in
Fig. 1 (a) associated with nodes shows the main research topics
of each author. Figure 1 (b) shows our proposed summarized rep-
resentation, where the summarized super-graph is within the dot-
ted area. Each super-node represents a number of authors, and is
affiliated with one topic distribution indicating the research top-
ics of the authors in the super-node, as well as the homogeneity
of these research topics. Each super-edge has two connection
strength distributions indicating the homogeneity of the neighbor
relationship between nodes in the two connected super-nodes in
two different directions. We will have a careful analysis of the
meaning of homogeneity in Section 2.

The major contributions of this research are summarized be-
low.
• We focus on how to obtain an optimized approximate ho-

mogeneous partition on which a graph summarization can
be constructed by relaxing both attribute requirement and
structure requirement. Inspired by information theory, we
propose a unified entropy model which unifies both attribute
information and structural information.

• We propose a new lazy algorithm to compute the exact ho-
mogeneous partition by delaying the reconstruction of ma-
trix, as well as two new approximate homogeneous algo-
rithms aiming to find the optimized approximate partition.

• We conduct experiments on various real datasets and the re-
sults confirm that our proposed approaches can efficiently
summarize a graph to achieve low average entropy.

The remainder of this paper is organized as follows. Section 2
starts a careful analysis of the graph summarization problem and
Section 3 presents our concept of approximate homogeneous par-
tition based on information theory. We introduce the proposed
summarization framework in Section 4 and reported experimen-
tal results in Section 5. Related works are discussed in Section 6
and finally, Section 7 concludes this paper.

2. Problem Statement

An attribute graph G is a triple (V, E,Γ), where V and E are
the node set and the edge set of the graph, respectively. Γ is a
finite set of attributes, and each node v ∈ V or edge (u, v) ∈ E is
mapped to one or more attributes in Γ, denoted as Γ(v) or Γ(u, v).
Given Γ(v) = (A1, A2, · · · , Ad), let γ(v) = (a1, a2, · · · , ad) denote
the attribute value vector of v, where ai is the value of attribute
Ai. In this work, we concentrate on categorical attributes. For
a categorical attribute Ai with l distinct values, we can represent
an attribute value using a l-bitmap, where all bits are zero except
for the bit which corresponds to the attribute value. To simplify
the presentation in this paper, we assume that the edges of the
graph to be summarized are of the same attribute value, but our
framework can be extended to handle graphs which have multiple
attributes associated with both nodes and edges.

Given an attribute graph, we aim to find a concise and inter-
pretable summary which is friendly for users to explore and ana-
lyze. This can be done by partitioning all nodes V in a graph G

into k homogeneous non-overlapping node sets {V1,V2, · · · ,Vk},
where the criterion of homogeneity is discussed later. Here, each
Vi represents a non-empty subset of node set V . Let P denote
the node partition {V1,V2, · · · ,Vk}, and let P(v) denote the unique
node set Vi that a node v belongs. Furthermore, because a node v
in a node set Vi has edges to link other nodes in another node set
Vj, we use N(v) = {P(vk)|(v, vk) ∈ E(G)} to denote the set of Vj.
In addition, for Vj ∈ N(v), we use |Vj|v to denote the number of
edges from v to any nodes in Vj.

Based on the homogeneous partition P, a graph summarization
GS can be constructed as follows. A super-node S i represents a
node set Vi, for all node sets in P, and all nodes of G summa-
rized by a super-node in GS have the same attribute values. The
super-edges among super-nodes in GS imply that every node of
G summarized by a super-node has the same pattern of connect-
ing nodes to other nodes summarized by other super-nodes. For
example, suppose that S i has super-edges to S j, S k, and S l. It
shows that every node of G summarized by S i has edges to some
nodes of G summarized by S j, S k, and S l. In the following of
this paper, we use Vi and S i interchangeably.

Now the question is what is a homogeneous partition. In a ho-
mogeneous partition P, every node set Vi in P is considered to
be homogeneous, which consists of the following three criteria:
First, nodes are homogenous according to the attribute informa-
tion, i.e., nodes in the same node set must have the same attribute
value vectors. Second, nodes are homogenous according to the
neighbor information, i.e., if a node v ∈ Vi connects to Vj, then
all the nodes in Vi must connect to Vj. Third, nodes are homoge-
nous according to the connection strength, which is measured in
terms of edges. If Vi and Vj are connected, all nodes in Vi have the
same number of edges to nodes in Vj. With these three criteria,
we present the definition of exact homogeneous partition below.

Definition 1 (Exact Homogeneous Partition) An exact ho-
mogeneous partition P = {V1,V2, · · · ,Vk} of a graph G = (V, E,
Γ) satisfies the following three criteria for every node v ∈ V: (1)
γ(v) = γ(Vi); (2) N(v) = N(Vi); and (3) |Vj|v = |Vj|Vi , for every
Vj ∈ N(v). Here, γ(Vi) denotes the common attribute values of
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nodes in Vi under the assumption that all nodes in Vi have the
same attribute values. N(Vi) denotes the common node sets for
every node in the node set Vi, and |Vj|Vi denotes the common
number of edges from every node in Vi linking to nodes in node
set Vj.

The above definition of exact homogeneous partition extends
the definition of exact grouping in Ref. [7]. The difference is
that the exact grouping in Ref. [7] only considers the first two
criteria but not the third one. Without the third one, nodes in a
certain node set having more edges connecting to another node
set, are considered to be the same as the one having less edges,
which is obviously not reasonable. For example, in a DBLP co-
author work, authors with more collaborations to a certain re-
search group are more important than authors having few collab-
orations. It is not reasonable to place them together into the same
node set apparently.

