
Journal of Information Processing Vol.20 No.1 26–36 (Jan. 2012)

[DOI: 10.2197/ipsjjip.vol.20.26]

Regular Paper

A Behavior-based Adaptive Access-mode for Low-power
Set-associative Caches in Embedded Systems

Jiongyao Ye1,a) Hongfeng Ding1 Yingtao Hu1 TakahiroWatanabe1

Received: February 22, 2011, Accepted: September 12, 2011

Abstract: Modern embedded processors commonly use a set-associative scheme to reduce cache misses. However, a
conventional set-associative cache has its drawbacks in terms of power consumption because it has to probe all ways
to reduce the access time, although only the matched way is used. The energy spent in accessing the other ways
is wasted, and the percentage of such energy will increase as cache associativity increases. Previous research, such
as phased caches, way prediction caches and partial tag comparison, have been proposed to reduce the power con-
sumption of set-associative caches by optimizing the cache access mode. However, these methods are not adaptable
according to the program behavior because of using a single access mode throughout the program execution. In this
paper, we propose a behavior-based adaptive access-mode for set-associative caches in embedded systems, which can
dynamically adjust the access modes during the program execution. First, a program is divided into several phases
based on the principle of program behavior repetition. Then, an off-system pre-analysis is used to exploit the optimal
access mode for each phase so that each phase employs the different optimal access mode to meet the application’s
demand during the program execution. Our proposed approach requires little hardware overhead and commits most
workload to the software, so it is very effective for embedded processors. Simulation by using Spec 2000 shows that
our proposed approach can reduce roughly 76.95% and 64.67% of power for an instruction cache and a data cache,
respectively. At the same time, the performance degradation is less than 1%.

Keywords: configurable cache, low power, embedded systems

1. Introduction

With the wide application of embedded devices (e.g., notebook
computers, mobile phones, consumer electronics, etc.), a highly
efficient microprocessor design has become a hot issue. Modern
microprocessors employ caches to bridge the great speed variance
between a main memory and a central processing unit, but these
caches consume a larger and larger proportion of the total power
consumption. For example, the cache of DEC Alpha21164 [1] or
StrongARM SA-110 [2] dissipate 25% or 43% of its total power,
respectively.

Especially, to reduce a miss rate of a cache, modern micropro-
cessors employ set-associative caches that provide a better trade-
off between miss rate and complexities of implementations. How-
ever, traditional set-associative caches have their drawbacks in
terms of power consumption. A typical traditional access mode
of the n-way set-associative cache probes the tag and data ar-
rays in parallel on all the ways, and then select the data from
the matched way. This operation is inefficient from the perspec-
tive of power consumption because (n − 1) out of n data reads
and tag reads are useless. To address this problem, various tech-
niques [3], [4], [6], [7], [8], [11], [12], [13] have been proposed
to reduce the power consumption of set-associative caches by us-
ing a more power-efficient access mode instead of the traditional

1 Graduate School of Information, Production and Systems, Waseda Uni-
versity, Kitakyushu, Fukuoka 808–0135, Japan

a) yejy asgard@suou.waseda.jp

mode. However, the efficiency of these techniques strongly de-
pends on the program behavior *1 (e.g., way-prediction accuracy).
Unfortunately, since the difference in program behavior widely
exists across applications, there is no special access mode that is
the most efficient in all applications. Further, even within an ap-
plication, the program behavior also varies in different phases of
this application [15]. Thus, a more efficient approach is to dynam-
ically adjust cache access mode to adapt to different program be-
haviors of a certain application. This approach has been applied
to researches [9], [10] that are proposed to combine two different
access modes to achieve low power target. These two schemes
predict an optimal access mode for the application under execu-
tion based on the cache access history (e.g., cache miss/hit rate or
way-prediction accuracy), which is essentially a temporal-based
adaptive approach. The temporal approach evaluates and applies
the access modes tied to successive intervals in time. Thus, both
of two approaches present high efficiency only if the program can
keep its execution phase for a number of time-intervals. In other
words, if a variation of the cache performance such as a cache
miss rate is very large within several consecutive time-intervals,
these techniques provide low efficiency due to the low prediction
accuracy. Therefore, the most crucial issue of the adaptive access-
mode scheme is how to decide the most efficient access mode for
different program behavior of an application and when to use the

*1 In this paper, the program behavior is characterized by a range of statis-
tics, such as cache hit/miss rate, prediction accuracy, power consumption
or runtime.

c© 2012 Information Processing Society of Japan 26



Journal of Information Processing Vol.20 No.1 26–36 (Jan. 2012)

optimal access modes during the application execution.
In this paper, we propose a behavior-based adaptive access-

mode, named BAAM for short, for set-associative caches in em-
bedded systems, which can reduce power consumption without
significant performance degradation. In our scheme, during the
application execution, the cache access-mode is dynamically ad-
justed at the boundary of phases (a phase is a period of execution
with predictable behavior) in order to adapt to the changing pro-
gram behavior. In order to achieve this goal, we first implement
an off-system analysis to partition the program into several phases
and test every access mode for every phase to select the opti-
mal mode. Different from the previous works [9], [10] that ex-
ploit the optimal access mode based on the cache access history,
our proposed design follows the prior research [14] that exploits
program behavior within a single application to identify the pro-
gram phases based on the position in the code. In the case of the
behavior-based scheme, an application is divided into modules
(e.g., subroutines or loop) that are natural candidates of phases.
Prior execution of a module can be used to accurately predict be-
havior of future instances. In other words, the program behavior
of the different instances of the same module can sustain great
similarities from an architecture perspective. Thus, once the opti-
mal access mode is selected for a certain module, there is a reason
to believe that this access mode would exhibit similar efficiency
in future instances of the same module.