A summary GS of a graph G constructed by an exact homo-
geneous partition can be considered as the best summarization
with respect to the homogeneity criterion, since nodes in the same
node sets are exactly the same in terms of attribute and structure
information. Unfortunately, due to the high complexity of graph
attributes and structures, as well as the increasing size of graph
itself, such exact homogeneous partition cannot achieve a high
compression ratio. The size of GS based on the exact homoge-
neous partition is too large to serve as a graph summarization,
which makes it beyond possible for users to handle. As we will
see later in the experimental results, the size of GS based on exact
homogeneous partition can be almost as large as G. To solve this
issue, we need to relax partial or all the criteria in Definition 1.
The approach in Ref. [7] loosens only the second criterion, by
allowing nodes in Vi connect to similar node sets of Vj but not
necessarily to be the same. But it still requires that all attribute
values of nodes in the same node set Vi must be exactly the same
vector.

It is questionable if it is sufficient to relax only the second cri-
terion in Definition 1 due to the following issues: (1) Keeping
the same attribute vector in each node set makes it very difficult
to handle a graph with multiple attributes, in particular, when the
number of attributes is not small. Suppose a node has m attributes
and each attribute has d possible values, there are total dm possi-
ble combinations of these values. Though the real existing combi-
nations may not be so many, it is still impossible to find a partition
of a relative small size, say k, such that all nodes in the same node
set Vi have the same attributes, when k is less than the number of
existing combinations. (2) In the third criterion in Definition 1,
it requests that all nodes in the same node set Vi should have the
same number of edges connecting to nodes in any other node set.
Due to the various possibility of neighborhood structures, this can
also lead to a graph summary which is not much smaller than the
original graph G.

To achieve compact summarization GS , we propose to relax all
the criteria in Definition 1. In order to relax these criteria, a qual-
ity function for each criterion is needed to control the quality of
relaxation. Let us first give a high level definition for approximate
homogeneous partition, and explain it later.

Definition 2 (Approximate Homogeneous Partition)

Given a graph G = (V, E,Γ), a number k, a graph node partition
P is called approximate homogeneous partition, if it satisfies the
following three criteria for every Vi ∈ P. (1) Qγ(Vi) ≤ ε1; (2)
QN(vk)(Vi) ≤ ε2; and (3) Q|V j |vk (Vi) ≤ ε3, ∀Vk ∈ (N(vi) ∪ N(v j)).
Here, let vk ∈ Vi, Qγ(·), QN(vk)(·), Q|V j |vk (·) are three quality
measure functions, and ε1, ε2, and ε3 are three thresholds to
control the quality of the partition.

In an approximate homogeneous partition, nodes in the same
node set are considered to be homogeneous as long as their at-
tributes and neighborhood relationship patterns to other node sets
are similar to each other. Besides, a overall ranking function
is necessary to rank the partitions based on the overall summa-
rization quality to obtain the best one. Suppose R(·) is the func-
tion that reflects the three criteria in Definition 2 to measure the
quality of approximate homogeneous partition, we study how to
compute an approximate homogeneous partition P of size k for
a graph G = (V, E,Γ) by minimizing the ranking function R(P).
The key issues are as follows. What quality measure and the func-
tion R(P) should we use? Can we make it threshold free (without
ε1, ε2, and ε3)? We address these issues in the following sections.

3. An Approximate Homogeneous Partition
Based on Information Theory

In this paper, we propose an information-preserving criterion,
based on information theory. We first review some background
knowledge, followed by detailed discussions about how to uti-
lize a unified entropy model to measure the quality of the three
relaxations in Definition 2.

Let xi be a boolean random binary variable and p(xi) be its
Bernoulli distribution function, p(x) = [ p(x1), · · · , p(xd)] is a
Bernoulli distribution vector [8] over d independent Boolean ran-
dom variables x1, · · · , xd. Let bj denote a binary d-element vec-
tor. Given a set of binary vectors D = {b1, · · · ,bn}, under the
assumption of independence, the probability by which they are
generated by a distribution vector θ is estimated as

P(D|θ) =
∏
bj∈D

d∏
i=1

p(xi = bi
j), (1)

where bi
j is the ith element of the binary vector bj. The best θ,

which fits the model, is

θ̂ = arg max
θ

log(P(D|θ)). (2)

The well-known solution based on the maximum likelihood esti-
mation is

p(xi = 1) =

∑n
bj∈D bi

j

|D| . (3)

We use information theory to measure the quality of these dis-
tribution vectors. Recall that in information theory, entropy [2]
is a measure of the uncertainty (randomness) associated with a
random variable X, which is defined as

H(X) = −
∑
x∈X

p(x) log2 p(x). (4)

Consider a random variable xi whose value domain is {0, 1}, the
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probability of xi equals 0 or 1 is p(xi = 0) or p(xi = 1). The
entropy of an unknown sample of the random variable xi is max-
imized when p(xi = 0) = p(xi = 1) = 1/2, which is the most
difficult situation to predict the value of an unknown sample.
When p(xi = 0) � p(xi = 1), we know that the value of the
unknown sample is more likely to be either 0 or 1 accordingly,
which is quantified in a lower entropy. The entropy is zero when
p(xi = 0) = 1 or p(xi = 1) = 1. For a Bernoulli distribution
vector p(x), assuming the contained random variables are inde-
pendent of each other, the total entropy of a Bernoulli distribution
vector is

H(p(x)) = −
d∑

i=1

1∑
xi=0

p(xi) log2 p(xi). (5)

If binary vectors within the set D are similar to each other, or ho-
mogeneous, then for each random variable xi, most of its values
should be similar, resulting in a low H(p(x)).

3.1 Entropy-Based Relaxations of Criteria
In the following part, we discuss the three relaxations in Defi-

nition 2. Based on these observations, we can measure the quality
of the three relaxations in a unified model inspired by information
theory.

Observation for Qγ. For each node vi ∈ V , γ(vi) = (a1, . . . , ad) is
the attribute vector of vi, where ai is the value of attribute Ai. As
mentioned, we represent categorical attribute values as bitmaps,
so we also use ai to indicate the bitmap when there is no confu-
sion. For a certain node set, Vj, in an approximate homogeneous
partition, the attribute information of each node vi ∈ Vj is in form
of a binary vector by concatenating these bitmaps together, de-
noted as a = (a1, . . . , ad). The attribute information of a node set
is homogeneous if the corresponding binary vectors are similar
to each other. A binary Bernoulli distribution vector can be esti-
mated from these vectors by Eq. (2). When the majority of nodes
in a node sets share a same attribute value, the corresponding bit
in the Bernoulli distribution vectors approaches to 1. When the
majority of nodes do not have a certain attribute value, the cor-
responding bit approaches to 0. In this case, we can infer from
the Bernoulli distribution where a node has or has not a certain at-
tribute value by the expected value of the corresponding bit. Then
it is better if each column in the Bernoulli distribution vector ap-
proaches to 1 or 0. When the value is 0.5, it is the worst case that
we are uncertain to infer any useful attribute information, since
the confidence of the expected value is like the one of a random
guess. Entropy is an excellent quality measure in this case, and
low entropy means high confidence based on Eq. (5).

As shown in Fig. 2, each row in the top table represents a
node in the graph. For each node, there are four attributes:
(a1, a2, a3, a4). The first three rows belong to the super-node S 1

(or node set V1), while the remaining belong to the super-node S 2

(or node set V2). It is easy to see that nodes in S 1 are more sim-
ilar to each other than nodes in S 2. The corresponding Bernoulli
distribution vectors for S 1 and S 2, are represented in the lower
table, as well as their entropy values. As we can see, the entropy
value of S 1 is much lower than that of S 2, which is consistent to

Fig. 2 Entropy-based attribute homogeneity.

Fig. 3 Entropy-based homogeneity of connection strength.

that nodes in S 1 are more similar to each other.

Observation for QN(uk) Nodes in the same homogeneous node
set Vi should have similar neighborhood relationship in the super-
graph. Note that if a node set has good quality according to the
third criterion, it must be also good by the second one, since the
second criterion is in fact a special case of the third one. If there
is only one neighbor for nodes in a node set, then the second
criterion and the third one are the same. Obviously, Q|V j |vk is a
stronger criterion than QN(vk), because Q|V j |vk measures the quality
based on not only whether there are connections between nodes
in Vi and Vj, but also the number of connections for vk ∈ Vi.
Therefore, we can ignore QN(vk), and concentrate on Q|V j |vk which
we will discuss next.

Observation for Q|V j |uk Consider a super-graph GS , and we use
Vi (node set) and S i (super-node) in GS interchangeably. If there
is a super-edge between super-nodes S i and S j, then nodes in S i

should have similar total number of edges to nodes in S j. As
discussed, it is not appropriate to put two nodes together, whose
connection strengths to a certain node set differ a lot, because
their importance to the node set is not in the same level. We can
keep two histograms for each super-edge (S i, S j), namely, S i-to-
S j and S j-to-S i, to record the distributions of neighbors in S j

(S i) of nodes in S i (S j). We explain it by using an example as
shown in Fig. 3. There are three node sets (super-nodes) in the
partition: S 1, S 2, and S 3. At the upper left corner in Fig. 3, it
shows how these super-nodes are connected by super-edges. For
example, it indicates that every node in S 2 has 10 neighbors in S 1

on average. The histogram of S 2-to-S 1 is drawn on upper right
corner, where the x-axis indicates the number of neighbors in S 1
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for a node in S 2. The y-axis indicates the number of nodes in
S 2 corresponding to each value on x-axis. The histogram shows
that there are 2 nodes within S 2 which have 9 edges connected
to nodes in S 1, 2 nodes which have 10 edges and 1 node which
has 12 edges. Intuitively, a homogeneous node set should have a
tight spread range on x-axis in the histogram. Again, entropy is
a good measure to show how homogeneous inside each node set.
To do so, we present the histogram in another way as shown in
the bottom right corner. The x-axis still indicates the number of
neighbors in S 1 for a node in S 2, while the thickness of each bar
indicate the number of nodes in S 1 corresponding to each value
on x-axis. Based on this intuition, we transform each bar in the
bottom histogram to a binary vector of all 1’s. For example, for
bar indicating the number of neighbors is 9, a binary vector of
length 9 is constructed. We first concatenate 0’s at the end of
each binary vector to make them of the same length. Then we
remove the common 1’s in the suffix of these vectors, because
the entropy on these columns are all zero and we focus on only
the difference in these binary vectors. The remaining binary vec-
tors are shown in the bottom left table in Fig. 3. Similar to Qγ,
a Bernoulli distribution vector is learned from these binary vec-
tors. The more similar these vectors are, the lower entropy of the
distribution vector is, as shown in the table.