The behavior-based adaptive approach uses a static off-system
exploitation to select the optimal access mode for different
phases, resulting in requiring a previous study of the code and
losing some performance because of the lack of execution time
information. Fortunately, we employ the static approach based
on a basic consensus that an embedded system is designed to
run a fixed application for the specific target. Thus, based on
simulations on the platform, we would pre-determine the opti-
mal access mode for different phases of a certain application,
but only once. In addition, our approach exploits program be-
havior repetition based on code sections, which can significantly
reduce the period of the access-mode exploitation without affect-
ing the simulation accuracy. Reference [14] has indicated that,
in general, the behavior repetition of modules under different in-
put and architecture configuration can maintain great stability so
that the optimal access-mode exploitation is a one-time effort for
a particular application regardless of the input or the architecture
configuration. But, in terms of advantages, the behavior-based
approach is more accurate than the temporal-based adaptive ap-
proach in predicting the future access mode, and this approach re-
quires less additional hardware and has a much wider view of the
program. Taking those into account, our approach makes sense
in an embedded application where the drawbacks are slight. Ac-
cording to our experimental results, BAAM reduces the power
consumption of an instruction cache and a data cache by up to
76.95% and 64.67% compared to the conventional access-mode,
and 9.16% and 12.88% compared to the access-mode prediction
scheme [10]. Moreover, the performance degradation is less than
1% compared with the conventional access-mode.

This paper is organized as follows: Related works are intro-
duced in Section 2. Then, we discuss the motivation of our work

in Section 3. In Section 4, we explain our hardware design sup-
ports and Section 5 describes the implementation of the behavior-
based configurable cache. Section 6 summarizes an experimental
framework and shows the evaluation results. Finally, we conclude
the paper and discuss the future works in Section 7.

2. Related Works

Reference [3] proposed a Phased cache that separates the cache
access into two phases. Tag array is accessed and compared in the
first phase. Then, only the matched data way is accessed at the
second phase. This technique reduces the useless data way ac-
cess energy at the cost of doubling cache access latency. Filter
cache [11], block buffer [12] and multiple line buffer [13] attempt
to employ a small storage unit between the processor and the L1
cache to avoid unnecessary L1 cache lookups. The efficiency of
these schemes strongly depends on the temporal and spatial lo-
cality of program.

References [4] and [5] employ the Way-prediction technique
that attempts to predict a single way where the required data may
be located before accessing tags. A correct prediction results in a
fast hit and yields power benefits roughly proportional to the as-
sociativity (a single way out of n is accessed). On the other hand,
a way misprediction results in no power savings and a slow hit be-
cause the rest of the ways need to be searched with a subsequent
cache access. In contrast, way-selection technique [6], [7] prede-
termines the access way by detecting certain extra state bits or
comparing partial tag so it has a fixed hit time compared to way-
predicting techniques. However this technique cannot maximize
power efficiency because more than one way may be selected,
simultaneously. Partial tag comparison scheme [8] is another ap-
proach to reduce the power consumption of the set-associative
cache, which selectively disables the sense amplifiers in data ar-
ray by the results of partial tag comparison.

Powell et al. proposed a scheme that exploits direct mapping
accesses for the predicted nonconflicting accesses and way pre-
diction for those predicted conflicting accesses [9]. This ap-
proach reduces the power consumption for cache hits but does
not optimize the consumption for cache misses. An aggressive
scheme proposed by Zhang [10] uses two access modes: way-
prediction and phased-access. First, it decides whether it uses
way-prediction or not; if not then all the ways in a set associative
cache are accessed with phased-access mode. Whereas, if the
decision is to use way prediction, then the predicted way is ac-
cessed first, and the remaining ways are accessed only when the
prediction misses. In essence, the scheme is a virtual selective-
direct-mapping extension of the Most Recently Used (MRU)
way-prediction, which requires line swapping and complex re-
placement policies so it is difficult to be applied to embedded
design because of the excessive design overhead.

3. Motivation

Before explaining the proposed design in detail, we first illus-
trate the benefits that we could achieve with the adaptive access-
mode scheme. To show the efficiency of the different access mode
in different application and different phases of an application,
we select three access modes: way-prediction (WP), Partial Tag

c© 2012 Information Processing Society of Japan 27



Journal of Information Processing Vol.20 No.1 26–36 (Jan. 2012)

Fig. 1 Power saving for different access modes.

Fig. 2 Power saving for the different modules of bzip.

Comparison (PTC) and Single Block Buffer (SBB) because they
are typical power-efficient schemes and more easily achieved for
embedded systems. Throughout the next experiments, we em-
ploy 32 KB, 4-way set-associative cache with 32B block size for
L1 Instruction Cache (IC) and Data Cache (DC) — the experi-
mental environment is described in detail in Section 6.

Figure 1 shows that the power saving of IC and DC are
achieved by three access modes for SPEC 2000 benchmark data,
compared to the traditional access mode. The key observation
is that the efficiency of those schemes presents difference across
applications. For example, in case of IC power saving, WP
clearly outperforms other schemes in most applications except
Gzip. Similarly, in the cases of DC power saving, PTC is a bet-
ter choice for some applications like mcf, art and swim, but other
applications such as bzip, gcc and galgel, WP works better than
PTC.

A single access mode also exhibits the efficiency variation in
the different phases of the given application. Figure 2 shows the
power saving of IC and DC for the different modules of the given
application (bzip). Following the prior work [14], the application
is divided into 7 modules. A module is the basic program phase,
which is explained in the next section. The simulation results
show that, although WP works well in most of the modules both
for IC and DC, PTC is a better choice in some cases, such as
power saving of DC for the module 5.

Overall, no single access-mode can be regarded as a panacea
for all the applications, and works well in all the program phases.
Thus, an adaptive access-mode scheme is required to dynamically
adjust the access mode for different phases during the application
execution.