In summary, the homogeneity of a node set can be measured by
the concept of entropy of these Bernoulli Vectors. Let e = (S i, S j)
denote a super-edge between two super-nodes S i and S j, and let
vi denote a node in super-node S i. The entropy of super-node
S i consists of two parts: the attribute part and the neighborhood
connection strength part. We propose to convert the attribute ho-
mogeneity into neighbor relationship homogeneity to unify the
two parts. Figure 4 shows our conversion. For each attribute
value, we add an additional node in the original graph G. Here
we have four attribute values {a1, a2, a3, a4}, so we add four cor-
responding nodes in G. For each node, we add edges between
it and those nodes corresponding to its attribute values. For ex-
ample, in Fig. 4, node v1 has attribute values {a1, a2, a3}, so we
add edges between v1 and nodes representing a1, a2, and a3. In
this way, we convert the attribute homogeneity into neighbor re-
lationship homogeneity. Then, we apply the same approach as we
have discussed in Observation for Q|V j |vk to calculate the attribute
homogeneity. The entropy for S i is

Entropy(S i) =
k+l∑
j=1

H(p(bm
j = 1)), (6)

Fig. 4 The conversion from attributes to nodes.

where k is a user-given parameter for controlling the number of
node subsets in the partition P and l is total number of distinct
attribute values, bm is the mth element in b, and p(bm

j = 1) is the
Bernoulli distribution vector estimated by Eq. (3) for S i to S j or
a j, depending on whether the connections are to a super-node or
attribute value node. As we can see from the above analysis, the
total entropy for every super-node in exact homogeneous partition
is zero.

Users might prefer attribute homogeneity over connection
strength homogeneity or vice versa. To achieve this, we allow
users to assign weights during the entropy calculation as follows
in Eq. (7).

WeightedEntropy(S i)

= λ

l∑
j=1

H(p(am
j = 1)) + (1 − λ)

k∑
j=1

H(p(bm
j = 1)) (7)

Now, p(am
j = 1) is the Bernoulli distribution vector estimated by

Eq. (3) for S i to node a j, and p(bm
j = 1) is the Bernoulli distribu-

tion vector estimated by Eq. (3) for S i to super-node S j. When λ
equals 1/2, the entropy score is one half of the entropy computed
by Eq. (6). And the weighted entropy for every super-node in the
exact homogeneous partition is still zero.

The optimized approximate homogeneous partition is the par-
tition that minimizes the ranking score of the super-graph, which
is the total weighted entropy of all nodes:

R(P) =
∑
S i∈P
|S i| ×WeightedEntropy(S i), (8)

where |S i| is the number of nodes contained in S i. What we study
next is how to find the optimized approximate homogeneous par-
tition P for a given graph G. Based on P, the graph summariza-
tion GS can be constructed.

4. Homogeneous Graph Summarization

In this section, we present the algorithms for exact homoge-
neous partition and approximate homogeneous partition.

4.1 A Lazy Algorithm for Exact Homogeneous Partition
Exact homogeneous partition is the best summary in terms of

homogeneity, and we extend the algorithm in Ref. [7] to com-
pute exact homogeneous partition using a simple but effective ap-
proach.

Figure 5 outlines the procedures to compute the exact homo-
geneous partition based on Definition 1. Recall that a is the con-
catenated attribute vector for nodes. Suppose there are m dis-
tinct attribute vectors, the nodes in graph G are partitioned into
m groups first according to the distinct vectors. Then the algo-
rithm constructs an n×m node-to-group matrix M, where M(i, j)
is the number of vi’s neighbors in S j. One thing worth noting is
that nodes belonging to the same group are stored adjacently in
M and the order of groups in rows is the same as the order of
groups in columns. At line 5 in Fig. 5, the algorithm marks the
split positions using a binary vector of length n. After inspect-
ing all the groups, the algorithm reconstructs the node-to-group
matrix M based on the marked split positions.
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Lazy Exact Homogeneous Partition

Input: A graph G = (V, E,Γ).
Output: The exact homogeneous partition P.

1. Partition V into m node sets based on distinct attribute value
vectors a;

2. Construct an n × m node-to-group matrix M;
3. while True
4. Sort rows within each group;
5. Let split f lag be an all-zero binary vector of length n;
6. for each cell M(i, j) in M
7. if M(i, j) � M(i + 1, j)
8. split f lag(i) = true;
9. if split f lag is all false
10. break;
11. Split each sets according to split f lag to form m′ new node

subsets;
12. Reconstruct the n × m′ node-to-group matrix M;
13. Output the exact homogeneous partition P.

Fig. 5 Lazy exact homogeneous partition.

Fig. 6 Data structure for lazy exact homogeneous partition.

Because the matrix reconstruction is costly, we do not recon-
struct M immediately after a split position is found. There are
many unnecessary reconstructions during the split operations. An
example is shown in Fig. 6. Suppose the left matrix is the initial
node-to-group matrix after sorting, and we find S 1 should be split
into two subsets. If we reconstruct the matrix in each loop, the
matrix will be like the one on the right. As we can see that the
next node set to be split is S n+1, the last reconstruction of ma-
trix is not necessary. Instead, we mark these split positions using
a binary array and reconstruct only once after we check all the
possible positions. We call it lazy exact homogeneous partition.

Next we will present two algorithms for approximate homoge-
neous partition: an agglomerative merging algorithm and a divi-
sive k-means algorithm.

4.2 An Agglomerative Algorithm for Approximate Homoge-
neous Partition

As discussed, though exact homogeneous partition is of the
highest quality based on homogeneity, its size is almost as large
as the original graph. To further reduce the size of a summary of
exact partition, we propose an agglomerative algorithm which is
presented in Fig. 7, which takes the exact homogeneous partition
P as the input. The main idea of the agglomerative algorithm is to
maintain a matrix to record the change in total weighted entropy
for each pair of node sets if they are merged, and merge the pair
with the minimum value repeatedly. Each merging will decrease
the total number of node sets by one.

In the loop from line 3 to line 6 in Fig. 7, the algorithm calcu-
lates the initial value of total weighted entropy of the exact par-
tition after merging each possible node pair (Vi,Vj). Recall that
the total weighted entropy of an exact partition is zero. At the

The Agglomerative Algorithm for Approximate Partition

Input: The exact homogeneous partition P = {V1, · · · ,Vm}; a number k.
Output: The approximate homogeneous partition PA.

1. PA = P;
2. Let Δ be an m × m empty matrix;
3. for each subset pair Vi and Vj in P
4. Pi j = PA ∪ {Vi ∪ Vj} \ {Vi,Vj};
5. Δi j = R(Pi j); /* Eq. (8) */
6. while |PA | > k
7. Let (Vl, Vm) be the pair of node sets with the minimum Δi j;
8. PA = PA ∪ {Vl ∪ Vm} \ {Vl,Vm};
9. Update Δ based on Vl and Vm;
10. Output the approximate homogeneous partition PA.

Fig. 7 The agglomerative algorithm for approximate partition.

Fig. 8 An example of updating matrix Δ.

end of line 6, Matrix Δ(i, j) stores the change of total weighted
entropy if we merge node set Vi and Vj. Note that we only use
the upper half of Δ(i, j) since Δ(i, j) = Δ( j, i). In each iteration
from line 7 to line 11, the algorithm merges the pair of node sets
with the minimum change in total weighted entropy to generate
new partition, and update matrix Δ.

Now, the problem is how to update matrix Δ. A naive way is to
recompute the whole Δ based on the current partition PA, which
is slow and not necessary, since merging one pair of nodes only
affects partial values in Δ. Suppose (Vi,Vj) is the pair to merge,
and i < j. The merging is done by adding all nodes in Vj to Vi and
deleting Vj. This operation only affects the values in two types of
cells in Δ. The first type is the cells for pairs involving Vi, which
is easy to understand, since Vi is now changed to Vi ∪ Vj. Thus,
we have to recompute the change in total weighted entropy for
these pairs of node sets.

The other type is the pairs of node sets involving the neighbors
of (Vi,Vj). An example is shown in Fig. 8. Suppose Vk and Vl

are neighbors of (Vi,Vj). It does not matter whether Vk and Vl

are both neighbors of (Vi,Vj), or just one of them is. Before the
merging of (Vi,Vj), Δ(k, l) stores the change in total weighted en-
tropy if we merge Vk and Vl, while Vi and Vj are still separated.
Once Vi and Vj are merged, the change of Δ(k, l) consists of three
parts:
( 1 ) |Vk ∪ Vl| ×WeightedEntropy{Vi,V j}(Vk ∪ Vl) − |Vk |

×WeightedEntropy{Vi,V j}(Vk) − |Vl|
×WeightedEntropy{Vi,V j}(Vl);

( 2 ) |Vi| ×WeightedEntropy{Vk∪Vl}(Vi) + |Vj|
×WeightedEntropy{Vk∪Vl}(Vj) − |Vi|
×WeightedEntropy{Vk ,Vl}(Vi) − |Vj|
×WeightedEntropy{Vk ,Vl}(Vj);

( 3 ) The change of neighbors of (Vl,Vk) except Vi and Vj.
The subscript of WeightedEntropy indicates the portion of the
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total weighted entropy related to node sets in the subscript. As
we can see, after the merging of (Vi,Vj), the third part does not
change, so we only need to recompute the first part and the second
part.

4.3 A Divisive k-Means Algorithm for Approximate Homo-
geneous Partition

In this section, we present a divisive k-means based approx-
imate algorithm to find the optimized approximate homoge-
neous partition using the Kullback-Leibler (KL) divergence. The
Kullback-Leibler divergence [8] is a measure of the difference be-
tween two distribution vectors p and q, which is defined as fol-
lows,

KL(p ‖ q) =
d∑

i=1

1∑
xi=0

p(xi) log
p(xi)
q(xi)

. (9)

In the view of information theory, KL divergence measures the
expected number of extra bits required to encode samples from p
when using a code based on q, rather than using a code based on
p. We assume the Bernoulli distribution vector for a certain node
group S i is p. For each node in group S i, let q be the Bernoulli
distribution vector for a node vi ∈ S i. Both p and q are the con-
catenated vector of aj and bj in Eq. (7). Then we have

−
∑
vi∈S i

KL(p(x) ‖ q(x))

= −
∑
vi∈S i

d∑
i=1

(
p(xi = 1) log

p(xi = 1)
q(xi = 1)

− p(xi = 0) log
p(xi = 0)
q(xi = 0)

)

= −
∑
vi∈S i

d∑
i=1

(p(xi = 1)(log p(xi = 1) − log q(xi = 1))

+ p(xi = 0)(log p(xi = 0) − log q(xi = 0)))

=
∑
vi∈S i

d∑
i=1

(−p(xi = 1) log q(xi = 1) − p(xi = 0) log q(xi = 0)

− H(p))

= n(si)
d∑

i=1

(
−

∑
vi∈S i

p(xi = 1)

n(si)
log q(xi = 1)

−
∑
vi∈S i

p(xi = 0)

n(si)
log q(xi = 0)

)

= n(si)
d∑

i=1

(−q(xi = 1) log q(xi = 1) − q(xi = 0) log q(xi = 0))

= n(si) ∗ H(p(x))

Thus, the optimized approximate homogeneous partition that
minimizes R(PA) is the partition that minimizes the sum of
KL(p(x) ‖ q(x)), which leads to the following divisive k-means
approximate algorithm presented in Fig. 9.