4. Hardware Support

Our proposed design tends to adjust the access mode to match
the requirements of each application phase. Considering per-
formance and design complexity, three access modes are em-
ployed by our paper: way-prediction (WP), Partial Tag Compar-
ison (PTC) and Single Block Buffer (SBB). However, to avoid
performance degradation due to the twofold miss (i.e., the ref-
erenced data is neither in SBB nor in the predicted way that is
decided by WP or PTC), SBB is accessed as soon as cache is ac-
cessed by another access-mode (WP or PTC). Thus, there are
four access-modes in BAAM: WP with and without SBB and
PTC with and without SBB. The off-system pre-analysis eval-
uates the performance and runtime of every access-mode for ev-
ery program phase, and selects the most optimal one. In general,
if the accuracy of way prediction is above a certain limitation
in the current code segment, WP would be adopted because of
its high power-efficient and low design complexity. Otherwise,
PTC is used to reduce the major power consumer (i.e., sense
amplifier) of cache. Different from research [10] that employs
the phased cache as alternative mode to reduce the power con-
sumption at the cost of increasing the access cycle, PTC reduces
the major power consumption of set-associative caches without
performance degradation. Note that only one of the above two
schemes can be selected for each program phase. On the other
hand, since the power efficiency of SBB is not noteworthy (on
average, reducing total cache power by up to 37% and 18% for
IC and DC, respectively), it should not be used alone. However,
SBB is considered as a complement to other access modes be-
cause it can not increase the access delay, easy to use together

c© 2012 Information Processing Society of Japan 28



Journal of Information Processing Vol.20 No.1 26–36 (Jan. 2012)

Fig. 3 Architecture of behavior-based adaptive access modes cache.

with others modes, and the power consumption and area overhead
of SBB itself is very small. Therefore, if there is good locality in
the current code segment, SBB is utilized to associate with one of
other two modes so that the power consumption of set-associative
caches is further reduced without extra access delay.

Figure 3 illustrates our proposed design. Components in the
dotted frame numbered 1 are way-prediction, including a way
predictor, a way-prediction table and an access controller. Way
predictor determines the value of each way-prediction flag ac-
cording the the Most-Recently Used (MRU) algorithm. Way pre-
diction table contains a two bits way-prediction flag for each set
to choose one way from the corresponding set. The dotted frame
numbered 2 is an additional very small tag array for partial tag
comparison. This small tag array is organized and accessed as a
regular tag, which keeps a copy of the least 3 significant bits of
the original tag. Our proposed design also adds a single block
buffer for output latch. The block buffer saves the instructions
which come from the last accessed block. Thus, the next required
data are likely to be directly fetched from this block buffer so that
the normal level-one cache access is avoided. Three extra con-
figuration registers (Reg0, Reg1 and Reg2) are used to achieve
different access modes. Each of them is 1 bit. All the registers are
set/reset at the boundary of the corresponding phase in order to
change the access modes.

4.1 Operations
During the application execution, BAAM dynamically adjusts

the access modes based on the results of the off-system pre-
analysis for this application. When Reg0 is set and Reg1 is re-
set, the WP modes is activated and the partial tag array is dis-
abled by Reg1. In this case, once an effective address is gener-
ated, the way-prediction flag is read from the corresponding set
of the way-prediction table to determine the predicted way. Then,
only the predicted way is activated, and implements the cache ac-
cess in the same manner as conventional set-associative caches.
The remaining ways are accessed only when the way-prediction
miss. Note that Reg0 masks the output of partial tag array by an
OR gate, which ensures the sense amplifier of predicted way is
valid. When Reg0 is reset and Reg1 is set, PTC is used and WP
is prevented from predicting and updating. In this case, for each

way, partial tag comparison is implemented. Only when there is
a match, the sense amplifiers attached to the data array bit-lines
can be enabled. Reg2 specifies whether the block buffer needs
to be accessed. If there has good spatial locality in the current
code segment, the block buffer is allowed to access to reduce the
number of unnecessary level one cache access. Otherwise, it is
unused.

4.2 Overhead
Compared to the conventional access mode, BAAM would in-

duce delay penalty only when way prediction miss in case of WP
mode. For PTC, Ref. [8] pointed out that the partial tag com-
parison cannot increase the access latency due to its small size.
The block buffer access is implemented concurrently with set de-
coding. In other words, delay penalty of SBB can be completely
hidden by the set decoding.

The baseline cache uses 6T SRAM cell technique. For an
32 KB four-way cache with a block size of 32B, the total storage
area size is about 1,689,600 transistors including tag array (set
number 256 * set-associativity 4 * tag size 19 bit * 6T) and data
array (set number 256 * set-associativity 4 * data size 256 bits *
6T). The major area overhead due to BAAM design comes from
three sources: 1) an extra block buffer uses a 9T RAM cell to im-
plement the tag and index part (the width is 27 bit), and the data
part can be implemented with 8T latch, the size of which is same
as the base line size (i.e., 256 bits). Thus, its total area overhead
is roughly (9*27) + (8*256) = 2,291 transistors, which is about
0.1% of the total storage area. 2) Partial tag comparison copies
the least 3 significant bits of the original tag. The size of partial
tag array is about 18,432 transistors. The area overhead of PTC
is less 1.1% of the total storage area. 3) For WP, an added hard-
ware includes n bits way information registers, and a way pre-
diction state machine which is the most essential part in WP, and
several bits of access controller. Because we choose 4-way set-
associative caches in this paper, 2 bits register are used to store
predicted way information. Compared with tag and data array,
the area overhead of WP is fairly limited and it can be ignored.

5. Behavior-based Policy

In order to apply the optimal cache access modes during the

c© 2012 Information Processing Society of Japan 29



Journal of Information Processing Vol.20 No.1 26–36 (Jan. 2012)

course of the program, we perform an off-system pre-analysis for
each application, which has four steps: 1) Module selection, 2)
Configuration exploration, 3) Choosing the configurations and 4)
Instrumentation. We consider the issues in these steps in the fol-
lowing sections.

5.1 Module Selection
The first step in the analysis is to statically partition the pro-

gram into smaller units, called modules. A specified optimal ac-
cess mode is performed at the beginning of each module. There
are two reasons that lead us to using the behavior-based approach
instead of the previous works [9], [10] that are based on the tem-
poral approach. First, intuitively, the code strongly affects cache
demand. In fact, the processor only uses an instruction address
to access cache, so the cache access mode is more related with
code’s section being executed than with the fixed time interval.
Second, the behavior of the dynamic instances of a static mod-
ule often remains very stable. These two observations agree with
[14], namely in that is, the tying adaptive configuration to the
code’s position is generally more effective than the temporal-
based adaptive scheme because the different instances of the same
code exhibit highly similar behavior during program runtime.

The granularity of a module has a huge effect on the perfor-
mance of our scheme. The ideal granularity of a module depends
on the particular goal. A module with a large granularity may
contain smaller modules with different access mode. On the other
hand, the module cannot be too small because adaption overhead
at runtime will be large, which results in more power consump-
tion and performance degradation. Meanwhile, in this case, sim-
ulation statistics tend to be determined by the microarchitectural
state rather than by the code itself. In our paper, we select two ba-
sic structures as natural modules: subroutines and loops. Refer-
ence [14] pointed out that different iterations of a loop or different
invocations of a subroutine can exhibit a very similar behavior.

But, not all subroutine have the ideal grain size or the same im-
portance, so we use two thresholds (THlow and THlarge) to select
the subroutine with the appropriate granularity. We empirically
set these thresholds to 50K instructions per subroutine and 1M
instructions per subroutine, respectively. If the size of a subrou-
tine is smaller than THlow, it is merged with its caller. Instead, if
the size is larger than THlarge, it may contain sections with dif-
ferent behaviors. Within this large subroutine, we further exploit
behavior repetition of loop iterations. To reduce the configura-
tion overhead, we only exploit long loops that have an average
instance size higher than THlarge. Although these two thresholds
are selected based on empirical values, there is no significant vari-
ation across various thresholds for a particular application under
the same simulation environment. This is because these thresh-
olds largely depend on the target architecture rather than on the
application. Furthermore, in order to reduce the complexity of
the access-mode exploration, certain modules can be completely
ignored for subsequent analysis if they are executed too infre-
quently. This approach is called subroutines filtering. In our pa-
per, if the number of instructions of a certain module is below
0.5% of the total number of dynamic instructions, then that mod-
ule is ignored. According to the filtering, the average number of

(a) Power saving of IC and DC with WP

(b) Performance degradation with WP

(c) Power saving of IC and DC with PTC

(d) Power saving of IC and DC with SBB

Fig. 4 Configuration exploration for bzip.

modules changes from 40 to 21. Therefore, the filtering approach
helps most applications reducing more than half the static code,
which simplifies the subsequent analysis.

5.2 Access-modes Exploration and Choice
After dividing the application into modules with proper granu-

larity, we explore the different configurations on each module in
order to determine the optimal choice. We use a straightforward
approach where the application is executed many times to directly
measure the execution time and power consumption. An exhaus-
tive mode exploration using an exhaustive algorithm is used to
test each access modes on every module. In this paper, there are
only 3 access modes that need to be evaluated.

Figure 4 illustrates the mode exploration and choice in the
case of bzip benchmark of SPEC 2000 suite, consisting of 7 mod-
ules. First, we implement the fastest implementation (called basic
mode) for each modul, which probes the tag and data arrays in

c© 2012 Information Processing Society of Japan 30



Journal of Information Processing Vol.20 No.1 26–36 (Jan. 2012)

parallel on all four ways, and then select the data from the match-
ing way, and record the execution time and power consumption
of each module. Compared with the basic mode, Fig. 4 (a) shows
that WP reduces the power consumption (PS) of IC and DC for
each module, and Fig. 4 (b) shows the performance degradation
(PD) of each module due to using WP. Similarly, PTC is tested
in Fig. 4 (c), but only the power consumption needs to be recorded
and compared with basic mode because of the scheme with-
out performance degradation. After evaluating these two access
modes, we first select the better one for each module. To select
the optimal access mode, the maximum performance degradation
(PDmax) is given according to user requirements (in our paper, we
empirically set it to 1%). Then, we select the access mode that
shows the highest power saving and whose PD does not exceed
the given PDmax. For bzip, the simulation results show that WP is
the optimal access mode for IC and DC, except DC of module 5.
Note that, for module 7, although power efficiency of WP is better
than that of PTC, we select PTC for module 7 because WP results
in the performance degradation over the PDmax. At last, the SBB
is tested based on the above-selected access mode for each mod-
ule. If the power saving of the module is improved, then the SBB
is used. Otherwise, it is closed. As shown in Fig. 4 (d), all the
modules can reduce the power consumption by SBB, so SBB is
always used during the bzip execution.

5.3 Instrumentation
After each module of a particular application selects the most

optimal access mode, the binary-code application needs to be
modified in order to instrument entry and exit points in modules.
Two extra instructions are introduced into the instruction set ar-
chitecture, which change the values of the configuration registers
(i.e., Reg0, Reg1 and Reg2) to adjust access modes when alter-
nating between the two modules. The first special instruction is
writing configuration registers (ConReg we) that writes the cor-
responding values into the configuration registers at the head of
a certain module. At the tail of the module, the other instruction,
exit configuration (Exit Con), is inserted to instruct the cache to
return the previous access mode. Figure 5 illustrates an example
of instrumentation and the operation of the stack. Entries of a sub-

Fig. 5 Instrumented module and operation of the stack.

routine are inserted by ConReg we, and Exit Con is added before
the return instruction. For a loop, we identify iteration boundaries
and loop termination by marking the backward branch and all the
side exit branches of all chosen loops.