The algorithm starts from one node set by putting all the nodes
in G together. In each loop from line 2 to 20 in Fig. 9, the algo-
rithm first splits the node set with the maximum total weighted
entropy, and then applies k-means clustering method based on
KL-divergence. The split procedure is from line 3 to line 14.
First, a random perturbation of nodes in the node sets with the
maximum weighted entropy is performed. Then we inspect these
nodes one by one according to the order in the perturbation. If

The Divisive k-Means Algorithm for Approximate Partition

Input: A graph G = (V, E,Γ), a number k;
Output: The approximate homogeneous partition PA

1. PA = {V};
2. while |PA | < k
3. Let Vm be the node set with the maximum value of

|Vm | ×WeightedEntropy(Vm);
4. Generate a random perturbation L of nodes in Vm,
5. Vi = Vm;
6. Vj = ∅;
7. for v ∈ L
8. we = |Vi | ×WeightedEntropy(Vi)

+|Vj | ×WeightedEntropy(Vj);
9. we′ = (|Vi | − 1) ×WeightedEntropy(Vi \ {v})

+(|Vj | + 1) ×WeightedEntropy(Vj ∪ {v});
10. if we′ < we
11. Vi = Vi \ {v};
12. Vj = Vj ∪ {v};
13. PA = PA ∪ {Vi,Vj} \ Vm;
14. repeat
15. Evaluate the Bernoulli distribution vectors aj’s and bj’s

for Vk ∈ P;
16. Concatenate aj’s and bj’s together for Vk ∈ PA;
17. Assign each node v ∈ V(G) to a new cluster Vk according to

the Kullback-Leibler divergence in Eq. (9);
18. until the change of R(PA) is small or no more changes of the

cluster assignment.

Fig. 9 The divisive k-means algorithm for approximate partition.

moving the node from the old node set to a new node set de-
creases the total weighted entropy, we move it, otherwise, it stays
in the old node set. Once the split is finished, the algorithm per-
forms k-means clustering from line 16 to line 20, to minimize the
sum of KL-divergence. When the number of node sets equals k,
the approximate homogeneous partition PA is returned.

5. Experimental Results

In this section, we report the experimental results of our pro-
posed summarization framework on various real datasets from
DBLP Bibliography *1. The algorithms are implemented by us-
ing matlab and C++. All the experiments were run on a PC with
Intel Core-2 Quad processor and 3 GB RAM, running Windows
XP. One thing worthy noting is that we did not optimize our
sources for multiple core environment.

5.1 Datasets
We construct a co-author graph with top authors and their co-

author relationships, where the authors are from three research ar-
eas: database (DB), data mining (DM) and information retrieval
(IR). Based on the publication titles of the selected authors, we
use a topic modeling approach [3], [9] to extract 100 research top-
ics. Each extracted topic consists of a probability distribution of
keywords which are most representative for the topic.

By using authors from partial or all areas, we construct four
real datasets in our experiments. The basic statistics of the four
datasets are presented in Table 1, including the number of nodes,
the number of edges and the average degree of nodes. There are
total 100 topics in the original datasets and in the experiments,
we remove the topics from authors, whose probabilities are ex-
tremely small. Each author is related to several topics whose

*1 http://www.informatik.uni-trier.de/˜ley/db/
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Table 1 The DBLP bibliography datasets.

Datasets # of Nodes # of Edges Average Degree

D1 DM 1695 2282 1.35
D2 DB 3328 11379 3.42
D3 DB+DM 5023 15262 3.03
D4 DB+DM+IR 6184 18710 3.02

Table 2 The keywords of topics.

Topics # Keywords

32 text, classification, vector, categorization
66 mining, patterns, frequent, sequential...
76 service, scheduling, extending, media
80 clustering, matrix, density, spectral

(a) D1 (DM)

(b) D2 (DB)

Fig. 10 Topic frequency in dataset D1 and dataset D2.

probabilities are larger than 5%. Example of the topics are shown
in Table 2, as well as the top keywords in each topic.

All these topics are not of equal importance. We present the
frequency distribution of topics in datasets D1 (DM) and D2 (DB)
in Fig. 10 in descending order. The x-axis is the topic order and
the y-axis the frequency of a topic which is defined as the number
authors doing research on the topic. For dataset D1 in Fig. 10 (a),
the majority of topics appear less than 100 times, while only less
than ten topics are very hot among authors. For dataset D2, the
frequencies of most topics are below 200.

5.2 Exact Homogeneous Partition
Table 3 presents a comparison between the number of groups

and the nodes in the original graphs. The number of distinct at-
tribute vectors and the number of exact groups are quite close to
the number of nodes. Therefore, the exact homogeneous partition
cannot obtain a graph summary of a reasonable size. Figure 11
shows the graph structure of the main connected component gen-
erated by exact partition algorithm on dataset DM, which is very
large and not possible for users to explore. In Fig. 12, we com-
pare the running time of our lazy exact homogeneous partition

Table 3 The DBLP bibliography datasets.

D1 D2 D3 D4

# of Nodes 1695 3328 5023 6184
# of Distinct Attribute Vectors 1492 2931 4401 5409

# of Exact Groups 1604 3219 4829 5912

Fig. 11 Exact homogeneous summarization of dataset DM.