In the case of nesting, the current configuration must be saved
when another module is called, and be restored after the return.
We use a stack to store the previous configuration. The stack,
which has 6 bits (IC and DC each 3 bits) and 16 entries, is enough
to cover most situations in our experiment. If the stack overflows,
the cache remains in the current configuration until an entry of
the stack is free.

6. Simulation

6.1 Evaluation Environment
To evaluate the power and performance of our proposed

adaptive access-mode, we use Wattch 1.0 [16], which is an
architecture-level power analysis tool built on SimpleScalar [17]
and integrated a modified version of CACTI [18] to model level-
one cache. Wattch reports both the execution time and the
power/energy consumption of simulated processors. Table 1
shows our basic system configuration parameters.

Twelve benchmark applications are taken from the SPEC 2000
suites that are typical representatives as embedded applications.

Table 1 Basic system configuration.

CMOS Technology 70 nm, power supply = 1.2 V

Issue/decode width 4 intrs. per cycle

ROB/LSQ 64 /32 entries

Branch predictor 16K entries Gshare

Writeback buffer 8 entries

Base L1 I-cache

32 KB, 32 line-size, 4-way set-associative,
3cycle access latency,
power consumption per cache access = 925.9 mw,
leakage power = 141.6 mW

Base L1 D-cache

32 KB, 32 line-size, 4-way set-associative,
3cycle access latency,
power consumption per cache access = 925.9 mw,
leakage power = 141.6 mW

L2 unified cache

2 MB, 64 line-size, 8-way set-associative,
12 cycles access latency,
power consumption per cache access = 23.89 watt,
leakage power = 8793 mW

c© 2012 Information Processing Society of Japan 31



Journal of Information Processing Vol.20 No.1 26–36 (Jan. 2012)

Table 2 The average power and access delay of the 32 KB 4-way cache.

Data path Tag path
Delay
(ns)

Power
(mw)

Delay
(ns)

Power
(mw)

Row decoder 0.35 23.4 016 8.75
Wordline and bitline 0.11 48.2 0.06 33.3
Sense amplifier 0.07 628.6 0.05 120
Tag compare 0 0 0.16 1.25
Mux driver 0 0 0.13 02.3
Output driver/valid output 0.06 56.7 0.06 3.4
Power per access 0.59 756.9 0.62 169
Average delay per access 0.62 ns
Average power per access 925.9 mw

To cover the wider variety of behavior, we simulated more than
two billion instructions for each application. For off-system anal-
ysis, we used the test input set, which greatly help off-system
analysis reduce the simulation time. It is based on the observa-
tion that the small inputs has a similar behavior to a big input sets
by exploring the behavior repetition [14].

Our cache models are based on the CACTI cache model. We
assume all cache models have the same cache configuration (in-
cluding cache size, associativity, block size and technology that
are shown in Table 1). According to the power model of differ-
ent cache models (described in Section 6.2), the average power
per access of different cache models is estimated. For exam-
ple, for WP cache model, only one tag and data subarray, a re-
lated decoder and an output driver consume the power. Further-
more, we modified CACTI to incorporate the power model of the
block buffering for BAAM. We use the modified Wattch built
on the modified version of Simplescalar 3.0 to model a high-
performance out-of-order processor for overall power and per-
formance analysis.

6.2 Power Consumption Evaluations
In this section, we describe the power model of different cache

models. The power model is the computation of Average Power
per Access (APA) for different cache models. For the conven-
tional parallel-access set-associative cache, there are three main
power consumers: power consumed by the data array, power con-
sumed by tag array and power to drive the output. The breakdown
of the power consumption and access delay of the given cache is
shown in Table 2. As a result, the power per access of the con-
ventional 4-ways set-associative parallel-access cache (APAcache)
is about 925.9 mw.

In way prediction cache, the predicted way first needs to be
accessed, and the remaining ways are accessed only when the
way prediction is missed. The APA of the way-prediction cache
(APAwp) can be calculated by Eq. (1):

APAwp =

(
1
N
× APAcache

)
+ Mwp ×

(
3
N
× APAcache

)
(1)

where N is the associativity. Mwp is the way prediction miss rate.
In partial tag comparison cache, sense amplifiers of the un-

matched way are disabled, so this part of power should be moved
from the total power consumption. The APA of partial tag com-
parison cache (APAptc) can be calculated by Eq. (2):

APAptc = APAcache − PS en × Runmatch + Ppc (2)

where PS en is the power consumed by the data sense amplifier.
Runmatch is the unmatched rates of the tag partial comparison.
Here, Ppc is the power consumed by the extra 3-bit partial tag
comparison per cache access, but this part of power is very small.
By using CACTI, we estimate the power of 3-bits partial tag com-
parison. Ppc is approximately 33.52 mw which is less than 4% of
part of APAcache.

In block buffering cache, if there is a block buffering hit, the
data is directly read from the block buffer and the cache does not
operate. Thus, APA of a block buffering cache (Pbb) can be ex-
pressed as Eq. (3):

APAbb = Pbu f f + APAcache × Mbu f f (3)

where Pbu f f is the power consumption per block buffer access.
Pbu f f obtained from the HSPICE simulation is 9.35 mw. Mbu f f is
the block buffering miss rate.

For WP and PTC cache models with SBB, SBB is accessed at
the same time that the cache is accessed by another access-mode
(WP or PTC), with the result that cache access can not be en-
tirely avoided even if SBB is hit. We perform the HSPICE timing
simulation to measure the access time of SBB. The latency to
determine SBB hit is approximately 0.4 ns. By comparing this
latency to the access delay shown in Table 2, we found that the
latency to access SBB can be overlapped with the decoder and
wordline/bitline delays of the data path. Thus, the power con-
sumption of a sense amplifier of data array of predicted way can
be reduced when SBB is hit. Equations (4) and (5) are the power
model of APAwp sbb and APAptc sbb, respectively:

APAwp sbb = Pbu f f + APAwp − 1
N

PS en × Hbu f f (4)

APAptc sbb = Pbu f f + APAptc − Rmatch × PS en × Hbu f f (5)

where PS en is the power of the sense amplifier of data array of
predicted ways. Hbu f f is the block buffering hit rate. Compared
to Pwp and Pptc, SBB adds the block buffering power per access,
but can reduce the sense amplifier of data array of the predicted
ways when the block buffering is hit. Note that the predicted way
in WP mode is always one. However, the number of predicted
ways in PTC mode is decided by the matched rates of the tag par-
tial comparison. According to the power model of WP and PTC
modes associating with SBB, we found that associating PTC or
WP with SBB is effective even if its hit rate is not high because
the power consumed by the sense amplifier of data array is much
larger than that by SBB.

AMPS cache uses two access-modes: way prediction and
phased-access. Based on cache hit and miss way prediction,
AMPS selects an optimal access-mode for the current program
execution. The power model of way prediction is explained in
Eq. (1). We estimate APA of the phased-access cache by Eq. (6):

APAphased = Ptag +
1
N
× Pdata × Hcache (6)

APAAMPS = APAwp × t + APAphased × (1 − t) (7)

where Ptag is the power consumed by tag array. N is the associa-
tivity, and 1/N× Pdata is the power consumption of data array for
the hit way. Hcache is the cache hit rate. Therefore, the APAAMPS

c© 2012 Information Processing Society of Japan 32



Journal of Information Processing Vol.20 No.1 26–36 (Jan. 2012)

Table 3 Module selection.

Modules
Sub-

routines
Loops

Average static
intr. per module

T (µs)

bzip2 7 5 2 2,458 771.2
gap 14 8 6 906 272.1
gcc 9 4 5 8,471 1,960.2
gzip 9 7 2 643 875.2
mcf 11 6 5 689 55.6

parser 35 23 12 1,411 13.5
twolf 31 16 15 3,478 506.2
vortex 7 4 3 1,354 175.3

art 43 14 29 2,720 168.7
applu 62 14 48 27,484 1,593.4
galgel 15 10 5 5,896 955.4
swim 9 4 5 8,719 5,846.3

average 21 9.6 11.4 5,352 932.8

is expressed as Eq. (7), where t is the percentage of the total ex-
ecution time to use WP mode, which is decided by the cache ac-
cesses history. For AMPS associating with a block buffering, the
block buffering is accessed for every cache access since the block
buffering is orthogonal to other two access-modes. Equation (8)
presents the power model of APAAMPS sbb and Eq. (9) is that of
APAphased sbb

APAAMPS sbb = APAwp sbb × t + APAphased sbb × (1 − t) (8)

APAphased sbb = Pbu f f + APAphased − 1
N

Pdata × Hbu f f (9)

BAAM cache employs three access-modes: WP, PTC and
SBB. Since SBB mode and other two access-modes are orthogo-
nal, there are four access-modes in BAAM cache (i.e., WP with
and without SBB and PTC with and without SBB). The power
model of WP and PTC with and without SBB are presented in
Eqs. (1), (2), (4) and (5) respectively. Thus, APABAAM can be es-
timated by Eq. (10):

APABAAM = APAwp × fwp + APAwp sbb × fwp sbb

+ APAptc × fptc + APAptc sbb × fptc sbb

(10)

where fwp, fptc, fwp sbb and fptc sbb are the percentage of the to-
tal invocations of subroutine, according to the different access-
modes used in BAAM, respectively. Because the access-mode of
each subroutine has been pre-decided by the off-system analysis,
APABAAM depends on the number of calls to subroutines that use
the same access-mode.

According to the power model of different cache models, we
estimate the average power per access of different cache models
for all benchmarks by using the Simplescalar tool to collect the
program execution statistics, such as cache hit rate, way predic-
tion rate, and so on. The simulation results are presented in the
next section.

6.3 Simulation Results
Table 3 shows the number of modules (including subroutines

and loops), the static instructions per module of these benchmarks
and the average execution time per module. The actual average
number of static code sections is over 40 for all experimental ap-
plications, but only 21 sections remain after executing module
filtering. For this reason, the subsequent off-system analysis of
applications is significantly simplified. The average time of mod-
ules are also shown in the table, which is dynamically obtained at

(a) Power saving of IC

(b) Power saving of DC

Fig. 6 Power comparison between the single access-modes and BAAM.

run time. The time ranges from more than ten µs to thousands of
µs. Overall, the total period of off-system analysis for an applica-
tion is quite acceptable.

Figure 6 (a) and (b) show the power saving comparison for IC
and DC between the single access-modes with and without block
buffering and BAAM. SBB cache is the conventional cache with
a block buffering. The block buffering is accessed at the first
cycle. If there is a hit, then the cache does not function. Oth-
erwise, the cache is accessed at the second cycle. Except for
SBB, other single access-modes with the block buffering access
a cache at the same time that the block buffering is accessed. The
purpose is to avoid the performance degradation due to the high
block buffering miss rate. In terms of power saving, WP buff and
PTC buff are the best approaches among all the single access-
modes for IC and DC, respectively. However, BAAM obtains
about 9.31% and 11.39% power saving compared with WP buff
in IC and PTC buff in DC, respectively. In terms of performance,
PTC does not increase the cache-access time because the par-
tial tag comparison and cache are operated, simultaneously. SBB
does not increase the cache-access time if the block buffering is
hit, but it needs an additional one cycle to access cache in the
case of the block buffering miss. Similarly, WP needs a extra cy-
cle to access the remaining ways in case of the way prediction
miss. For BAAM, the performance degradation is limited less
than the value that is set by the requirement of customers. By our
simulation results, the increase in runtime is about 18.7%, 5.6%
and 0.57% for SBB, WP and BAAM cache models, on average.
Overall, BAAM achieves much more power-efficiency than the
conventional single access-modes and the performance degrada-
tion of it is also smaller than others.