Fig. 12 The running time of exact Algorithms.

algorithm with the exact partition algorithm, denoted as exact
partition. Unlike the lazy partition algorithm, the exact partition
algorithm reconstructs the matrix M immediately after discover-
ing a split position, as shown in Fig. 5. The lazy exact partition
algorithm is more than 10 times faster than the exact partition
algorithm due to the saved time of matrix construction.

5.3 Approximate Homogeneous Partition
We performed our approximate homogeneous algorithms using

three values of λ: 0.25, 0.5 and 0.75. Due to the high time com-
plexity, we only apply our agglomerative algorithm on datasets
D1, D2 and D3. Figure 13 shows the running time of the ag-
glomerative algorithm performed on these three datasets. Both
the x-axis and the y-axis are in log scale. We performed our di-
visive k-means algorithm on all the four datasets and report the
results for datasets D2, D3 and D4 in Fig. 14. k-means algorithm
is almost 10x times faster than the agglomerative algorithm when
k is small, which common in real applications. An interesting
phenomenon is that the running time of small λ in the agglom-
erative algorithm is less, while the running time of large λ in the
divisive k-means algorithm is less. The reason is that the agglom-
erative algorithm starts from the exact partition, and a large λ can-
not boost the affect of attribute too much. In the divisive k-means
algorithm, a large λ usually means less iterations in the k-means
clustering algorithm, as we observed during the experiments.

Figure 15 (a) shows the average entropy of the approximate
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(a) D1 (DM) (b) D2 (DB) (c) D3 (DB+DM)

Fig. 13 The running time of the agglomerative algorithm.

(a) D2 (DB) (b) D3 (DB+DM) (c) D4 (DB+DM+IR)

Fig. 14 The running time of the divisive k-means algorithm.

(a) The agglomerative algorithm on D1 (DM) (b) The divisive k-means algorithm on D1 (DM) (c) D2 (DB), λ = 0.5

Fig. 15 R(PA)/k.

homogeneous partition by the agglomerative algorithm on dataset
D1, where we present the average entropy for different values of
group number and λ. As the group number shrinks, the average
entropy increases. Since the input of the bottom-up approximate
algorithm is the exact homogeneous partition, the average entropy
is 0 at the beginning. Figure 15 (b) shows the average entropy of
the approximate homogeneous partition by the divisive k-means
algorithm on dataset D1. As we can see, when k is in the range
from 10 to 80, the summary generated by the divisive k-means
algorithm is much better that one generated by the agglomerative
algorithm, in terms of the average entropy. Figure 15 (c) reports
the results on dataset D2 by these two algorithms when λ is 0.5,
which once again shows that the divisive k-means algorithm per-
forms better than the agglomerative algorithm, when k is small.

We present some interesting examples from summary of
dataset D2 (DB), generated by the agglomerative algorithm when
the group number is 60. For ease of presentation, we remove the
distribution on edges, while the values of the entropy for these
distributions are small. Each node in Fig. 16 represents a group
of researchers. The tables in Fig. 16 present the topic number
and the main keywords of each topic. Figure 16 (a) shows that
a group of researchers in time series domain tend to cooperate
with themselves, where the size of node S 9 is 25. Figure 16 (b)

(a) Example 1

(b) Example 2

(c) Example 3

Fig. 16 Real examples from summaries.

shows that researchers working on three different topics cooper-
ate a lot, where the size of node S 5 is 28. We can infer from these
keywords that these researchers are working on the core database
technology. Figure 16 (c) shows three groups of researchers co-
operate a lot, where two of them mainly work on knowledge rep-
resentation, while the third group mainly works on decision tree.

c© 2012 Information Processing Society of Japan 85



Journal of Information Processing Vol.20 No.1 77–88 (Jan. 2012)

(a) D1 (DM), k = 40

(b) D2 (DB), k = 60

Fig. 17 Outliers found by the divisive k-means algorithm.

The size of node S 9, S 16 and S 20 are 26, 12 and 35, respectively.
Figure 17 plots the average entropy of all columns in all the

Bernoulli distribution vectors from datasets D1 and D2. The x-
axis is the average entropy of attributes and the y-axis is the av-
erage entropy of connection strength. Figure 17 (a) shows results
from dataset D1 (DM) when k = 40. As we can see, most points
are close to (0.3, 0.4) indicating a good confidence, while a few
points are closed to (1, 1), which are considered as outliers in the
summary. There are also outliers at (0, 1), which means these
outliers have the same attribute information but not the neighbor-
hood relationships.

Figure 17 (b) shows results from dataset D2 (DB) when k = 60.
Most points are close to (0.35, 0.4), while a few outliers are far
away from the main cluster.

6. Related Works

The graph summarization [1], [4], [5], [6], [7], [10] mainly con-
tains researches on two aspects.