We also model an Access-Mode Prediction Scheme
(AMPS) [10] to compare with our proposed design based
on the 32 KB 4-way set-associative cache. The AMPS is the
most sophisticated adaptive access-mode selection scheme that

c© 2012 Information Processing Society of Japan 33



Journal of Information Processing Vol.20 No.1 26–36 (Jan. 2012)

Fig. 7 The power savings achieved by two schemes.

Fig. 8 The execution time increment.

can outperform most of other current access modes. Figure 7
shows the power saving of IC and DC by using AMPS with
and without SBB and BAAM, in contrast to the conditional
access mode with the same simulation configuration. For brevity,
we only show the total power consumption per application.
Compared to the basic mode, the total cache power savings are
achieved by our proposed scheme in all of applications because
the cache access modes during run-time are dependent on the
applications. The power reduction in BAAM outperforms AMPS
benefits for different dynamic instances of the same module
being more stable for access-mode compared with several
successive instruction intervals, so that the behavior-based
adaptive access-mode is able to predict future access modes
more accurately than AMPS. For IC power saving, BAAM can
reduce the average power consumption by up to 76.95%, 9.16%
and 5.95%, compared to the basic mode, AMPS and AMPS buff,
respectively. For DC power saving, BAAM can reduce the
average power consumption by up to 64.67%, 12.88% and
11.68%, compared to the basic cache, AMPS and AMPS buff,
respectively. Thus, BAAM outperforms AMPS with and without
the block buffer in both IC and DC.

Figure 8 shows the performance degradation of all applica-
tions for the BAAM and AMPS. Although BAAM saves about
76.95% and 64.67% of the average power consumption for IC
and DC, respectively, it does not slow down the program execu-
tion much because of the limited target slack. But, AMPS reduces
the performance by over 1%. This is because it regards the cache
access history as straightforward exploration metric, which could
easily cause more misprediction due to the variation of the predic-
tion accuracy among several successive intervals. Furthermore,

Fig. 9 Power saving with different adaptive scheme.

AMPS uses the phased cache as an alternative modes for WP to
reduce the power consumption, which also leads to performance
degradation.

6.4 Comparison of Power Efficiency
Finally, we compare the power efficiency between the

behavior-based access-mode (BAAM) and the conventional adap-
tive scheme (AMPS). In order to make a fair comparison, BAAM
also uses the same two access-modes used in AMPS: way predic-
tion and phase-based access. Figure 9 shows the power saving of
the two schemes. Here, we assume two performance constraints:
PDmax 1 and PDmax 2 that are 1% and 2%, respectively. (PDmax

is explained in Section 5.2). We select the more power-efficient
access-mode until the performance degradation exceeds PDmax.
Compared to AMPS, BAAM within 1% performance degradation
obtains a little power saving in most applications. The largest
power saving is about 10.88% in mcf, average power saving is
about 3.37% and 5.17% for IC and DC, respectively. The reason
for the limited power saving is that because that the phased-based
access-mode used in BAAM reduces the power consumption by
sacrificing the access time. As a result, BAAM is limited to se-
lect the optimal access-modes because of the exorbitant perfor-
mance constraint. When the limitation of the performance degra-
dation is up to 2%, all applications show significant power saving.
Compared to AMPS, BAAM within 2% performance degradation
can reduce the power consumption by an average of 13.1% and
12.18% for IC and DC, respectively. On the whole, BAAM is
better than the conventional adaptive scheme in terms of select-
ing an optimal access-mode for cache accesses. We also expect
that the behavior-based adaptive scheme to prove more efficient
in other adaptive mechanisms.

7. Conclusions and Future work

In this paper, we have proposed a new approach for power-
efficient set-associative caches on an embedded system, which
can dynamically adjust the access mode for different phases of an
application during runtime. Our proposed scheme utilizes pro-
gram behavior repetition to implement off-system access-mode
exploration for each module of a certain application. Once the
optimal access-mode is determined, it can be applied to future
execution of the same module. It requires less additional hard-
ware and has a much wider view of the program. Although it
needs a previous analysis of the application, the analysis is an

c© 2012 Information Processing Society of Japan 34



Journal of Information Processing Vol.20 No.1 26–36 (Jan. 2012)

one-time effort for each application and the development period
of off-system analysis is greatly reduced by behavior-based ex-
ploration. So it is very suitable to embedded applications because
such a system always executes a fixed or routine application.
Meanwhile, the behavior-based scheme reduces the exploration
complexity, regardless of difference in architecture or a set of in-
put. As a result, our proposed behavior-based adaptive access-
mode scheme can reduce the average power consumption by up
to 76.95% and 64.67% for IC and DC, respectively. The perfor-
mance degradation for all application is less than 1% , compared
to the basic cache (i.e., the fastest access mode),

In this paper, we evaluated only for level-one caches. Future
work is to demonstrate the effectiveness of the behavior-based
adaptive scheme on the level-two cache. More power-efficient
access modes can be expected from our scheme so that the power
consumption, performance degradation and design complexity
can be further reduced. Furthermore, dynamic modules selec-
tion and modes decision should to be introduced in order to meet
the requirements of a general purpose system.

Acknowledgments This research was supported by JSPS
KAKENHI 11515400, Core Research for Evolutional Science
and Technology by JST and Program for Fostering Regional In-
novation by MEXT, Japan.

Reference

[1] Edmondson, J.H., Rubinfeld, P.I., et al.: Internal organization of the
Alpha 21164, a 300MHz 64-bit quad-issue COMS RISC microproces-
sor, Digital Technical Journal, pp.119–135 (July 1995).

[2] Montenaro, J. et al.: A 160MHz 32bit 0.5W CMOS RISC Micro-
processor, The Int’l Solid-State Circuits, Vol.31, pp.1703–1714 (Nov.
1996).

[3] Calder, B., Grunwald, D. and Emer, J.: Predictive Sequential Associa-
tive Cache, the 2nd IEEE International Symposium on High Perfor-
mance Computer Architecture, Sab Hise, pp.244–254 (Feb. 1996).

[4] Inoue, K., Ishihara, T. and Murakami, K.: Way-predicting set-
associative cache for high performance and low energy consump-
tion, Proc. Int. Low Power Electronics and Design Symp., pp.273–275
(1999).

[5] Inoue, K., Ishihara, T. and Murakami, K.: A High-Performance and
Low-Power Cache Architecture with Speculative Way-Selection, IE-
ICE Trans. on Electron, Vol.E83-C, No.2, pp.24–36 (Feb. 2000).

[6] Zhang, C. and Asanovic, K.: A way-halting cache for low-energy
high-performance systems, ACM Trans. Archit. Code Optim., Vol.2,
No.1, pp.126–131 (2005).

[7] Keramidas, G., Xekalakis, P. and Kaxiras, S.: Applying decay
to reduce dynamic power in set-associative caches, HiPEAC 2007,
Vol.4367, pp.38–53 (2007).

[8] Min, R., Xu, Z., Hu, Y., et al.: Partial Tag Comparison: A New Tech-
nology for Power-Efficient Set-Associative Cache Designs, Proc. 17th
International Conference on VLSI Design, pp.183–188 (2004).

[9] Powell, M. et al.: Reducing set-associative cache energy via way-
prediction and selective direct-mapping, Proc. Int. Symp. on Microar-
chitecture, pp.54–65 (2001).

[10] Zhu, Z. and Zhang, X.: Access-mode predictions for low-power cache
design, IEEE Micro, Vol.22, No.2, pp.58–71 (Mar.-Apr. 2002).

[11] Kin, J., Gupta, M. and Mangione-Smith, W.H.: The filter cache: An
energy efficient memory structure, Proc. 30th Int. Microarchitecture
Symp., pp.184–193 (Dec. 1997).

[12] Su, C.L. and Despain, A.M.: Cache design for energy efficiency, Proc.
28th Int. System Sciences Conf., pp.306–315 (1995).

[13] Ghose, K. and Kamble, M.B.: Reducing power in superscalar pro-
cessor caches using subbanking, multiple line buffers and bit-line
segmentation, Proc. Int. Low Power Electronics and Design Symp.,
pp.70–75 (1999).

[14] Liu, W. and Huang, M.C.: EXPERT: Expedited simulation exploiting
program behavior repetition, ICS’04: Proc. 18th Annual International
Conference on Supercomputing, pp.126–135 (June 2004).

[15] Sherwood, T., Perelman, E., Hamerly, G., Sair, S. and Calder, B.: Dis-
covering and exploiting program phases, IEEE Micro: Micros Top

Picks from Computer Architecture Conferences, pp.217–227 (Dec.
2003).

[16] Brooks, D., Tiwari, V. and Martonosi, M.: Wattch: A framework for
architectural-level power analysis and optimizations, Proc. 27th An-
nual International Symposium on Computer Architecture, pp.83–94
(June 2000).

[17] Burger, D.C. and Austin, T.M.: The SimpleScalar tool set, version 2.0,
Comput. Architecture News, Vol.25, No.3, pp.13–25 (June 1997).

[18] Shivakumar, P. and Jouppi, N.: CACTI 3.0: An integrated cache tim-
ing, power, and area model, Compaq, Palo Alto, CA, WRL Res. Rep.
(Feb. 2001).

Jiongyao Ye was born in Shanghai,
China on May, 1978. He received his B.E
degree in electronic engineering in 2000,
from Shanghai Marine University, where
he was an assistant during 2000–2002.
He received M.E. degree and his Ph.D. in
engineering. from Waseda University in
2005 and 2011 respectively. He joined the

Sony LSI Design Inc., where he worked in the field of LSI design
from 2005 to 2008. He is currently working toward a Dr.Eng.
degree in Graduate School of Information, Productions and
Systems, in Waseda University. His research interests include
micro-architecture, low-power FPGA and their applications. He
is a member of IEICE.

Hongfeng Ding was born in Liaoyan,
China on April, 1986. He received his
B.E. degree in mathematics and applied
mathematics from Beijing University of
Posts and Telecommunications, China in
2009. His research interest includes high
performance processor design and low-
power design.

Yingtao Hu was born in Wuxi, China on
May, 1986. He received his B.E. de-
gree in software engineering from Dalian
University of technology, China in 2008,
and M.E. degree from Waseda University,
Japan in 2011. His research interests in-
cludes low-power LSI design and infor-
mation security. He is a student member

of the IEICE.

c© 2012 Information Processing Society of Japan 35



Journal of Information Processing Vol.20 No.1 26–36 (Jan. 2012)

Takahiro Watanabe was born in Ube,
Japan on October, 1950. He received
his B.E. and M.E. in electrical engi-
neering from Yamaguchi University, and
Dr.Eng. from Tohoku University. In 1979,
he joined the Research and Development
Center of Toshiba Corporation, where he
worked in the field of LSI design automa-

tion. In August 1990, he joined Yamaguchi University, the De-
partment of Computer Science and Systems Engineering, and in
April 2003, he moved to Graduate School of Information, Pro-
duction and Systems, Waseda University. His current research
interests are EDA algorithm, Microprocessor and MPSoC, NoC,
FPGA and their applications. He is a member of IEICE, IPSJ and
IEEE.

c© 2012 Information Processing Society of Japan 36