6.1 Graph Summarization
One of them focuses on obtaining an interpretable summary

which is suitable for exploring and visualizing. Navlakha et al. [6]
propose to substitute super-nodes for cliques in graphs without at-
tribute information to generate summaries. Given a graph, each
clique on the graph is represented by a super-node. The summary
is a combination of super-nodes and the original nodes that cannot
be represented. If there is an edge between two super-nodes, or a
super-node and a original node, then all the possible pair of nodes
must be connected by edges in the original graph. It is obvious
that usually a graph cannot have many cliques, so they also use
super-node to represent near-clique or dense areas, with an extra

table to record the edges that do not exist or need to be removed.
The quality of a summary is measured based on the size of the
summary, which is measured by Minimum Description Length
(MDL) principle. MDL can find the best hypothesis leading to
the best compression of the data. Even with the help of the ad-
ditional table, the compression ratio of a summary generated by
the above method is still too large, which is almost one half of
the original graph. To further reduce the summary size, an error
bound ε is introduced for edges, that is, for an original node, if it
or its super-node connects another super-node in a summary, then
the number of missing edges is at most (1 − ε) times the number
of nodes in the other super-node. They propose both greedy algo-
rithm and randomized algorithm to calculate exact summary and
error-bounded summary. The greedy algorithm iteratively merges
two nodes which introduce small extra space cost. The random-
ized algorithm randomly selects a node u, and finds a node v of
small extra space cost in u’s 2-hop neighborhood to merge with
u.

Tian et al. [7] propose to summarize large attribute graphs by
aggregating nodes into groups and use super-nodes to represent
groups of nodes. The attributes are categorical. Two super-nodes
are connected by a super-edge if there is a pair of nodes, one
from each group, connected in the original graph. They require
nodes in each group having the same attribution information, so
the total number of possible attribute values cannot be too many.
Otherwise, the size of summaries will be too large for users to
explore. On the super-graph, there is a participation ratio asso-
ciated with each edge, which is the percentage of pairs of nodes
that are connected among all potential possible pairs. They prove
NP-completeness of this problem and present two heuristic ag-
gregating algorithms in a bottom-up fashion and a top-down fash-
ion. They design a merging distance mainly based on the similar-
ity between participation ratio vectors. Two super-nodes have a
small merging distance if their participation ratio vectors are sim-
ilar. Given a graph, the bottom-up algorithm iteratively merges
two super-nodes with the minimum merging distance until the
number of super-nodes left is k. In the top-down algorithm, nodes
in the graph are initially grouped into clusters and nodes in each
cluster have the same attribute information. A super-node S i is
first selected to be split based on the number of the connection
errors to its neighbors. Suppose S j is a neighbor of S i, and the
number of the connection errors between S i and S j is the largest
among all the neighbors of S i. Then S i is split into two super-
nodes whose participation ratio to S j is 0 and 1. This procedure is
repeatedly performed till there are k super-nodes. Their approach
does not work when the number of attribute values is not small
and their criteria are not so strict for summaries of high-quality.

Zhang et al. [10] extended Tian’s approach [7] to summarize
graph with two contributions. First, they propose to deal with nu-
merical attribute values not just categorical. Second, they recom-
mend possible values of k, which is the number of super-nodes
in summaries. Their algorithm for categorizing numerical val-
ues is agglomerative, which iteratively merges two value-adjacent
super-nodes until no super-nodes are value-adjacent. Then super-
nodes of continuous values are cut into c groups of categories,
where c is given by users. Next, they apply algorithms in Ref. [7]
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to generate summaries. During splitting or merging process, their
algorithm keeps tracking the interestingness measure of the cur-
rent summary, and recommends the value of k. The interesting-
ness measure is based on three characteristics: diversity, coverage
and conciseness.

6.2 Graph Generation Models
Graph generating models can be considered as a summariza-

tion since they are able to partially reveal the hidden relationships
between nodes in graphs. Chakrabarti et al. [1] study the problem
from various points of views in physics, mathematics, sociology,
and computer sciences. Based on the analysis of real social net-
works, the main characteristics they found for social graphs are
power laws, small diameters and community effects. The charac-
teristic of power laws indicates that most nodes in social graphs
have few neighbors, while only a very small portion of nodes are
of high degree. The characteristic of small diameters indicates
that the distance between reachable pair of nodes is small, the
effective diameter of the studied social graph is only 6. The char-
acteristic of community effects indicates that nodes on graph can
be grouped into clusters, whose clustering coefficients measure
their clumpiness. Based on above characteristic of social graphs,
they survey a lot of graph generators and suggest the possible so-
lutions for each unique requirements.

Leskovec et al. [4] focus on the problem of generating a syn-
thetic graph that has the same properties to a given one. The diffi-
culty lies in that the parameters of generating model must be con-
sistent to the given graph. The authors utilize Kronecker product
of matrix to achieve fast synthetic graph generation. They esti-
mate the parameters of Kronecker model using maximum likeli-
hood estimation. The estimation process is speeded up by per-
mutation distribution of the parameters. The same authors study
the problem of evolving graph generator in Ref. [5]. Similar to
Ref. [1], they first find the evolving rules from the sample graph
data, including densification laws and shrinking diameters. Den-
sification laws show that the average degree of nodes increases as
time goes by, resulting in the diameters of graphs to be smaller.
With these two observations, the forest fire model is introduced
which simulates a burning fire of nodes and each node has a cer-
tain probability to link a new node which is found during the
spread of the fire.

7. Conclusions

In this paper, we study graph summarization using a new
information-preserving approach based on information theory. A
graph is summarized by partitioning node set into subsets and
constructing a super-graph based on the partition. We analyzed
the exact and approximate homogeneous partition criterion and
proposed a unified entropy framework to relax all three criteria in
the exact partition. Our proposed summarization framework can
obtain graph summary of small size and high quality, which is
measured by the average entropy of each node subset in the par-
tition. We proposed a lazy exact partition algorithm, as well as
two other approximate partition algorithms to compute the exact
homogeneous partition and the optimized approximate homoge-
neous partition, respectively. We conducted experiments on var-

ious datasets and the results demonstrate that our methods can
summarize attribute graphs efficiently and homogeneously.
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